

White paper

AutomationML and eCl@ss integration

State: November 2015

®

classification and product description

 AutomationML and
 eCl@ss integration

2

Common Working Group of AutomationML e.V and eCl@ss e.V.

Contributer:

Olaf Gräser PHOENIX CONTACT GmbH & Co. KG

Lorenz Hundt inpro Innovationsgesellschaft für fortgeschrittene
Produktionssysteme in der Fahrzeugindustrie mbH

Michael John Siemens AG

Gerald Lobermeier Weidmüller Interface GmbH & Co. KG

Arndt Lüder Otto-von-Guericke-Universität Magdeburg

Stefan Mülhens AmpereSoft GmbH

Nicolaus Ondracek Paradine GmbH

Mario Thron Institut für Automation und Kommunikation e.V.

Josef Schmelter PHOENIX CONTACT GmbH & Co. KG

Version 1.0, October 2015

Contact: www.automationml.org

 www.eclass.de

 AutomationML and
 eCl@ss integration

3

Table of content

Table of content .. 3

List of figures .. 5

List of tables ... 7

1 Introduction and Scope ... 8

2 Terms, definitions and abbreviations .. 10

2.1 Terms and definitions ... 10

2.1.1 AutomationML ... 10

2.1.2 Automation object.. 10

2.1.3 AutomationML object .. 10

2.1.4 AutomationML class .. 10

2.1.5 AutomationML attribute ... 10

2.1.6 AutomationML document .. 10

2.1.7 AutomationML file.. 10

2.1.8 AutomationML interface .. 10

2.1.9 eCl@ss Classification Class ... 10

2.1.10 eCl@ss Property ... 10

2.1.11 Value .. 11

2.1.12 Unit .. 11

2.1.13 Keyword .. 11

2.1.14 Synonym ... 11

2.1.15 Value List ... 11

2.1.16 Application Class ... 11

2.1.17 Aspect .. 11

2.1.18 Block .. 11

2.2 AutomationML library ... 11

2.2.1 Instance ... 11

2.2.2 Instance hierarchy ... 11

2.2.3 Link .. 11

2.3 Abbreviations ... 11

2.4 Normative References ... 13

3 AutomationML .. 14

3.1 Basics ... 14

3.2 Capabilities for semantic integration .. 16

4 eCl@ss .. 17

4.1 Basic Representation ... 17

4.2 Advanced Representation.. 17

4.3 New structural elements of eCl@ss Advanced Representation .. 18

4.3.1 Block .. 18

4.3.2 Aspect ... 18

4.3.3 Cardinality ... 19

4.3.4 Polymorphism .. 19

4.3.5 Units .. 20

4.4 Export formats .. 20

4.4.1 CSV for Basic Representation .. 20

4.4.2 eCl@ss XML for Basic and Advanced Representation .. 20

4.5 Release – Update - Support .. 20

4.5.1 RUF ... 20

 AutomationML and
 eCl@ss integration

4

4.5.2 TUF ... 21

4.6 IRDI .. 21

5 Use cases and considered data exchange structures ... 23

5.1 Technical use cases .. 23

5.1.1 Use case – simple semantic identification .. 23

5.1.2 Use case – semantic identification of properties ... 24

5.1.3 Use case – semantic identification of structures ... 24

5.2 Exchange use cases .. 25

5.2.1 Assumptions for considered use cases .. 26

5.2.2 Use case - exchange of semantically unique instance data 27

5.2.3 Use case – encode data semantics .. 28

5.2.4 Use case – decode data semantics .. 30

5.2.5 Use case – eCl@ss dictionary exchange ... 31

5.2.6 Use case – receive eCl@ss dictionary ... 32

5.2.7 Use case – deliver eCl@ss dictionary .. 33

5.3 Application use cases .. 34

5.3.1 Use case - development and use of semantically unique component libraries 34

5.3.2 Use case - lossless exchange between system configurator and CAx tool 35

5.3.3 Use case - construction validation .. 37

5.4 Boundary Conditions for Application .. 39

6 Realization of technical use cases ... 41

6.1 Integration of attribute and object semantics ... 41

6.1.1 Concept ... 41

6.2 Generation process for eCl@ss AutomationML role model .. 45

6.2.1 Concept ... 45

6.2.2 Attribute transformation best practice ... 49

6.2.3 Example .. 51

6.3 Generation process for eCl@ss advanced AutomationML model ... 57

7 Literature ... 58

 AutomationML and
 eCl@ss integration

5

List of figures

Figure 1 – General engineering data exchange process between engineering tools 8

Figure 2 – AutomationML base structure .. 14

Figure 3 – AutomationML topology description architecture .. 15

Figure 4 – Means for data semantic modelling in AutomationML ... 16

Figure 5 – eCl@ss classification data structure.. 17

Figure 6 – Example block description ... 18

Figure 9 – ISO / IEC 6523 Definition for use of IRDI .. 21

Figure 10 – General engineering activities embedded within production system engineering
(subset) .. 25

Figure 11 – System of relevant use cases for semantically unique exchange of data points 26

Figure 12 – Activity structure of use case "exchange of semantically unique instance data" 28

Figure 13 – Activity structure of use case "Encode data semantics" .. 29

Figure 14 – Activity structure of use case "decode data semantics" .. 30

Figure 15 – Activity structure of use case "eCl@ss dictionary exchange" 31

Figure 16 – Activity structure of use case "receive eCl@ss dictionary" ... 32

Figure 17 – Activity structure of use case "deliver eCl@ss dictionary" .. 33

Figure 18 – System of relevant use cases for semantically unique exchange of data points 34

Figure 19 – Activity structure of use case "development and use of semantically unique
component libraries" .. 35

Figure 20 – Structure of use case „lossless exchange between system configuration tool and
CAx tool“ .. 36

Figure 21 – Activity structure of use case „lossless exchange between system configuration
tool and CAx tool“ .. 37

Figure 22 – Structure of use case “validation of construction” ... 38

Figure 23 – Activity structure of use case "validation of construction” ... 39

Figure 24 – Applicable means for semantic reference for a single attribute 41

Figure 25 – Example RefSemantic for a single attribute .. 42

Figure 26 – XML description of the role class eClassClassSpecification 43

Figure 27 – Applicable means for semantic reference for AutomationML Object 44

Figure 28 – Example motor AutomationML object with semantic reference for a) AC and b)
CC .. 44

Figure 29 – Attributes to the example motor AutomationML object with semantic reference
for a) CC and b) AC ... 44

Figure 30 – XML View of the example motor AutomationML object with semantic reference
(AC) .. 45

Figure 31 – Applicable means for semantic representation used for eCl@ss Basic modelling 45

Figure 32 – Example Role Class .. 47

Figure 33 – Attributes within an Example Role Class ... 47

Figure 34 – Example Role Class XML View ... 48

Figure 35 – Example eClass classification role class library .. 51

Figure 36 – XML representation of example eClass classification role class library 53

Figure 37 – Example of AutomationML role class attributes for eCl@ss basic AC of 27-02-
25-01 DC engine (IEC) .. 54

Figure 38 – XML representation of example of attributes for the eClass classification role
motor .. 54

Figure 39 – Example of system unit class library including the attributes for the SUCs 55

Figure 40 – XML representation of example of system unit class library 56

Figure 41 – Example of instance hierarchy .. 56

 AutomationML and
 eCl@ss integration

6

Figure 42 – XML representation of the example instance hierarchy .. 57

 AutomationML and
 eCl@ss integration

7

List of tables

Table 1 – Abbreviations .. 11

Table 2 – Code Space Identifier According To ISO/TS 29002-5 (Restricted) 22

Table 3 – Overview Use Cases .. 23

Table 4 – Definition eClassClassSpecification ... 43

Table 5 – Translation of the attributes of eCl@ss to AML .. 49

Table 6 – Translation of the data types from eCl@ss to AutomationML permitted data types 50

 AutomationML and
 eCl@ss integration

8

1 Introduction and Scope

Engineering processes of technical systems and its embedded au tomation systems have to
be executed with increasing efficiency and quality. Especially the project duration has to be
shortened while the complexity of the engineered system increases. To solve this problem the
engineering process is more and more executed by exploiting software based engineering
tools exchanging engineering information and artefacts along the engineering process related
tool chain.

While the efficiency of the different engineering tools has been considered for a long time and
important gains have been reached, the exchange of engineering data is still an important
issue. Within this process engineering information developed within one engineering tool has
to be transmitted to another engineering tool without any loss of information and wi thout any
misinterpretation.

Usually the engineering information of a sending engineering tool is stored in this tool using
the tool internal data model as a tool internal project structure. To transmit this information to
another tool the project data have to be transformed to data within a data exchange format
and stored as exported data file. This data file has to be read by the information receiving
engineering tool. The incoming data within the data exchange format have to be transformed
to project data following the internal data model of the receiving tool. Thus a virtual mapping
of the tool internal data models of the sending and the receiving tool is required as
represented in Figure 1.

Figure 1 – General engineering data exchange process between engineering tools

The critical point in the described process is the correct interpretation of received data within
the information receiving tool. For each incoming data point two main pr operties have to be
given:

1. The incoming data have to be readable, i.e. they are provided in a syntax, which can
be automatically read by the receiving tool.

2. The incoming data have to be correctly mappable to the tool internal data model, i.e.
the semantics of each incoming data point need to be identifiable automatically by the
receiving tool.

To ensure both properties the data exchange format specification can follow two approaches.

Within the first approach syntax and semantic are defined in combination for each data point
expressable in the data exchange format, i.e. for each data point a dedicated expression is
integrated in the data exchange format only useable for this data point. Such approaches are
applied for example in STEP. They have the strong drawback, that they are not easily
extendable or adaptable to different application cases.

Sending tool

Project
data

Tool internal

data model

-attribut
-attribut

Objekt

-attribut
-attribut

Objekt
1

-attribut
-attribut

Objekt
1

-attribut
-attribut

Objekt

1

Relation

Receiving tool

Project
data

Tool internal

data model

-attribut
-attribut

Objekt

-attribut
-attribut

Objekt
1

-attribut
-attribut

Objekt

1

-attribut
-attribut

Objekt

1

Relation

Exported
data

Mapping

Data in data
exchange

format

Data in data
exchange

format
Transform data

Write data Read data

Transform data

 AutomationML and
 eCl@ss integration

9

Thus, the second approach avoids the fixed specification of data object semantic. It defines
the syntax of data objects and enables the integration of a semantic specification, i.e. each
object will carry its own semantics definition. This approach is applied in AutomationML for
example.

Nevertheless, the semantic definition carried within the data object has to be unique.
Therefore, appropriate means have to be available.

Within the industry, several catalogue standards are available defining object and property
semantics uniquely. Usually they follow the IEC 61360 standard. One example is the eCl@ss
catalogue standard. Within this standard a four layer object definition hierarchy with object
properties is defined enabling the unique identification of object types like automation device
types and its property types like vendor names.

Such catalogue standard will be valuable for the definition of object semantics within a data
exchange format. This whitepaper will take up this idea. It will define a methodology how
eCl@ss and similar catalogues could be applied to define unique data point semantics within
AutomationML.

 AutomationML and
 eCl@ss integration

10

2 Terms, definitions and abbreviations

2.1 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 62714-1 and the
following apply.

2.1.1 AutomationML

XML based data exchange format for plant engineering data

2.1.2 Automation object

Entity in the automated system

Note: An example of an automation object is an automation component, a valve or a signal.

2.1.3 AutomationML object

Data representation of an automation object or a group of automation objects

Note 1: The AUTOMATIONML object is the core element of AUTOMATIONML. It may contain admin istration items,
attributes, interfaces, relations and references. An AutomationML object is an individual instance and is derived
from standard AutomationML classes.

Note 2: AutomationML objects have a relation to their corresponding AutomationML class.

Note 3: Examples for relations are type-instance-relations and copy-instance-relations. Single instances can be
extended, e.g. by aggregated objects or attributes.

Note 4: AutomationML objects have a copy-instance-relation to their AutomationML class.

2.1.4 AutomationML class

Predefined AutomationML object type

Note 1: AutomationML classes are stored within AutomationML libraries.

Note 2: AutomationML classes define reusable sample solutions, characterized by attributes, interfaces and
aggregated objects.

Note 3: AutomationML classes can be used for multiple instantiations.

2.1.5 AutomationML attribute

Attribute which belongs to an AutomationML object

Note: AutomationML attributes are described as XML element corresponding to IEC 62424:2008.

2.1.6 AutomationML document

Certain CAEX document following IEC 62714 including all referenced sub documents

Note: AutomationML documents may be stored as files, but also e.g. as string or data streams.

2.1.7 AutomationML file

Certain CAEX file following IEC 62714 with the extension .aml excluding all referenced sub
files

2.1.8 AutomationML interface

Single connection point that belongs to an AutomationML object and can be linked with
another interface

Note: Interfaces allow the description of relations between objects by the definition of CAEX Interna lLinks.
Examples are a signal interface, a product interface or a power interface.

2.1.9 eCl@ss Classification Class

Class for the classification of products into certain categories

2.1.10 eCl@ss Property

Characteristic of a class

 AutomationML and
 eCl@ss integration

11

2.1.11 Value

A specification of a characteristic

2.1.12 Unit

Standardized unit of measure

2.1.13 Keyword

An alternative name of a class

2.1.14 Synonym

An alternative name of a property

2.1.15 Value List

A restrictive list of valid specifications of a property

2.1.16 Application Class

Class that comprises all characteristics described by properties

2.1.17 Aspect

Sub-class of an application class that comprises all properties describing a certain aspect of a
product, not the product itself, e.g. packing information

2.1.18 Block

Sub-class of an application class that comprises all properties desc ribing a certain part of a
product

2.2 AutomationML library

Library containing AutomationML classes

2.2.1 Instance

Data representation of a specific real world item or concrete logical engineering item

2.2.2 Instance hierarchy

Hierarchy of AutomationML objects

2.2.3 Link

Connection between objects of the top-level format CAEX

Note: A link is modelled by means of CAEX InternalLink.

2.3 Abbreviations

For the purpose of this document the abbreviations listed in Table 1 apply.

Table 1 – Abbreviations

Abbreviation Meaning

AC Application Class

ASN Abstract Syntax Notation

AS Aspect

AutomationML Automation Markup Language

BL Block

CAx Computer aided X

CAEX Computer Aided Engineering Exchange

CC Classification Class

 AutomationML and
 eCl@ss integration

12

Abbreviation Meaning

COLLADA Collaborative Design Activity

CSI Code Space Identifier

CSV Comma Separates Values

DIN Deutsche Industrienorm

ECAD (E-CAD) Electrical engineering tool

EDS Electronic Data Sheet

GUID Global Unique Identifier

GSDML Generic Station Description Markup Language

GSD General Station Description

HMI Human Machine Interface

ICD International Code Designator

ID Identifier

IEC International Electrotechnical Commission

IE InternalElements

IH InstanceHierarchy

IRDI International Registration Data Identifier

ISO International Organization for Standardization

ISO/PAS International Organization for Standardization Public Available Standard

KW Keyword

MCAD (M-CAD) Mechanical engineering tool

OCL Object Constraint Language

OntoML Ontology Markup Language

OSI Open Systems Interconnection

P&I diagram Plant and instrumentation diagram

P&ID tool Plant and instrumentation diagram tool

PCE-CAE tool Process Control Engineering Computer Aided Engineering tool

PLC Programmable Logic Controller

PR Property

RUF Release-Update-File

STEP STandard for the Exchange of Product model data

SUC System unit classes

SUC LIB System unit Class Library

SY Synonym

TUF Transaction-Update-file

URL Uniform resource locator

UML Unified Modeling Language

UN Unit

URI Uniform Resource Identifier

UUID Universal Unique Identifier

XML Extensible Markup Language

VA Value

VL Value List

W3C World Wide Web Consortium

 AutomationML and
 eCl@ss integration

13

2.4 Normative References

The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any
amendments) applies.

IEC 60027 (all parts), Letter symbols to be used in electrical technology

IEC 61131-3:2013, Programmable controllers – Part 3: Programming languages

IEC 61158 (all parts), Industrial communication networks – Fieldbus specifications

IEC 61360 (all parts), Standard data element types with associated classification scheme for
electric components

IEC 61784 (all parts), Industrial communication networks – Profiles

IEC 62424:2008, Representation of process control engineering - Requests in P&I diagrams
and data exchange between P&ID tools and PCE-CAE tools

IEC 62714 (all parts), Engineering data exchange format for use in industrial systems
engineering – AutomationML

ISO 13584-32:2010-12, Industrial automation systems and integration - Parts library - Part 32:
Implementation resources: OntoML: Product ontology markup language

ISO 6523 (all parts), Information technology - Structure for the identification of organizations
and organization parts

ISO 80000-1:2009-11, Quantities and units – Part 1: General

ISO/IEC 11179-6:2015-08, Information technology – Metadata registries (MDR) – Part 6:
Registration

ISO/IEC 9834-8:2014-08, Information technology - Open Systems Interconnection -
Procedures for the operation of OSI Registration Authorities: Generation and registration of
Universally Unique Identifiers (UUIDs) and their use as ASN.1 Object Identifier components

ISO/PAS 17506:2012, Industrial automation systems and integration - COLLADA digital asset
schema specification for 3D visualization of industrial data

ISO/TS 29002-5:2009-02, Industrial automation systems and integration - Exchange of
characteristic data - Part 5: Identification scheme

Extensible Markup Language (XML) 1.0 1.0:2004, W3C Recommendation
(available at <http://www.w3.org/TR/2004/REC-xml-20040204/>)

PLCopen XML 2.0:December 3rd 2008 and PLCopen XML 2.0.1:May 8th 2009, XML formats
for IEC 61131-3
(available at <http://www.plcopen.org>/)

 AutomationML and
 eCl@ss integration

14

3 AutomationML

3.1 Basics

AutomationML is a solution for data exchange focusing on the domain of engineering of
automation systems.

The AutomationML data format, developed by AutomationML e.V., is an open, neutral, XML-
based, and free data exchange format which enables a domain and company spanning
transfer of engineering data of production systems in a heterogeneous engineering tool
landscape. The goal of AutomationML is to interconnect engineering tools in their different
disciplines, e.g. plant planning, mechanical engineering, electrical engineering, process
engineering, process control engineering, HMI development, PLC programming, robot
programming, etc.

AutomationML stores engineering information following the object oriented paradigm and
allows modelling of physical and logical plant components as data objects encapsulating
different modelling aspects. An object may consist of other sub-objects, and may itself be part
of a larger composition or aggregation. Typical objects in plant automation comprise
information on topology, geometry, kinematics and logic, whereas logic comprises
sequencing, behaviour and control.

In addition, AutomationML follows a modular structure by integrating and enhancing/adapting
different already existing XML-based data formats combined under one roof the so called top
level format (see Figure 2). These data formats are used on an “as-is” basis within their own
specifications and are not branched for AutomationML needs. Logically AutomationML is
partitioned in:

 description of the plant structure and communication systems expressed as a hierarchy of
AutomationML objects and described by means of CAEX following IEC 62424,

 description of geometry and kinematics of the different AutomationML objects represented
by means of COLLADA 1.4.1 and 1.5.0 (ISO/PAS 17506:2012),

 description of control related logic data of the different AutomationML objects represented
means of PLCopen XML 2.0 and 2.0.1, and

 description of relations among AutomationML objects and references to information that is
stored in documents outside the top level format.

Figure 2 – AutomationML base structure

Due to the different aspects of AutomationML, the IEC 62714 series consists of different
parts. Therby each part focuses on a different aspect of AutomationML:

http://en.wikipedia.org/wiki/Topology
http://en.wikipedia.org/wiki/Geometry
http://en.wikipedia.org/wiki/Kinematics
http://en.wikipedia.org/wiki/Logic
http://en.wikipedia.org/wiki/Logic

 AutomationML and
 eCl@ss integration

15

 IEC 62714-1, Architecture and general requirements: This part specifies the general
AutomationML architecture, the modeling of engineering data, classes, instances,
relations, references, hierarchies, basic AutomationML libraries and extended
AutomationML concepts. It is the basis of all future parts, and it provides mechanisms to
reference other sub formats.

 IEC 62714-2, Role class libraries: This part is intended to specify additional AutomationML
libraries.

 IEC 62714-3, Geometry and kinematics: This part is intended to specify the modeling of
geometry and kinematics information.

 IEC 62714-4, Logic: This part is intended to specify the modeling of logics, sequencing,
behavior and control related information.

Further parts may be added in the future in order to interconnect further data sta ndards to
AutomationML.

The basis of AutomationML is the application of CAEX as top level format and the definition of
an appropriate CAEX profile fulfilling all relevant needs of AutomationML to model
engineering information of production systems, to integrate the three data formats CAEX,
COLLADA, and PLCopenXML, and to enable an extension if necessary in the future.

CAEX enables an object oriented approach (see Figure 3) where

 semantic of system objects can be specified using roles defined and collected in role class
libraries,

 interfaces between system objects can be specified using interface classes defined and
collected in interface class libraries,

 classes of system objects can be specified using system unit c lasses (SUC) defined and
collected in system unit class libraries, and

 individual objects are modeled in an InstanceHierarchy (IH) as a hierarchy of
InternalElements (IE) referencing

o system unit classes they are derived from and

o role classes defining its semantics and interface objects used to interlink
objects among each other or with externally modeled information (e.g.
COLLADA and PLCopenXML files).

Figure 3 – AutomationML topology description architecture

IH

IE

IE

IE

IE

SUC
LIB

SUC

SUC

SUC

IE

Instance Hierarchy
Description of engineering

data

System Unit Classes
Reusable system

components

Roll Class Library
Definition of semantic

Interface Class Library
Definition of interfaces

Bib

Role

Role

Role

Role
Clas Lib

 AutomationML and
 eCl@ss integration

16

The use of CAEX within AutomationML is described in detail in [1].

Pre-developed role class libraries applicable to derive necessary roles for semantic definition
in individual application cases are provided in [2].

The integration of geometry and kinematic models stored in COLLADA and appropriate
interface classes are detailed in [3].

The integration of behaviour models stored in PLCopen XML and appropriate interface
classes are detailed in [4].

3.2 Capabilities for semantic integration

The mapping of incoming data points to the data model of the importing tool is a critical point
during the import of data sets to be exchanged within engineering tools . Therefore the
semantics of each data point related to the importing tool has to be specified.

Within the data import process of AutomationML based data the incoming data points are
given within the InstanceHierarchy either as InternalElements or as attributes.

To identify the semantics of InternalElements AutomationML provides two main mechanisms:
referencing of roles and referencing of SystemUnitClasses. For referencing of roles the sub-
objects RoleRequirements and SupportedRoleClass are provided. They can contain the
complete role name including the role path. For referencing a SystemUnitClass the attribute
RefBaseSystemUnitPath can be used. This contains the complete name and path of the
SystemUnitClass in an arbitrary SystemUnitClassLib.

For the representation of attribute semantics the RefSemantik sub-attribute of an attribute
object can be used. It is given for each AutomationML attribute.

Figure 4 shows all these means for semantic representation.

Figure 4 – Means for data semantic modelling in AutomationML

Attributes

InternalElement

RefBaseSystemUnit

Path

SupportedRoleClass

RoleRequirements

………

………

…

Attribute

RefSemantic

………

 AutomationML and
 eCl@ss integration

17

4 eCl@ss

eCl@ss is a hierarchical and semantic system for grouping materials, products and services
according to a logical structure with a level detail that corresponds to the product -specific
properties that can be described using properties acording to ISO 13584 and IEC 61360.
Products and services can be allocated to the four-stage, numeric eCl@ss class structure.
Search terms and synonyms permit targeted sourcing of products and services within the
classification. Feature lists with standardized properties and value tables enable accurate
description and subsequent identification of products and services.

Several committees inspect each change request for correctness with regard to form and
content to ensure the high quality of eCl@ss.

The content is inspected with regard to correctness and conformity to the underly ing
standards (e.g. ISO 13584, IEC 61360, DIN 4002).

eCl@ss is offered for download in several languages from http://www.eclassdownload.com

Detailed definitions of the structure elements can be found in http://wiki.eclass.eu .

4.1 Basic Representation

eCl@ss basic representation presents a version variant with all essential new contents in
plain CSV format. In addition, the basic version is downloadable as an XML variant.

The new structural elements described in 4.3 are not part of the basic representation. A
reference list with the structural elements of the Advanced Representation maps the attributes
of the basic representation.

4.2 Advanced Representation

By introducing eCl@ss Advanced Representations (since eCl@ss 7.0), the eCl@ss-
Association offers an ISO13584-32:2010 (ontoML) compliant data structure. The data
structure contains the structural elements described under point 2. The result is the following
structural arrangement:

The 4-tier class structure is associated with the new application class (AC). This, in turn,
contains all relevant structural elements such as blocks and aspects.

Figure 5 – eCl@ss classification data structure

 AutomationML and
 eCl@ss integration

18

Integration of both the PROLIST standard and CAx elements results in additional important
data model extensions. Using “Cardinality" multiplication elements (refer to 4.3.3) as well as
variant access of special blocks by means of “Polymorphism” (refer to 0) results in significant
simplification.

Implementation of additional data type extensions (Level type and axis type) results in further
simplifications. Consequently, a single data type combines physical -technical links originating
from various attributes.

It should therefore be possible to transfer the complex data model in a data structure
configured for that purpose.

That’s why eCl@ss uses OntoML rules defined in ISO 13584-32. These OntoML rules
describe the form and arrangement of the structural elements and predefine how to interpret
the OntoML in order to be able to process eCl@ss Advanced Representation from a data -
technical point of view.

4.3 New structural elements of eCl@ss Advanced Representation

4.3.1 Block

A block is defined as the total of various properties under a single name and can be reused in
different areas of the classification system. A structure like this may be used for detailed
descriptions of components.

Using a car as an example, the block “wheel” would contain all attributes to describe the
wheel: Rim diameter, tire size etc. Another block would then describe the “axle” properties. In
addition, apart from attributes, a block can also contain additional sub-blocks with attributes
and more blocks: In this example the “wheel“ block is subdivided into “rim” and “tire”. In order
to create a block, a so-called reference property has to be created in the Advanced
Representation.

Figure 6 – Example block description

4.3.2 Aspect

An aspect is a special block variant that cannot be represented by cardinality or polymorphism
and is located in the top level of a class. The advantage of an aspect as opposed to a block is
the aspect’s universal use in a random number of classes without being a direct part of a
class. Consequently, it is not subject to any product specific restrictions.

An aspect, therefore, does not describe the product specific property itself (like ordinary
blocks and class attributes), but it includes attributes for that class under certain conditions or
additional attributes for a class under certain view points.

An example is the aspect “Operating conditions”. It describes under which conditions the car
is to be operated: Central Europe, the Arctic or desert. The resulting prope rties, however,
such as minimum starting temperature or operational altitude are attributes of the “car” class
and aspect elements.

 AutomationML and
 eCl@ss integration

19

4.3.3 Cardinality

Figure 7 – Example for cardinality for properties

For structuring class attributes one can also use, apart from blocks, a so-called cardinality.
“Cardinality” refers to the property allowing dynamic multiplication of a block within the scope
of the property values to be managed.

In case of the “car” example, one could use “cardinality” to describe the doors. For instance,
the attributes color, door type, and electric window levers describe the doors. A „door
attributes“ block combines these attributes, which can be accessed at random using the
reference property “number of doors”. To describe a 3-door vehicle, the value “3” has to be
set for the reference property “number of doors”. As a result, the “door attributes” block is
accessed 3 times.

Within the contents of data description, cardinality is therefore a possibility to determine the
number of identical blocks.

4.3.4 Polymorphism

Figure 8 – Example for polymorphism in eCl@ss

Polymorphism implies that the block content is not assigned within a class but that only after
an allocation of values to the attributes it is dynamically decided, which block content is
actually required (only at this stage it is determined, data-technically, which block is to be
selected from a number of blocks).

In the case of our “car” example, one could use polymorphism to describe the typ e of doors.
The driver’s door attributes differ compared to the hatch attributes. For instance, the driver’s
door could have the attributes, electric window lever, automatic lock, loudspeakers etc.,
whereas the hatch door would sooner have attributes such as windscreen wipers available,
rear heated windscreen etc.

 AutomationML and
 eCl@ss integration

20

In the “wheel” example of the “car” class, you will find that the attributes for a wheel with
double tires will be quite different from a wheel with single tires. Therefore, if values are to be
allocated to a “wheel” block one will first have to decide which type of wheel is to be
described: Single tire or double tire. Following the decision for “double tires”, the block “wheel
with double tires” is accessed and related attributes made available (f rom the Data-model
point of view, the block “wheel” is replaced by a specialization “wheel with double tires”).

The properties of this multiple (“poly”) substitutability (“morphism”) resulting from this special
variant are therefore used to describe various details of a product structure keeping the
number of total attributes manageable and free of redundancies.

4.3.5 Units

Each unit-associated property may express values (numbers) with regard to its basic unit and
dosage unit.

Consequently, properties are used quite universally and do not require multiple definitions
should the scale of data volumes differ considerably. In addition, common usage units can be
used.

Convertibility of figures to various units is a prerequisite for using different units for a
property. A property cannot have the unit kg/m³ (density) and kg/m² (surface density).

4.4 Export formats

Following the release of eCl@ss 7.0, the eCl@ss standard is available in two different export
formats. Internationalization required amendments of ISO standards. Significant amendments
involved both a distinction between ISO-standard conformant “closed” value lists and “open”
proposal lists and the introduction of standard compliant measurement units.

4.4.1 CSV for Basic Representation

The usual CSV export format of the eCl@ss-standard includes eight CSV files, which Office
programs such as MS-Excel and MS-Access can import and process. The attached ReadMe
file describes the amendments, structure, contents, and associations of the CSV files.

4.4.2 eCl@ss XML for Basic and Advanced Representation

With introduction of eCl@ss 7.0, an automated eCl@ss XML format representation/generation
of eCl@ss data is available. This export format bases on an ISO-standardized XML format for
product data exchange. Related specifications are publ ished in ISO 13584-32:2010 (ontoML).
These specifications offer a uniform and comparable data structure for communications
between machines. Consequently, two export formats are available for processing and
implementing Basic Representation. Export of Advanced Representation is only available in
eCl@ss XML-format.

4.5 Release – Update - Support

By means of eCl@ss 7.0, eCl@ss e.V. supports standard users with additional information
making it possible to update from eCl@ss Release to Release more or less automati cally. The
result, a significant saving in data processing costs. Updating from 6.2 to 7.0 will make this
possible for the first time. Below please find a description of the Release-Update-Files and
Transaction-Update-Files made available by eCl@ss:

4.5.1 RUF

The Release-Update-File, abbreviated RUF, corresponds with common mapping tables but is
far more complete and of a higher quality. Made available in CSV format it contains
information with regard to release changes made in respect of classes and attributes.
Move/Split/Join as well as previous and successive associations are retraceable by means of
these files.

 AutomationML and
 eCl@ss integration

21

4.5.2 TUF

The Transaction-Update-file, abbreviated TUF, made available in XML-format, provides
information as to whether previous attributes are still valid when using successive attributes.
This allows a (partly) automatic update of evaluated data files.

4.6 IRDI

eCl@ss uses globally unique identifiers for every object included in the eCl@ss standard.
This IRDI (International Registration Data Identifier) is based on the international standards
ISO/IEC 11179-6, ISO/TS 29002 and ISO 6523(see Figure 9).

Figure 9 – ISO / IEC 6523 Definition for use of IRDI

The IRDI consists of several parts:

 an International Code Designator (ICD) according to ISO 6523, followed by an
Organization Identifier (OI) that globally identifies eCl@ss as the publishing organization
(eCl@ss: 0173, other registered organizations include ISO (0112), ODETTE (0177),
SIEMENS (0175), GTIN (0160))

 a Code Space Identif ier (CSI) that identifies the type of object (e.g. 01 for classification
class, 02 for property etc.)

 a Concept Code (6-digit identifier, e.g. AAA123)

 a Version identifier (e.g. 001 for the first version of an object)

http://wiki.eclass.eu/wiki/Classification_Class
http://wiki.eclass.eu/wiki/Classification_Class
http://wiki.eclass.eu/wiki/Property

 AutomationML and
 eCl@ss integration

22

Table 2 defines the Code Space Identifiers (CSIs) used in eCl@ss XML:

Table 2 – Code Space Identifier According To ISO/TS 29002-5 (Restricted)

CSI Category of administered item Used in eCl@ss
XML

CT Concept type -

TM Term -

DF Definition -

IM Image -

AB Abbreviation -

GS Graphical symbol -

TS Textual symbol --

LG Language -

OG Organization -

01 Class YES

02 Property YES

05 Unit of measure YES

07 Property Value YES

08 Currency -

09 Data type YES

11 Ontology YES

Z2 Aspect of conversion YES

Z3 Template YES

Z4 Quantity YES

Company Specific Identifiers

Certain ranges of (6 digit) identifiers (i.e. the concept code) are blocked for company -specific
use:

 concept codes starting with X are blocked for user-specific structural elements

 concept codes starting with Y are blocked for manufacturer -specific structural elements

 concept codes starting with Z are blocked for eCl@ss-internal structural elements and shall
not be used by eCl@ss users

eCl@ss will not use identifiers starting with X or Y. This guarantees that these company -
specific structural elements will not be replaced by eCl@ss elements. Apart from the blocked
concept codes, a company may simply use a different ICD, so that all concept codes can be
used, but they are distinct with the help of an ICD that is not 0173 (for eCl@ss).

 AutomationML and
 eCl@ss integration

23

5 Use cases and considered data exchange structures

Within the engineering of production systems several activities require a unique identification
of data objects. Nevertheless, not all possible cases are relevant for the application of data
exchange formats. Within the following section the relevant use cases necessary for the
application of unique identification of data objects during the data exchange between
engineering tools in the production system engineering process as well as the relevant
information sets within them are named.

Table 3 – Overview Use Cases

Name Category Short description

Simple semantic
identification technical Enrich AutomationML objects or attributes with semantic based

on eCl@ss catalogue or properties.

Semantic identification
including property
guarantees

technical
Enrich AutomationML objects with semantic based on eCl@ss
catalogue and guarantee existence of property information.

Semantic identification
including structure
guarantees

technical
Enrich AutomationML objects with semantic based on eCl@ss
catalogue and guarantee existence of object substructures.

Exchange of semantically
unique instance data

exchange
Semantically unique exchange of engineering data between two
tools

Encode data semantics exchange
Semantically unique encoding of engineering information in case
of information export from a tool

Decode data Semantics exchange
Semantically unique decoding of engineering information in case
of information import to a tool

ECl@ss dictionary exchange exchange
Create, maintain and provide AutomationML libraries encoding
ECl@ss dictionary required to define/identify/ validate the
semantic of AutomationML objects

Receive eCl@ss dictionary exchange
Receiving ECl@ss dictionary and creation of AutomationML
libraries encoding ECl@ss dictionary

Deliver eCl@ss dictionary exchange Enrich the ECl@ss dictionary based on request

Development and use of
semantically unique
component libraries

application
Creation and use of SystemUnitClass libraries useable within
different engineering processes containing AutomationML objects
with a unique object and property semantics

Lossless exchange between
system configurator an CAx
tool

application
Exchange of engineering results between engineering tools
containing semantically unique identifiable AutomationML objects

Construction validation application
Validation of applicability of selected system components based
on uniquely identifiable component properties

5.1 Technical use cases

The first set of use cases is technically motivated. It considers the degree of semantic
identification of objects resulting in different necessary techn ical solutions for the semantic
representation.

5.1.1 Use case – simple semantic identification

Following Figure 1 basic requirement for the data exchange is the capability to identify the
semantics of an object to enable the correct mapping of the object to object types of the data
model of the data receiving tool. This semantic identification simply has to describe the
meaning of the object within a data model, i.e. the object type. Examples of such a simple
semantic identification are the indication, that a data object represents an inductive sensor, a
special drive type or a complete industrial robot or a chemical reactor.

As there are several semantic definitions available in the different industries as well as
industry crossing semantic definitions it shall not be the responsibility of AutomationML to
define a new semantic catalogue. Instead existing catalogues shall be applied for the
semantic representation.

 AutomationML and
 eCl@ss integration

24

This use case will provide the following requirements to AutomationML:

 AutomationML shall enable the integration of a semantic reference to an external defined
semantic definition.

 AutomationML shall enable the identification of a used semantic catalogue.

 AutomationML shall enable the unique identification of the catalogue object relevant for the
semantic identification of the exchanged data object.

5.1.2 Use case – semantic identification of properties

In several cases of semantic identification it is not sufficient to simply represent the object
type but to provide guarantees about available information within the provided data object.
The data receiving tool has to map the information provided within a data object in a
structured way to the internal data model including the mapping of properties, attributes, etc.
Therefore, it is necessary to extend the simple object identification by guarantees about
available information within the provided data object as well as its representation (naming,
data type, etc.) within the provided data object.

As an example an inductive sensor or a special drive type can have special object class
related information like a vendor identification, a material description, an energy cons umption
etc.. The industrial robot can provide information about i ts possible work space and the
chemical reactor information about the maximal volume.

As in the case of a simple semantic identification there are catalogues available specifying
relevant properties and attributes for the object classes. These catalogues shall be applicable
for semantic identification including property guarantees in AutomationML.

This use case will provide the following requirements to AutomationML:

 AutomationML shall enable the integration of a semantic reference to an external defined
semantic definition.

 AutomationML shall enable the identification of a used semantic catalogue.

 AutomationML shall enable the unique identification of the catalogue object relevant for the
semantic identification of the exchanged data object.

 AutomationML shall enable the definition and identification of object properties (attributes)
by referencing the relevant properties (attributes) in the used catalog ue.

5.1.3 Use case – semantic identification of structures

In addition to the use cases identified above the semantic representation may provide
guarantees about the provided data substructure available within the provided data object and
the relations between the data objects. The data receiving too l has to map the substructure
and its relations in a structured way to the internal data model. Therefore, it is necessary to
extend the object identification by guarantees about available substructure and relations
within the provided data object as well as its representation (naming, identification, etc.)
within the provided data object.

As an example a special drive type can contain a break with its own properties. The industrial
robot usually consists of a set of axis all interrelated in a special way. Finally the chemical
reactor consists of a set of mechanical parts and automation / process equipments like
electrical drive driven stirrers, heaters, temperature sensors, etc.. In addition the ir data
objects may be interrelated. For example, if a chemical reactor will have a heater it usually
will also have a temperature sensor. This needs to be represented in the guarantees.

As in the case of a simple semantic identification there are catalogues available specifying
relevant structures and its properties / interrelations for the object classes. These catalogues
shall be applicable for semantic identification including structure guarantees in AutomationML.

 AutomationML and
 eCl@ss integration

25

This use case will provide the following requirements to AutomationML:

 AutomationML shall enable the integration of a semantic reference to an external defined
semantic definition.

 AutomationML shall enable the identification of a used semantic catalogue.

 AutomationML shall enable the unique identification of the catalogue object relevant for the
semantic identification of the exchanged data object.

 AutomationML shall enable the definition and identification of object properties (attributes)
by referencing the relevant properties (attributes) in the used catalog ue.

 AutomationML shall enable the definition and identification of object structures (subobject
and its dependencies to properties) by referencing the relevant structures in the used
catalogue.

5.2 Exchange use cases

The second set of use cases is motivated by the engineering process. The engineering of
production systems contains several engineering activities from different engineering
domains. Figure 10 represents an example set of engineering activities relevant within the
general engineering process of production systems.

Figure 10 – General engineering activities embedded within production system
engineering (subset)

Within the named engineering activities engineering tools like the following (but not limited to)
will have a relevant impact:

 Plant planning tool

 Mechanical engineering tool (MCAD)

 Electrical engineering tool (ECAD)

 PLC programming tool

 Robot programming tool

 HMI programming tool

 Network configuration tool

 Simulation tool

 Virtual commissioning tool

 Monitoring tool

 Maintenance tool

 Documentation tool

For the data exchange between these tools a system of use cases is relevant providing the
capabilities to semantically unique exchange data points.

Plant planning
Virtual

commissioning
Documentation

HMI

programming

Monitoring

Maintenance

…

PLC

programming

Electrical

engineering

Mechanical

engineering

Robot

programming

Network

configuration

Simulation

HMI

programming

 AutomationML and
 eCl@ss integration

26

The central use case is the use case “exchange of semantically unique instance data”. This
use case covers the exchange of information between two engineering tools. This use case
can be extended to use cases like “development and use of semantically unique component
libraries”, “lossless exchange between system configurator and CAx tool”, and “construction
validation”.

Within the use case “exchange of semantically unique instance data” three supporting use
cases are embedded. These are the use case “encode data semantics” for syntactically and
semantically unique encoding of data objects exchanged, the use case “decode data
semantics” for syntactically and semantically unique decoding of data objects exchanged, and
the use case “eCl@ss dictionary exchange” required to enable the semantically unique
identification of data points.

The later use case consists of two sub use cases for delivering and receiving an eCl@ss
dictionary.

Within the use cases three main actors are involved. These are the sending and the receiving
engineer involved and driving the use case “exchange of semantically unique instance data”
and the eCl@ss association involved in the use case “deliver eCl@ss dictionary”.

The named use case structure is depicted in Figure 11.

Figure 11 – System of relevant use cases for semantically unique exchange of data
points

In the following the different named use cases are characterized in detail. Prior some main
assumptions are named.

5.2.1 Assumptions for considered use cases

In the following only the actors sending and the receiving engineer and eCl@ss association
are considered. Within the other AutomationML and eCl@ss specifications mainly further
actors are identified. Without definition of completeness it is assumed, that the actors sending
and the receiving engineer can be engineers of different engineering disciplines. For example
these engineers can be:

 Standard Plant Planner

 New production planner (Mechanics)

 New production planner (Electrics)

 Series production planner (Mechanics)

 Hall layout planner

 Mechanical Simulation Engineers / Offline Programmer

 Robot Programmer

Act Exchange of semantically unique instance data

Encode data
semantics

Receives eCl@ss
Dictionary

Deliver eCl@ss
Dictionary

Exchange of
Semanticaly unique instance

data

eCl@ss dictionary
exchange

Decode data
semantics

eCl@ss

Sending engineer Receiving engineer

<<uses>>

<<uses>>

<<uses>> <<uses>>

<<uses>>

 AutomationML and
 eCl@ss integration

27

 Mechanical Design Engineer

 Electrical Design Engineer

 PLC Programmer

 HMI Programmer

The actor eCl@ss association subsumes all engineers, companies, and other legal entities
involved in the standardization process of eCl@ss dictionaries. It is out of scope of this
document to further distinguish the different roles and actions of them.

In addition the following use cases will consider only a sending and a receiving tool. Without
definition of completeness it is assumed, that the sending and the receiving tool can be
engineering tools of different engineering disciplines. For example these tools can be:

 Computer Aided Mechanical Design tools (M-CAD)

 Simulation tools

 Computer Aided Electrical Engineering tools (CAE) and

 Control Programming tools.

5.2.2 Use case - exchange of semantically unique instance data

The main goal of this use case is the semantically unique exchange of engineering data
between two engineering tools. Thereby, two engineers shall be able to select a part of the
project data available in a sending engineering tool, assign them with a unique semantic
identification, transfer them to a receiving engineering tool, identify the semantics of data
objects, and, finally, integrate them in the project data of the receiving tool.

The critical point within this use case is the implementation of the necessary mapping of the
data models of the sending and receiving tool as indicated in Section 1. This mapping shall be
established by utilization of the same semantic dictionary within the sending and the receiving
tool.

Within this use case only a sending and a receiving engineer as well as a sending and a
receiving engineering tool are involved. They will execute the following normal flow of
activities also given in Figure 12.

1. The sending engineer will select the subset of the project data of the sending
engineering tool for data exchange.

2. The sending engineer will utilize the set of AutomationML semantic libraries
establishing the eCl@ss dictionary for data object encoding (assigning a unique object
semantics to each relevant data object).

3. The sending engineer will store the decoded data within an AutomationML pr oject.

4. The receiving engineer will read the stored AutomationML project.

5. The receiving engineer will utilize the set of AutomationML semantic libraries
establishing the eCl@ss dictionary for data object decoding (identifying unique object
semantics to each relevant data object).

6. The receiving engineer will integrate the read data objects within the project data of
the receiving tool.

 AutomationML and
 eCl@ss integration

28

Figure 12 – Activity structure of use case "exchange of semantically unique instance
data"

Within this use case the project data of the sending engineering tool as well as the set of
AutomationML semantic libraries establishing the eCl@ss dictionary have to be seen as input
data while the project data of the receiving engineering tool are output data.

This use case will provide the following requirements to AutomationML:

 AutomationML shall define a methodology to attach a unique identification of object
semantics to each relevant data object (InternalElements, SystemUnitClasses, Interfaces,
Attributes).

 AutomationML shall define a methodology for creation of a set of AutomationML semantic
libraries establishing the eCl@ss dictionary based on the eCl@ss dictionary specifications.

In case of application an eCl@ss dictionary following of eCl@ss basics this use case requires
the implementation of technical use cases

 Simple semantic identification and

 Semantic identification including property guarantees.

In case of application of an eCl@ss dictionary following eCl@ss advanced this use case
requires the implementation of technical use cases

 Simple semantic identification,

 Semantic identification including property guarantees, and

 Semantic identification including structure guarantees.

5.2.3 Use case – encode data semantics

One part of the use case "exchange of semantically unique instance data" is the encoding of
selected engineering data within the sending engineering tool. The execution of this encoding
process is the main goal of this use case. Thus, this use case covers the automatic / semi -
automatic association of a unique semantics to each relevant data object (InternalElements,
SystemUnitClasses, Interfaces, Attributes) within the sending engineering tool.

Act Exchange of semantically unique instance data

Select relevant
data objects for exchange

eCl@ss dictionary
as AutomationML
semantic libraries

Decode data objects

Store decode data objects as data
exchange file

Read data exchange file

Encode data objects

Integrate data objects in
Engineering project

 AutomationML and
 eCl@ss integration

29

The critical point within this use case is the assignment process of semantics to data objects
and, thereby, the mapping of the data model of the sending tool to the semantic dictionary.

Within this use case only the sending engineer and the sending tool are involved. They will
execute the following normal flow of activities also given in Figure 13. This normal flow of
activities assums, that the set of engineering data to be exchanged has been selected
previously.

1. The sending engineer will select the relevant AutomationML semantic library out of the
set of AutomationML semantic libraries establishing the eCl@ss dictionary for
semantic mapping.

2. The sending engineering tool executes for each data object to be exchanged:

a. Identify the semantics of the data object within the data model of the sending
tool.

b. Select the corresponding unique semantic identification out of the selected
AutomationML semantic library.

c. Assign selected unique semantic identification to selected data object.

Figure 13 – Activity structure of use case "Encode data semantics"

Within this use case the selected part of project data of the sending engineering tool to be
exchanged as well as the set of AutomationML semantic libraries establishing the eCl@ss
dictionary have to be seen as input data while selected part of project data of the sending
engineering tool to be exchanged with assigned AutomationML semantic references are
output data.

This use case will provide the following requirements to AutomationML:

 AutomationML shall define a methodology to enable a one to one mapping of sending tool
data object semantics to a unique semantic identification of the AutomationML semantic
libraries establishing the eCl@ss dictionary.

In case of application of an eCl@ss dictionary following eCl@ss basics this use case requires
the implementation of technical use cases

 Simple semantic identification and

 Semantic identification including property guarantees.

In case of application of an eCl@ss dictionary following eCl@ss advanced this use case
requires the implementation of technical use cases

Act Encode data semantics

Select relevant
semantic library

Attach semantic identification
 to data objects

eCl@ss dictionary
as AutomationML
semantic libraries

 AutomationML and
 eCl@ss integration

30

 Simple semantic identification,

 Semantic identification including property guarantees, and

 Semantic identification including structure guarantees.

5.2.4 Use case – decode data semantics

One part of the use case "Exchange of semantically unique instance data" is the decoding of
exchanged engineering data within the receiving engineering tool. The execution of this
decoding process is the main goal of this use case. Thus, this use case covers the automatic /
semi-automatic exploitation of the assigned unique semantics to each relevant data object
(InternalElements, SystemUnitClasses, Interfaces, Attributes) within the receiving engineering
tool.

The critical point within this use case is the evaluation process of semantics of received data
objects and, thereby, the mapping of the semantic dictionary to the data model of the
receiving tool.

Within this use case only the receiving engineer and the receiving tool are involved. They will
execute the following normal flow of activities also given in Figure 14. This normal flow of
activities assums, that the set of engineer ing data to be exchanged has been stored as an
AutomationML project previously and can be read by the receiving tool.

1. The receiving engineer will select the relevant AutomationML semantic library out of
the set of AutomationML semantic libraries establishing the eCl@ss dictionary for
semantic mapping.

2. The receiving engineering tool executes for each data object read out of the provided
AutomationML project:

a. Identify the semantics of the data object within the received AutomationML
project following the selected AutomationML semantic library.

b. Select the corresponding object semantic within the data model of the
receiving engineering tool.

c. Assign selected semantics to selected data object.

Figure 14 – Activity structure of use case "decode data semantics"

Within this use case the AutomationML project with the exchanged data objects as well as the
set of AutomationML semantic libraries establishing the eCl@ss dictionary have to be seen as
input data while exchanged data objects with assigned object semantics of the receiving
engineering tool are output data.

This use case will provide the following requirements to AutomationML:

 AutomationML and
 eCl@ss integration

31

 AutomationML shall define a methodology to enable a one to one mapping of receiving tool
data object semantics to a unique semantic identification of the AutomationML semantic
libraries establishing the eCl@ss dictionary.

In case of application of an eCl@ss dictionary following eCl@ss basics this use case requires
the implementation of technical use cases

 Simple semantic identification and

 Semantic identification including property guarantees.

In case of application an eCl@ss dictionary following of eCl@ss advanced this use case
requires the implementation of technical use cases

 Simple semantic identification,

 Semantic identification including property guarantees, and

 Semantic identification including structure guaranties.

5.2.5 Use case – eCl@ss dictionary exchange

One part of the use case "exchange of semantically unique instance data" is the exchange of
the eCl@ss dictionary required for the creation of the set of AutomationML semantic libraries
establishing the eCl@ss dictionary. Thus, this use case covers the process of acquiring the
necessary eCl@ss dictionary, its automatic translation to the set of AutomationML semantic
libraries, and its provision to the sending and receiving engineer for use within the data
exchange process for semantic mapping.

Within this use case the eCl@ss actors, the sending and the receiving engineer and the
sending and the receiving tools are involved. They will execute the following normal flow of
activities also given in Figure 15.

1. Based on request the eCl@ss actor is creating/maintaining and providing the eCl@ss
dictionary.

2. The sending and/or receiving engineer is translating the eCl@ss dictionary to the set
of AutomationML semantic libraries establishing the eCl@ss dictionary for semantic
mapping.

Figure 15 – Activity structure of use case "eCl@ss dictionary exchange"

Within this use case the request for eCl@ss dictionary provision is seen as input data while
the provided set of AutomationML semantic libraries establ ishing the eCl@ss dictionary is
considered as output data.

Act eCl@ss dictionary exchange

Wait

Provide eCl@ss
dictionary

Use eCl@ss
dictionary

eCl@ss dictionary
as AutomationML
semantic libraries

eCl@ss
dictionary

 AutomationML and
 eCl@ss integration

32

This use case will provide the following requirements to AutomationML:

 AutomationML shall define a methodology for automatic creation of a set of AutomationML
semantic libraries establishing the eCl@ss dictionary based on the eCl@ss dictionary
specifications.

In case of application of an eCl@ss dictionary following eCl@ss basics this use case requires
the implementation of technical use cases

 Simple semantic identification and

 Semantic identification including property guarantees.

In case of application an eCl@ss dictionary following of eCl@ss advanced this use case
requires the implementation of technical use cases

 Simple semantic identification,

 Semantic identification including property guarantees, and

 Semantic identification including structure guarantees.

5.2.6 Use case – receive eCl@ss dictionary

One part of the use case "eCl@ss dictionary exchange" is the use of the eCl@ss dictionary
for creation of the set of AutomationML semantic libraries establishing the eCl@ss dictionary.
Thus, this use case covers the process of automatic translation of the eCl@ss dictionary to
the set of AutomationML semantic libraries, and its storing as AutomationML data objects.

Within this use case the sending and the receiving engineer and the sending and the
receiving tools are involved. They will execute the following normal flow of activities also
given in Figure 16. This use case, assumes that the eCl@ss dictionary is available.

1. The published eCl@ss dictionary is read.

2. The sending and/or receiving engineer is translating the eCl@ss dictionary to the set
of AutomationML semantic libraries establishing the eCl@ss dictionary for semantic
mapping.

Figure 16 – Activity structure of use case "receive eCl@ss dictionary"

Act Receive eCl@ss dictionary

Wait

Provide eCl@ss
dictionary

Use eCl@ss
dictionary

eCl@ss dictionary as
AutomationML

semantic libraries

eCl@ss
dictionary

 AutomationML and
 eCl@ss integration

33

Within this use case the published eCl@ss dictionary is seen as input data while the provided
set of AutomationML semantic libraries establishing the eCl@ss dictionary is considered as
output data.

This use case will provide the following requirements to AutomationML:

 AutomationML shall define a methodology for automatic creation of a set of AutomationML
semantic libraries establishing the eCl@ss dictionary based on the eCl@ss dictionary
specifications.

In case of application of an eCl@ss dictionary following eCl@ss basics this use case requires
the implementation of technical use cases

 Simple semantic identification and

 Semantic identification including property guarantees.

In case of application of an eCl@ss dictionary following eCl@ss advanced this use case
requires the implementation of technical use cases

 Simple semantic identification,

 Semantic identification including property guarantees, and

 Semantic identification including structure guarantees.

5.2.7 Use case – deliver eCl@ss dictionary

One part of the use case "eCl@ss dictionary exchange" is the provision of the eCl@ss
dictionary by the eCl@ss actor. Thus, this use case covers this provision process.

Within this use case only the eCl@ss actor is involved. He will execute the following normal
flow of activities also given in Figure 17.

1. Based on request the eCl@ss actor is either defining new components of the eCl@ss
dictionary or maintains existing ones.

2. The eCl@ss actor is publishing the eCl@ss dictionary following the usual publication
process of eCl@ss association.

Figure 17 – Activity structure of use case "deliver eCl@ss dictionary"

Act Deliver eCl@ss dictionary

Wait

Specify eCl@ss
dictionary components

Maintain eCl@ss
dictionary components

Publish eCl@ss
dictionary

eCl@ss
dictionary

 AutomationML and
 eCl@ss integration

34

Within this use case the published eCl@ss dictionary is seen as output data while there are
no input data.

This use case will provide no requirements to AutomationML.

Note: AutomationML will not automatically provide access to eCl@ss dictionaries. The access and use rights for
eCl@ss dictionaries and all other properties of eCl@ss association have to be purchased or acquired in further
ways from eCl@ss association.

5.3 Application use cases

The use cases of the third set are motivated by tools, task and application, that uses the
technical and exchange use cases.

Figure 18 – System of relevant use cases for semantically unique exchange of data
points

5.3.1 Use case - development and use of semantically unique component
libraries

Within the engineering process of production systems it shall be possible to uniquely identify
the semantics of data points given within a library of plant components. This unique
identification of the semantics is required on different levels of detail including the semantics
of a plant component (special type of drive, special type of robot, etc.), the semantics of its
internal engineering artifacts (mechanical construction, electrical wiring, …) and the
semantics of properties / parameters / attributes (size in 3D coordinates, weight, …). The
unique identification of semantics has to be created by the library element creator and shall
be exploited by all other engineers.

Hence, the use case “development and use of semantically unique component libraries” is an
extension of the use case “exchange of semantically unique instance data”. Here the
exchanged instance data are plant components without/out of a component library.

Within this use case the sending engineer and the receiving engineer are involved while the
sending engineer is usually a component designer and while the receiving engineers can be
new production planner (Mechanics), new production planner (Electrics), series production
planner (Mechanics), hall layout planner, mechanical simulation engineers / offline
programmer, robot programmer, mechanical design engineer, electrical design engineer, PLC
programmer, HMI programmer and others. The involved tools will cover the complete range of
tool named in section 5.2.1. They will execute the following normal flow of activities.

1. A library element is created and attached with a semantic identification.

Act Semantically unique exchange of data points

Exchange of
semantically unique instance

data

Development and use of
semantically unique
component libraries

Lossless exchange between
system configurator and

CAx tool

Construction
validation

<<extends>> <<extends>> <<extends>>

 AutomationML and
 eCl@ss integration

35

2. An sending engineer is creating and engineering artifacts related to the library
element. It adds the engineering artifact semantics.

3. An sending engineer is specifying a property / parameter / attribute related to the
library element. It adds the property / parameter / attribute related semantics.

4. Repeat 2. and 3 as often as necessary.

5. The library element is stored in the library.

6. A receiving engineer is reading the library element from the library and is able to
identify semantics of the library element, its engineering artifacts and its properties /
parameters/ attributes.

The described activity sequence is depicted in Figure 19.

Figure 19 – Activity structure of use case "development and use of semantically unique
component libraries"

5.3.2 Use case - lossless exchange between system configurator and CAx tool

Within the early engineering phases of production systems system components are designed
by combining sets of sub-components out of component libraries by configuration tools and
the provision of this configuration to a subsequent CAx tool. Examples of such engineering
activities are

 the combination of manufacturing resources like welding cells and mounting stations
following a given assembling sequence for body work in car manufacturing industry and the
transmission of the developed structure to a plant simulation tool,

 the combination of electrical wiring components on mounting rails for control cabinet
manufacturing and the transmission of the developed structure to a ECAD tool, and

 the combination of IEC 6113-3 Function blocks following a behaviour specification for PLC
programming and its subsequent transfer to a PLC programming software.

act Development and use of semantically unique component libraries

Create library object and
add object semantics

Enrich library object by engineering
 artefacts with defined semantics

Enrich library object by property /
 parameter/ attribute with defined

semantics

Store library object in library

Read library element from library

[No]
[Yes]

[Complete?]

Library

object

Library

1

 AutomationML and
 eCl@ss integration

36

The critical points in this process are the unique identification of objects selected in the
configuration step, the modelling and transfer of relation information expressing the
dependencies / orders / sequences / etc. between the selected components, and the
expression of overall information characterising the complete set of combined objects as
production system components.

Figure 20 provides an overview over this use case and its relation to the other use cases
described.

Figure 20 – Structure of use case „lossless exchange between system configuration
tool and CAx tool“

Within this use case the sending engineer usually in the ro le as solution configurator and the
receiving engineer in the role as CAx engineer as well as the configuration tool and the CAx
tool are involved. They will execute the following normal flow of activities.

1. The solution configurator is collecting all necessary components for the solution
2. The solution configurator specifies the overall system structure out of the components

and its describing properties
3. The solution configurator encodes the description to a data transfer file.
4. The CAx engineer decodes the description from the data transfer file.
5. The CAx engineer exploits the system description within his work.

The described activity sequence is depicted in Figure 21.

eCl@ss AutoamtionML – Lossless data exchange between solution configuration and CAx tool

CAE encoder

 CAE decoder

eCl@ss

encode AutomationML File decode AutomationML File

exchange of semantically unique instance data

receives eCl@ss Dictionary

deliver eCl@ss Dictionary

eCl@ss Dictionary exchange

supplies AutomationML file

Solution
Configurator CAE Tool

encode AutomationML File decode AutomationML File

Lossless data exchange between
solution configuration and CAx tool

supplies AutomationML file

simple semantic identification
 (local)

simple semantic identification
 (local)

 AutomationML and
 eCl@ss integration

37

Figure 21 – Activity structure of use case „lossless exchange between system
configuration tool and CAx tool“

Within this use case the set of described components with its properties is seen as input data
while the complete system configuration is seen as output data.

This use case will provide the following requirements to AutomationML:

 Objects shall have a reference to eCl@ss dictionary (IRDI)

 Properties shall have a reference to eCl@ss dictionary (IRDI)

5.3.3 Use case - construction validation

Within engineering processes of production systems in various situations engineers have to
select appropriate system components / devices / etc. following given requirements or to
decide if a given design / construction fulfills a set of requirements. Examples of such
engineering activities can be

 the selection of an appropriate drive for a drive chain from a drive vendor library,

 the identification of appropriate process parameter sets for a chemical reaction from a
given reaction process library, or

 the validation of mechanical properties of an assembly.

Assuming a given list of requirements and a system description, then in all cases an
automatic or manual validation procedure shall entail exactly one of the two propositions: “the
described system fulfills the requirements” or “the described system does not fulfill the
requirements”.

For this purpose the structured, static and deterministic properties are exploited. They are
defined as requirements prior to the system design / engineering process and validated based
on system descriptions after the system design / engineering process.

To evaluate the requirement properties the different information necessary to evaluate them
have to be uniquely identifiable and comparable. Those identifiers have to be used in order to
link construction elements to requirements. Thus each requirement may be considered within
validation procedures, which have the same semantics on the requirements and construction
side.

Figure 22 provides an overview for this use case and its relation to the other use cases
described.

act lossless exchange between system configuration tool and CAx tool

Selection of configuration
components

System structure and
property definition

System description encoding

System description decoding

System use Cax tool

act Lossless exchange between system configuration tool and CAx tool

Selection of configuration
components

System structure and property
definition

System description encoding

System description decoding

System use CAx tool

 AutomationML and
 eCl@ss integration

38

Figure 22 – Structure of use case “validation of construction”

Within this use case the requirements engineer, the design engineer, the validation engineer
and the validation system are involved. They will execute the following normal flow of
activities also given in Figure 22.

1. A requirements engineer defines types of system components and supplements those
type descriptions with required attributes and sometimes with sub-component
descriptions. For each attribute one or more combinations of attribute value and
equality/inequality operator are added. Those required type-related component
descriptions are sometimes called “typicals”. In the fo llowing they are called “role
classes” in order to match the AutomationML name space.

2. The requirements engineer or the design engineer defines the structure of a system by
creation of a tree or network like structure of objects, each representing one insta nce
element of the future real world system. The whole data structure is called “instance
hierarchy” in the following.

3. The requirements engineer or the design engineer creates relations between instance
elements of the instance hierarchy and role classes.

4. The design engineer attaches type representatives of real -world components (devices,
machines, etc.) to the instance elements or enriches instance elements with attribute
values.

5. The validation engineer compares all attribute values of instance elements wi th the
role class attribute values of the related role class for all instance elements with
attached role classes. Base for the comparison are the equality/inequality operators
attached to the role class attributes. If all comparisons entailed true, then t he
validation engineer signals “the system construction fulfills the requirements”
otherwise she signals “the system construction does not fulfill the requirements”.
Additionally a list of comparison cases are reported, which entailed “false”.

eCl@ss AutoamtionML Validation of constructions

CAE encoder

 CAE decoder

eCl@ss

encode AutomationML File decode AutomationML File

exchange of semantically unique instance data

receives eCl@ss Dictionary

deliver eCl@ss Dictionary

eCl@ss Dictonary exchange

v

supplies AutomationML file

Requiements Engineer

Design Engineer

define Solution

Validation of constructions

simple semantic identification
 (local)

simple semantic identification
 (local)

define Requierments

validat Solution against
Requierments

validate solution
against

requirements

define
requirements

define solution

 AutomationML and
 eCl@ss integration

39

Figure 23 – Activity structure of use case "validation of construction”

Within this use case the requirements data and libraries typically coming from planning and
construction tools as well as libraries of system components coming from prod uct data bases
are seen as input data. Output data is the evaluation result as a Boolean value.

This use case will provide the following requirements to AutomationML:

 Role classes shall be applicable to model uniquely required system characteristics

 Role class attributes should be enriched with fixed relation between ID and semantics

 Role class attribute values shall be combinable by equality/inequality operators to model
requirements

 Instance elements shall contain references to role classes and thus impli citly to
namespaces of attribute names

 Instance element shall contain attribute values

The previously mentioned methods for the construction validation are related to attribute
values. There may be further requirements specified regarding the parent, sibling or sub-
instance hierarchy elements of an element to be validated. Those validations may be
processed by involving further requirements specification facilities such as the introduction of
Object Constraint Language (OCL) expressions (see [5]). Nevertheless the clear semantic
definition of attributes would be a necessity for those validation procedures too.

5.4 Boundary Conditions for Application

Within the execution of the use cases some technical and legal bordering conditions shall be
considered.

The developed eCl@ss classification is a very encyclopaedic classification. It contains a huge
amount of classes. Not all of them are relevant within an application case. Therefore, in
advance to an application case is shall be defined which of the classification classes will be
applied in the AutomationML based modelling, i.e. the relevant part of the eCl@ss
classification is identified. For example the consideration of automation related systems,
devices, and components can be made only reflecting classes with the classification 27-*-*-*.

It may happen that in an application case not all relevant elements can be classified by using
eCl@ss classification. In this case other classification standards might be identified for
application. It shall me ensured, that also these classification standard will follow the
international standards ISO/IEC 11179-6, ISO/TS 29002, and ISO 6532 and provide an IRDI
for identification of the classification classes.

act Validation of constructions

Development of typicals

System structure definition

Mapping of system
components and typicals

System structure realisation
definition

Requirement evaluation
and presentation

 AutomationML and
 eCl@ss integration

40

If the relevant part of the eCl@ss classification is identified it has to be ensured, that the
application of this part is legally possible. eCl@ss is protected by licensing rights of different
types. For each application case the right license conditions shall be identified and used. The
different eCl@ss license models are available under http://www.eclassdownload.com/catalog/
eclass_categories.php.

In any way in each application case the licensing rights shall be respected.

 AutomationML and
 eCl@ss integration

41

6 Realization of technical use cases

6.1 Integration of attribute and object semantics

To realize the use case “simple semantic identification” as specified in 5.1.1 two cases have
to be distinguished. First the specification of the semantics for single attributes and second
the semantic description of AutomationML objects. Within the first case the IRDI for a property
is used to define the attribute semantic. In contrast, the second case requires the use of the
eCl@ss classification layers to specify the semantics of AutomationML objects.

6.1.1 Concept

6.1.1.1 Attribute semantics via IRDI

The AutomationML top level format CAEX includes a concept to reference a semantic
definition for attributes. This concept shall be used to define the semantics of AutomationML
attributes by using eCl@ss properties. For these definitions, the following provisions apply:

 The CAEX schema element “RefSemantic” shall be used for the semantic definition for a
single attribute, see Figure 24.

 The value of the XML attribute “CorrespondingAttributePath” of the CAEX schema ele ment
“RefSemantic” element shall be assembled as the following string:

o “ECLASS:” + IRDI of the eCl@ss property defining the semantics of the
AutomationML attribute

 The IRDI shall be used as defined within the eCl@ss specification.

 If the AutomationML Unit attribute is not provided the measurement unit is defined by the
referenced eCl@ss property.

 If the AutomationML Unit attribute is provided it shall be selected from the eCl@ss
measurement unit table.

 If the AutomationML AttributeDataType attribute is not provided the data type is defined by
the referenced eCl@ss property.

 If the AutomationML AttributeDataType attribute is provided it shall be converted according
to Table 6.

Figure 24 – Applicable means for semantic reference for a single attribute

Example

Figure 25 depicts an example for the use of the CAEX element “RefSemantic” to specify the
semantics of an AutomationML attribute. Within this example one AutomationML object with
the name “AutomationMLObject” exists. This Object has the two AutomationML attributes
“length” and “width”. Each attribute is semantically defined by an IRDI according to the
provision above.

Attributes

InternalElement

RefBaseSystemUnit

Path

SupportedRoleClass

RoleRequirements

………

………

…

Attribute

RefSemantic

…

 AutomationML and
 eCl@ss integration

42

For the AutomationML attribute “length” the IRDI has the value “0173-1#02-BAA018#004” and
for the AutomationML attribute “width” the value of the corresponding IRDI is “0173-1#02-
AAJ172#002”.

<InstanceHierarchy Name="ExampleIH">
<InternalElement Name="AutomationMLObject" ID="de88f618-6802-40cc-9dd3-
2d73546e6280">

<Attribute Name="length" AttributeDataType="xs:float" Unit=”mm”>
<Description>Attribute with an eClass RefSemantic</Description>
<DefaultValue>5</ DefaultValue >
<Value>5</Value>
<RefSemantic CorrespondingAttributePath="ECLASS:0173-1#02-BAA018#004" />

</Attribute>
<Attribute Name="width" AttributeDataType="xs:float" Unit=”m”>

<Description>Attribute with an eClass RefSemantic</Description>
<DefaultValue>10</ DefaultValue >
<Value>10</Value>
<RefSemantic CorrespondingAttributePath="ECLASS:4 0173-1#02-AAJ172#002"
/>

</Attribute>
<SupportedRoleClass
RefRoleClassPath="AutomationMLBaseRoleClassLib/AutomationMLBaseRole/>
<RoleRequirements
RefBaseRoleClassPath="AutomationMLBaseRoleClassLib/AutomationMLBaseRole/>

</InternalElement>
</InstanceHierarchy>

Figure 25 – Example RefSemantic for a single attribute

6.1.1.2 Object semantic via eClassClassSpecification RoleClass

To define the semantics of an AutomationML object unambiguously with the help of a
semantic specification the AutomationML concept of role classes can be used. Therefore a
new AutomationML role class has to be defined. The detailed specification of this role class
with the name “eClassClassSpecification” can be found in Table 4.

http://www.eclasscontent.com/index.php?action=cc2prdet&language=en&version=9.0&id=&pridatt=0173-1%2302-AAJ172%23002
http://www.eclasscontent.com/index.php?action=cc2prdet&language=en&version=9.0&id=&pridatt=0173-1%2302-AAJ172%23002
http://www.eclasscontent.com/index.php?action=cc2prdet&language=en&version=9.0&id=&pridatt=0173-1%2302-AAJ172%23002

 AutomationML and
 eCl@ss integration

43

Table 4 – Definition eClassClassSpecification

Role class name eClassClassSpecification

Description
The role class “eClassClassSpecification” shall be used in order to reference the
corresponding eCl@ss Classification Class for the AutomationML object.

Parent Class AutomationMLBaseRole

Attributes

“eClassVersion”
(AttributeDataType=”xs:string”)

The attribute “eClassVersion” shall define the
version of the eCl@ss catalogue, which the
eCl@ss category is related to.
The values of the attribute shall be described as
followed:
ECLASS-“major release”.”release”
Example: ECLASS-8.1 or ECLASS-9.0
“major release” is the number of the major release
of the eCl@ss version.
“release” is the number of the subrelease of the
eCl@ss version.

“eClassClassificationClass”
(AttributeDataType =”xs:string”)

The attribute “eClassClassificationClass” shall
define the eCl@ss Classification Class for the
AutomationML object. The value shall be the coded
name of the classification class as 8-digit integer.
Thereby two digits shall be used for each
hierarchical level of the class structure.

Example: 27242201

 27 for “segment” (Electric engineering,
automation, process control engineering)

 24 for „Main group“ (Control)
 22 for “Group“ (Programmable logic control)

 01 for Sub-group or commodity class-product
group (PLC analouge input/output module)

“eClassIRDI”
(AttributeDataType =”xs:string”)

The attribute “eClassIRDI” shall contain the IRDI
for the class.

To define ACs the IRDI of the AC shall be used.

To define CCs the IRDI of the CC shall be used.

The value shall be coded according to eCl@ss
definition.

Example:

0173-1---ADVANCED_1_1#01-ADN862#003

Figure 26 shows the XML description of the AutomationML role class
“eClassClassSpecification”.

<RoleClass Name=”eClassClassSpecification” RefBaseClassPath=”AutomationMLBaseRoleClassLib/AutomationMLBaseRole”>
 <Attribute Name="eClassIRDI" AttributeDataType="xs:string">
 <Description>Specifies the IRDI for the application or classification class</Description>
 </Attribute>
 <Attribute Name="eClassClassificationClass" AttributeDataType="xs:string">
 <Description>Specifies the eClass Classification Class for the AutomationML object coded as 8 -digit integer with two digits for each
 hierarchical level of the class structure .</Description>
 </Attribute>
 <Attribute Name="eClassVersion" AttributeDataType="xs:string">
 <Description>Specifies the version of the eClass catalogue, which the eClass category is related to</Description>
 </Attribute>
</RoleClass>

Figure 26 – XML description of the role class eClassClassSpecification

To assign a semantic definition to an AutomationML object with the help of the role class
eClassClassSpecification the CAEX elements “SupportedRoleClass” and “RoleRequiements”
shall be used according to the AutomationML specification, see Figure 27.

 AutomationML and
 eCl@ss integration

44

Figure 27 – Applicable means for semantic reference for AutomationML Object

Example

Figure 28 and Figure 29 depict an example for the use of the semantic reference for
AutomationML objects. Within this example the AutomationML object is defined as a DC motor
with the AutomationML Object name “InstanceMyMotor” for a concrete instance of a motor
and “PlaceholderClassificationMotor” for an unspecific object.

Figure 28 – Example motor AutomationML object with semantic reference
 for a) AC and b) CC

Figure 29 – Attributes to the example motor AutomationML object with semantic
reference for a) CC and b) AC

Attributes

InternalElement

RefBaseSystemUnit
Path

SupportedRoleClass

RoleRequirements

………

………

…

Attribute

RefSemantic

………

b)

a)

b)a)

 AutomationML and
 eCl@ss integration

45

Figure 30 depicts the XML view of example a), which includes the object “InstanceMyMotor”.

<InternalElement Name="InstanceMyMotor" RefBaseSystemUnitPath="ExampleLib/Motor" ID="9e64d613-3b95-4af5-b826-072a7732b9a0">
 <Attribute Name="eClassVersion" AttributeDataType="xs:string">
 <Description>Specifies the version of the eClass catalogue, which the eClass category is related to</Description>
 <Value>9.0</Value>
 </Attribute>
 <Attribute Name="eClassClassificationClass" AttributeDataType="xs:string">
 <Description>Specifies the eClass Classification Class for the AutomationML object coded as 8-digit integer with two digits for each hierarchical level of
 the class structure.
 </Description>
 <Value>27022501</Value>
 </Attribute>
 <Attribute Name="eClassIRDI" AttributeDataType="xs:string">
 <Description>Specifies the IRDI for the application class</Description>
 <Value>0173-1---BASIC_1_1#01-ABW077#009</Value>
 </Attribute>
 <Attribute Name="Construction form of DC motor" AttributeDataType="xs:string">
 <Description>Arrangement of machine parts in reference to anchorage, arrangement of bearings and shafts</Description>
 <RefSemantic CorrespondingAttributePath="ECLASS:0173-1#02-BAE069#007" />
 </Attribute>
 <Attribute Name="Construction size DC-Motor" AttributeDataType="xs:string">
 <Description>Housing size of a DC motor, from which the attachment and anchorage dimensions are derived</Description>
 <RefSemantic CorrespondingAttributePath="ECLASS:0173-1#02-BAE072#005" />
 </Attribute>
 <Attribute Name="Cooling type" AttributeDataType="xs:string">
 <Description>Summary of various types of cooling, for use as search criteria that limit a selection</Description>
 <RefSemantic CorrespondingAttributePath="ECLASS:0173-1#02-BAE122#006" />
 </Attribute>
 …
 <SupportedRoleClass RefRoleClassPath="AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Resource" />
 <SupportedRoleClass RefRoleClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/27 Electric engineering, automation, process controll
 engineering /27-02 Electrical drive/27-02-25 DC engine/27-02-25-01 DC engine (IEC)/BASIC_27-02-25-01 DC engine (IEC)" />
</InternalElement>

Figure 30 – XML View of the example motor AutomationML object with semantic
reference (AC)

6.2 Generation process for eCl@ss AutomationML role model

To realize the use case “Semantic identification including property guarantees” as specified in
section 5.1.2 it is necessary to go beyond simple referencing of a catalogue object. In
contrast it is necessary to integrate the semantic representation b y using the standardized
semantic representation using roles. Following Figure 4 in this case the data elements
“SupportedRoleClass” and “RoleRequirement” are applied as depicted in Figure 31.

Figure 31 – Applicable means for semantic representation used for eCl@ss Basic
modelling

6.2.1 Concept

The semantic identification including property guarantees is based on the generation of a role
class library covering the object identification and the attribute definition and its referencing
using the data elements “SupportedRoleClass” and “RoleRequirement” as well as the use of
appropriate role related attributes .

Attributes

InternalElement

RefBaseSystemUnit

Path

SupportedRoleClass

RoleRequirements

………

………

…

Attribute

RefSemantic

………

 AutomationML and
 eCl@ss integration

46

6.2.1.1 Role class library generation process

At first a role class library has to be developed modelling the used catalogue. Without loss of
generality and based on IEC 61360 in the following it is assumed, that

 the catalogue is structured as a hierarchical tree,

 each tree node represents a class of objects to be categorized,

 each tree node may have but need not to have a set of attributes,

 each sub node of a node represents a more detailed class of objects to be categorized,

 each sub node may have but need not to have additional attributes, and

 each leave node of the tree has at least one attribute.

Currently, the only available, vendor-independent classification standard for devices
exploitable in factory automation is eCl@ss.

Following these assumptions the following algorithm shall be applied to create the role class
library for a given catalogue.

Step 1. Create a new RoleClassLibrary with
a. a unique name following the AutomationML rules,
b. a unique version number following the AutomationML rules, and
c. a meaningful description following the AutomationML rules.

Step 2. Select one node of the catalogue class tree where all super nodes of this node have

been modeled as role.

Step 3. For the selected node do:
a. Create a new role class as and with

i. a unique name following the AutomationML rules,
ii. a RefBaseClassPath to

1. the role class defined for the direct super node of the considered
node or

2. the role eClassClassSpecification defined in Section 6.1 if there is
no supernode).

b. Complete the attributes “eClassVersion”, “eClassClassificationClass” and
“eCl@ssIRDI” as defined in Section 6.1

c. For each attribute of the considered node create an AutomationML attribute to the
role class and with

i. a unique name following the AutomationML rules,
ii. a meaningful description following the AutomationML rules,
iii. a default value (if necessary) following the AutomationML rules,
iv. a unit following the AutomationML rules,
v. a data type following the AutomationML rules, and
vi. a “RefSemantic” following section 6.1.

Repeat the steps 2 and 3 for all items of your catalogue that should be part of your
AutomationML RoleClassLibrary.

Note 1: It is recommended to rebuild the node hierarchy of the catalogue as a role class hierarchy.

Note 2: It is recommended to use the names of catalogue classes and its attributes as names of the role classes
and their attributes.

Figure 32 depicts an example for a simple AutomationML role class library that is
implemented according to the described algorithm.

 AutomationML and
 eCl@ss integration

47

Figure 32 – Example Role Class

Within this example each role class that represents an eCl@ss application class has eCl@ss
properties that are modelled as AutomationML attributes. Figure 33 shows possible attributes for an
role class.

Figure 33 – Attributes within an Example Role Class

Figure 34 depicts the XML view of the example. For better understanding it does not include
all attribute definitions and the descriptions for the attributes.

 AutomationML and
 eCl@ss integration

48

<RoleClassLib Name="ExampleEClassRoleClassLib">
 <Description>Component roles developed by Gecko Project (propretiary)</Description>
 <Version>0.9</Version>
 <RoleClass Name="eClassClassSpecification" RefBaseClassPath="AutomationMLBaseRoleClassLib/AutomationMLBaseRole">
 <Attribute Name="eClassIRDI" AttributeDataType="xs:string">
 <Description>Specifies the IRDI for the application or classification class</Description>
 </Attribute>
 <Attribute Name="eClassClassificationClass" AttributeDataType="xs:string">
 <Description>Specifies the eClass Classification Class for the AutomationML object coded as 8-digit integer with two digits for each hierarchical
 level of the class structure.</Description>
 </Attribute>
 <Attribute Name="eClassVersion" AttributeDataType="xs:string">
 <Value>9.0</Value>
 </Attribute>
 <RoleClass Name="27 Electric engineering, automation, process controll engineering "
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification">
 <RoleClass Name="27-02 Electrical drive"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering,automation, process controll engineering ">
 <RoleClass Name="27-02-25 DC engine"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/27 Electric
 engineering, automation, process controll engineering /27-02 Electrical drive">
 <RoleClass Name="27-02-25-01 DC engine (IEC)"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering /27-02 Electrical drive/
 27-02-25 DC engine">
 <Attribute Name="eClassVersion" AttributeDataType="xs:string">
 <Value>9.0</Value>
 </Attribute>
 <Attribute Name="eClassClassificationClass" AttributeDataType="xs:string">
 <Value>27022501</Value>
 </Attribute>
 <Attribute Name="eClassIRDI" AttributeDataType="xs:string">
 <Value>0173-1#01-AKE162#011</Value>
 </Attribute>
 <RoleClass Name="BASIC_27-02-25-01 DC engine (IEC)"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/27 Electric engineering,
 automation, process controll engineering /27-02 Electrical drive/27-02-25 DC engine/
 27-02-25-01 DC engine (IEC)">
 <Attribute Name="eClassVersion" AttributeDataType="xs:string">
 <Value>9.0</Value>
 </Attribute>
 <Attribute Name="eClassClassificationClass" AttributeDataType="xs:string">
 <Value>27022501</Value>
 </Attribute>
 <Attribute Name="eClassIRDI" AttributeDataType="xs:string">
 <Value>0173-1---BASIC_1_1#01-ABW077#009</Value>
 </Attribute>
 <Attribute Name="Construction form of DC motor" AttributeDataType="xs:string">
 <RefSemantic CorrespondingAttributePath="ECLASS:0173-1#02-BAE069#007" />
 </Attribute>
 <Attribute Name="Construction size DC-Motor" AttributeDataType="xs:string">
 <RefSemantic CorrespondingAttributePath="ECLASS:0173-1#02-BAE072#005" />
 </Attribute>
 …
 </RoleClass>
 <RoleClass Name="ADVANCED_27-02-25-01 DC engine (IEC)"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering,automation, process controll engineering /
 27-02 Electrical drive/27-02-25 DC engine/27-02-25-01 DC engine (IEC)">
 <Attribute Name="eClassVersion" AttributeDataType="xs:string">
 <Value>9.0</Value>
 </Attribute>
 <Attribute Name="eClassClassificationClass" AttributeDataType="xs:string">
 <Value>27022501</Value>
 </Attribute>
 <Attribute Name="eClassIRDI" AttributeDataType="xs:string">
 <Value>0173-1---ADVANCED_1_1#01-ADN779#005 </Value>
 </Attribute>
 <Attribute Name="Construction form of DC motor" AttributeDataType="xs:string">
 <RefSemantic CorrespondingAttributePath="0173-1#02-BAE069#007" />
 </Attribute>
 …
 </RoleClass>
 </RoleClass>
 </RoleClass>
 </RoleClass>
 <RoleClass Name="27-06 Cable, wire"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering ">
 </RoleClass>
 </RoleClass>
 <RoleClass Name="27-24 Control"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering ">
 </RoleClass>
 <RoleClass Name="27-27 Binary sensor technology, safty-related sensor technology"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering ">
 </RoleClass>
 <RoleClass Name="27-44 Connector system"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering ">
 </RoleClass>
 </RoleClass>
 </RoleClass>
</RoleClassLib>

Figure 34 – Example Role Class XML View

 AutomationML and
 eCl@ss integration

49

Note: To apply the generation process of an AutomationML RoleClassLibrary that represents the eCl@ss
Dictionary or parts of it, it is necessary to have the legal rights to use the eCl@ss Dictionary. For further
information please contact the eCl@ss e.V. office.

6.2.1.2 Role class library application process

At second the role classes have to be used within the semantic referencing process.

6.2.2 Attribute transformation best practice

In eCl@ss an attribute consists of the elements characteristic, definition, value, unit and data
type. The same elements are used in AML with the following notations: “Name”, “Description”,
“Value”, “Unit” and “DataType”.

In eCl@ss the RefSemantic is extracted from the list of characteristics. They use a
combination of letters, numbers and special characters, which follow in AML after “ ECLASS:”.

In the following Table 5 the terms are accordingly contrasted and the XML formats were
added.

Table 5 – Translation of the attributes of eCl@ss to AML

eCl@ss
description

AutomationML
description

XML Example AutomationML

eCl@ss property AutomationML
Attribute

<Attribute>
…
</Attribute>

Preferred name Name
<Attribute Name="min. input voltage (at DC)">
…
</Attribute>

Definition Description

<Attribute >
 <Description>greatest possible value of DC voltage, that can be
applied at the input of a working fund
 </Description>
</Attribute>

Value Value
<Attribute>
 <Value>18</Value>
</Attribute>

Unit Unit
<Attribute Unit="V">
…
</Attribute>

DataType DataType
<Attribute AttributeDataType="xs:float">
…
</Attribute>

(Merkmalliste) RefSemantic

<Attribute>
 <RefSemantic CorrespondingAttributePath="ECLASS:0173-1#02-
 AAB977#007">
 </RefSemantic>
</Attribute>

Aside from the notations used by eCl@ss the data formats (which are given in
http://wiki.eclass.eu/wiki/Property#Data_type_.28Property.29 for example) have to be
translated, too. In AutomationML there is always a “xs:” in front of the notation. For example
the data format “BOOLEAN” in eCl@ss becomes “xs:boolean” in AML.

In Table 5 the respective translations are listed. As AutomationML has to rely on the data
types defined in XML specifications the semantical richness of data types in eCl@ss is not
available in AutomationML. The original eCl@ss data types have to be determined out of
AutomationML files by use of the IRDI given in the SemanticRef information of the attribute.

 AutomationML and
 eCl@ss integration

50

In the following table additionally examples for the data format represented in eCl@ss and
AutomationML are given.

Table 6 – Translation of the data types from eCl@ss to AutomationML permitted data
types

eCl@ss Example eCl@ss AutomationML Example AutomationML

BOOLEAN Yes xs:boolean true

STRING
0173-1#01-
ADG629#001 ; DN 700 ;
10 Mbps

xs:string
0173-1#01-ADG629#001 ; DN
700 ; 10 Mbps

STRING_TRANSLATAB
LE

Red ; Green ; Aluminum xs:string Red ; Green ; Aluminum

INTEGER_COUNT 1 ; 10 ; 111 xs:integer 1 ; 10 ; 111

INTEGER_MEASURE 1 ; 10 ; 111 xs:integer 1 ; 10 ; 111

INTEGER_CURRENCY 1 ; 10 ; 111 xs:integer 1 ; 10 ; 111

REAL_COUNT 1,5 ; 102,35 xs:float 1,5 ; 102,35

REAL_MEASURE 1,5 ; 102,35 xs:float 1,5 ; 102,35

REAL_CURRENCY 1,5 ; 102,35 xs:float 1,5 ; 102,35

RATIONAL 1/3, 1 2/3 xs:float 0.333333333, 1.666666666

RATIONAL_MEASURE 1/3, 1 2/3 xs:float 0.333333333, 1.666666666

TIME 12:45 xs:time 12:45:00

TIMESTAMP 1979-01-15 12:45 xs:datetime 1979-01-15T12:45:00.0

DATE 1979-01-15 xs:date 1979-01-15

URL
http://www.automationml
.org

xs:anyURI http://www.automationml.org

Level Type (only
Advanced)

Includes the minimal,
maximal, typical and
nominal value

min, max, typ, nom xs:string min, max, typ, nom

Axis Type (only
Advanced)

Is a placement type and
defines points in a
geometry schema
(axis1_placement_type,
axis2_placement_2d_ty
pe,
axis2_placement_3d_ty
pe), according to ISO
13584-42:2010,
referring to ISO 10303-
42

axis1_placement_type,
axis2_placement_2d_ty
pe,
axis2_placement_3d_ty
pe

xs:string
axis1_placement_type,
axis2_placement_2d_type,
axis2_placement_3d_type

 AutomationML and
 eCl@ss integration

51

6.2.3 Example

As an example for the usage of these definitions, the engineering of a production system
containing a conveyer system shall be applied. Within this system drives, inductive proximity
switches, and different types of cables are applied.

Figure 35 and Figure 36 represent the role class library generated by using the eCl@ss
classification catalogue basic Version 9.0 for the example plant. It contains relevant parts of
the classification catalogue including the classification classes for drives, inductive proximity
switches and different types of cables.

Figure 35 – Example eClass classification role class library

 AutomationML and
 eCl@ss integration

52

<RoleClassLib Name="ExampleEClassRoleClassLib">
 <Version>0.9</Version>
 <RoleClass Name="eClassClassSpecification" RefBaseClassPath="AutomationMLBaseRoleClassLib/AutomationMLBaseRole">
 <Attribute Name="eClassIRDI" AttributeDataType="xs:string">
 <Description>Specifies the IRDI for the application or classification class</Description>
 </Attribute>
 <Attribute Name="eClassClassificationClass" AttributeDataType="xs:string">
 <Description>Specifies the eClass Classification Class for the AutomationML object coded as 8-digit integer with two digits for each hierarchical
 level of the class structure.</Description>
 </Attribute>
 <Attribute Name="eClassVersion" AttributeDataType="xs:string">
 <Description>Specifies the version of the eClass catalogue, which the eClass category is related to</Description>
 </Attribute>
 <RoleClass Name="27 Electric engineering, automation, process controll engineering "
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification">
 <RoleClass Name="27-02 Electrical drive"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering ">
 <RoleClass Name="27-02-25 DC engine"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering /27-02 Electrical drive">
 <RoleClass Name="27-02-25-01 DC engine (IEC)"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering /27-02 Electrical drive/27-02-25 DC engine">
 <Attribute Name="eClassVersion" AttributeDataType="xs:string">
 <Value>9.0</Value>
 </Attribute>
 <Attribute Name="eClassClassificationClass" AttributeDataType="xs:string">
 <Value>27022501</Value>
 </Attribute>
 <Attribute Name="eClassIRDI" AttributeDataType="xs:string">
 <Value>0173-1#01-AKE162#011</Value>
 </Attribute>
 <RoleClass Name="BASIC_27-02-25-01 DC engine (IEC)"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering /
 27-02 Electrical drive/27-02-25 DC engine/27-02-25-01 DC engine (IEC)">
 <Attribute Name="eClassVersion" AttributeDataType="xs:string">
 <Value>9.0</Value>
 </Attribute>
 <Attribute Name="eClassClassificationClass" AttributeDataType="xs:string">
 <Value>27022501</Value>
 </Attribute>
 <Attribute Name="eClassIRDI" AttributeDataType="xs:string">
 <Value>0173-1---BASIC_1_1#01-ABW077#009</Value>
 </Attribute>
 </RoleClass>
 <RoleClass Name="ADVANCED_27-02-25-01 DC engine (IEC)"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering /
 27-02 Electrical drive/27-02-25 DC engine/27-02-25-01 DC engine (IEC)">
 <Attribute Name="eClassVersion" AttributeDataType="xs:string">
 <Value>9.0</Value>
 </Attribute>
 <Attribute Name="eClassClassificationClass" AttributeDataType="xs:string">
 <Value>27022501</Value>
 </Attribute>
 <Attribute Name="eClassIRDI" AttributeDataType="xs:string">
 <Value>0173-1---ADVANCED_1_1#01-ADN779#005 </Value>
 </Attribute>
 </RoleClass>
 </RoleClass>
 </RoleClass>
 </RoleClass>
 <RoleClass Name="27-06 Cable, wire"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering ">
 <RoleClass Name="27-06-18 Communication cabel"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering /27-06 Cable, wire">
 <RoleClass Name="27-06-18-01 Data cabel"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering /
 27-06 Cable, wire/27-06-18 Communication cabel"/>
 </RoleClass>
 <RoleClass Name="27-06-03 Ready-made data cable"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering /27-06 Cable, wire">
 <RoleClass Name="27-06-03-07 Bus cabel"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering /
 27-06 Cable, wire/27-06-03 Ready-made data cable" />
 <RoleClass Name="27-06-03-11 Assembled sensor actuator-line"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering /
 27-06 Cable, wire/27-06-03 Ready-made data cable" />
 </RoleClass>
 </RoleClass>
 <RoleClass Name="27-24 Control"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering ">
 <RoleClass Name="27-24-06 PC-based controls"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering /27-24 Control">
 <RoleClass Name="27-24-06-90 PC-basierte controls (unspecified)"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering /
 27-24 Control/27-24-06 PC-based controls" />
 </RoleClass>
 <RoleClass Name="27-24-26 Field bus, decentralized peripheral"

 AutomationML and
 eCl@ss integration

53

 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering /27-24 Control">
 <RoleClass Name="27-24-26-04 Field bus, decentralized peripheral - digital I/O module"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering /
 27-24 Control/27-24-26 Field bus, decentralized peripheral" />
 <RoleClass Name="27-24-26-07 Field bus, decentralized peripheral - basic device"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering /
 27-24 Control/27-24-26 Field bus, decentralized peripheral" />
 </RoleClass>
 </RoleClass>
 <RoleClass Name="27-27 Binary sensor technology, safty-related sensor technology"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering ">
 <RoleClass Name="27-27-01 Proximity switch"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering /
 27-27 Binary sensor technology, safty-related sensor technology">
 <RoleClass Name="27-27-01-01 Induktive proximity switch"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering /
 27-27 Binary sensor technology, safty-related sensor technology/27-27-01 Proximity switch">
 <Attribute Name="eClassIRDI" AttributeDataType="xs:string">
 <Value>0173-1#01-AGZ376#013</Value>
 </Attribute>
 <RoleClass Name="BASIC_27-27-01-01 Induktive proximity switch"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering /
 27-27 Binary sensor technology, safty-related sensor technology/
 27-27-01 Proximity switch/27-27-01-01 Induktive proximity switch">
 <Attribute Name="eClassIRDI" AttributeDataType="xs:string">
 <Value>0173-1---BASIC_1_1#01-ABT934#010</Value>
 </Attribute>
 </RoleClass>
 <RoleClass Name="ADVANCED_27-27-01-01 Induktive proximity switch"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering /
 27-27 Binary sensor technology, safty-related sensor technology/
 27-27-01 Proximity switch/27-27-01-01 Induktive proximity switch">
 <Attribute Name="eClassIRDI" AttributeDataType="xs:string">
 <Value>0173-1---ADVANCED_1_1#01-ADN934#005</Value>
 </Attribute>
 </RoleClass>
 </RoleClass>
 </RoleClass>
 </RoleClass>
 <RoleClass Name="27-44 Connector system"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering ">
 <RoleClass Name="27-44-01 Industry connector"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering /27-44 Connector system">
 <RoleClass Name="27-44-01-01 Rectangular connectors (set)"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering /27-44 Connector system/
 27-44-01 Industry connector" />
 </RoleClass>
 </RoleClass>
 </RoleClass>
 </RoleClass>
</RoleClassLib>

Figure 36 – XML representation of example eClass classification role class library

In addition relevant attributes for the different classes are defined. Figure 37 and Figure 38
depicts the attributes defined for the drive related application class DC-Motor (IEC). For a
better understanding of the example only a subset of the possible attributes are included into
the figures. In Figure 37 the attributes are depicted as list. Thereby the first three attributes
define the semantic of the role class according to the definition in chapter 6.1.1.2. In
Figure 38 the same attributes are illustrated as XML repesntation.

 AutomationML and
 eCl@ss integration

54

Figure 37 – Example of AutomationML role class attributes for eCl@ss basic AC of
 27-02-25-01 DC engine (IEC)

<RoleClass Name="BASIC_27-02-25-01 DC engine (IEC)"
 RefBaseClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/27 Electric engineering, automation, process controll engineering /
 27-02 Electrical drive/27-02-25 DC engine/27-02-25-01 DC engine (IEC)">
 <Attribute Name="eClassVersion" AttributeDataType="xs:string">
 <Value>9.0</Value>
 </Attribute>
 <Attribute Name="eClassClassificationClass" AttributeDataType="xs:string">
 <Value>27022501</Value>
 </Attribute>
 <Attribute Name="eClassIRDI" AttributeDataType="xs:string">
 <Value>0173-1---BASIC_1_1#01-ABW077#009</Value>
 </Attribute>
 <Attribute Name="Construction form of DC motor" AttributeDataType="xs:string">
 <Description>Arrangement of machine parts in reference to anchorage, arrangement of bearings and shafts</Description>
 <RefSemantic CorrespondingAttributePath="ECLASS:0173-1#02-BAE069#007" />
 </Attribute>
 <Attribute Name="Construction size DC-Motor" AttributeDataType="xs:string">
 <Description>Housing size of a DC motor, from which the attachment and anchorage dimensions are derived</Description>
 <RefSemantic CorrespondingAttributePath="ECLASS:0173-1#02-BAE072#005" />
 </Attribute>
 <Attribute Name="Cooling type" AttributeDataType="xs:string">
 <Description>Summary of various types of cooling, for use as search criteria that limit a selection</Description>
 <RefSemantic CorrespondingAttributePath="ECLASS:0173-1#02-BAE122#006" />
 </Attribute>
 <Attribute Name="Field rotation speed" AttributeDataType="xs:integer" Unit="1/m">
 <Description>Rotation speed of the electric field in stator coils</Description>
 <RefSemantic CorrespondingAttributePath="ECLASS:0173-1#02-AAC875#005" />
 </Attribute>
 <Attribute Name="GTIN" AttributeDataType="xs:string">
 <Description>internationally unique and unambiguous article number for products and services (Global Trade Item Number, formerly
EAN)</Description>
 <RefSemantic CorrespondingAttributePath="0173-1#02-AAO663#002" />
 </Attribute>
 <Attribute Name="Impact load" AttributeDataType="xs:string">
 <Description>Current increase as a multiple of the nominal current based on short-term load moment leaps</Description>
 <RefSemantic CorrespondingAttributePath="0173-1#02-BAE101#005" />
 </Attribute>
 <Attribute Name="Manufacturer name" AttributeDataType="xs:string">
 <Description>legally valid designation of the natural or judicial person which is directly responsible for the design, production, packaging and labeling of
 a product in respect to its being brought into circulation</Description>
 <RefSemantic CorrespondingAttributePath="0173-1#02-AAO677#001" />
 </Attribute>
..
</RoleClass>

Figure 38 – XML representation of example of attributes for the eClass classification
role motor

Based on the defined role class library a device catalogue can be created covering the
necessary devices for the example.

Figure 39 depicts a system unit class library containing a system unit “Motor” class for a drive
derived from the role class “BASIC_27-02-25-01 DC-Motor (IEC)” and a system unit class

 AutomationML and
 eCl@ss integration

55

“InductiveProximitySwitches” derived from the role class “BASIC_27-27-01-01 Inductive
proximity switch”.

Figure 39 represent the eCl@ss related attributes for the system unit class Motor.

Figure 39 – Example of system unit class library including the attributes for the SUCs

In Figure 40 the XML representation of the example system unit class library can be found. Within this
example the attributes of the SUC are not mentioned for better readability.

<SystemUnitClassLib Name="AmlEclassExampleSystemUnitClassLib_PlantComponents">
 <Version>0.9</Version>
 <SystemUnitClass Name="InduktiveProximitySwitch">
 <Attribute Name="eClassIRDI" AttributeDataType="xs:string">
 <Value>0173-1#01-AGZ376#013</Value>
 </Attribute>
 <Attribute Name="eClassClassificationClass" AttributeDataType="xs:string">
 <Value>27270101</Value>
 </Attribute>
 <Attribute Name="eClassVersion" AttributeDataType="xs:string">
 <Value>9.0</Value>
 </Attribute>
 <ExternalInterface Name="SensorValue_Pin1"
 RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaseInterface/Communication/SignalInterface"
 ID="fb307d80-3469-47b8-8b8b-dfa2fd84b86d" />
 <SupportedRoleClass RefRoleClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering /
 27-27 Binary sensor technology, safty-related sensor technology/27-27-01 Proximity switch/27-27-01-01 Induktive proximity switch" />
 <SupportedRoleClass RefRoleClassPath="AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Structure/ResourceStructure/Device" />
 </SystemUnitClass>
 <SystemUnitClass Name="Motor">
 <Attribute Name="eClassVersion" AttributeDataType="xs:string">
 <Value>9.0</Value>
 </Attribute>
 <Attribute Name="eClassClassificationClass" AttributeDataType="xs:string">
 <Value>27022501</Value>
 </Attribute>
 <Attribute Name="eClassIRDI" AttributeDataType="xs:string">
 <Value>0173-1---BASIC_1_1#01-ABW077#009</Value>
 </Attribute>
 <SupportedRoleClass RefRoleClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering /
 27-02 Electrical drive/27-02-25 DC engine/27-02-25-01 DC engine (IEC)/BASIC_27-02-25-01 DC engine (IEC)" />
 <SupportedRoleClass RefRoleClassPath="AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Resource" />
 </SystemUnitClass>
 <SystemUnitClass Name="TurnTable">
 <InternalElement Name="001_Motor"
 RefBaseSystemUnitPath="AmlEclassExampleSystemUnitClassLib_PlantComponents/Motor"
 ID="9b4adf04-daea-474f-9040-8bea47172174">
 <SupportedRoleClass RefRoleClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering /27-02 Electrical drive/27-02-25 DC engine/
 27-02-25-01 DC engine (IEC)/BASIC_27-02-25-01 DC engine (IEC)" />
 <SupportedRoleClass RefRoleClassPath="AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Resource" />
 </InternalElement>
 <InternalElement Name="002_InduktiveProximitySwitch_instance_1"

http://dict.leo.org/ende/index_en.html#/search=readability&searchLoc=0&resultOrder=basic&multiwordShowSingle=on

 AutomationML and
 eCl@ss integration

56

 RefBaseSystemUnitPath="AmlEclassExampleSystemUnitClassLib_PlantComponents/InduktiveProximitySwitch"
 ID="ed5f71c9-2b38-484d-baff-133b000c6b1b">
 <ExternalInterface Name="SensorValue_Pin1"
 RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaseInterface/Communication/SignalInterface"
 ID="c941a685-c539-412a-84dc-fb9f5147b277" />
 <SupportedRoleClass RefRoleClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering /27-27 Binary sensor technology, safty-related sensor technology/
 27-27-01 Proximity switch/27-27-01-01 Induktive proximity switch/BASIC_27-27-01-01 Induktive proximity switch" />
 <SupportedRoleClass RefRoleClassPath="AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Structure/ResourceStructure/Device" />
 </InternalElement>
 <SupportedRoleClass
RefRoleClassPath="AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Structure/ResourceStructure/MechatronicAssembly"/> </SystemUnitClass>
</SystemUnitClassLib>

Figure 40 – XML representation of example of system unit class library

Using the defined role class library and the defined system unit class library the instance
hierarchy covering the engineering data to be exchanged can be modelled. Figure 41
represents the instance hierarchy of the example system containing one turntable which
contains a drive and a proximity switch, a control cabinet to host the controller and a set of
wires to establish the wiring between devices and control cabinet. It becomes evident that the
internal element “001_Motor” has the role requirement “BASIC_27-02-25-01 DC engine (IEC)”
and is derived from the system unit class “Motor”.

Figure 41 – Example of instance hierarchy

Figure 42 depicts the same IH in XML representation.

 AutomationML and
 eCl@ss integration

57

<InstanceHierarchy Name="AmlEclassExamplePlant">
 <InternalElement Name="FlexibleManufacturingSystem" ID="b52e1030-bc63-4fbd-a628-0b6c6640009a">
 <InternalElement Name="100_TransportationLine" ID="f5f57ce0-e7c0-49b0-83c1-6ea6f4e65d42">
 <InternalElement Name="110_TurnTable_instance_1"
 RefBaseSystemUnitPath="AmlEclassExampleSystemUnitClassLib_PlantComponents/TurnTable"
 ID="eacff900-918e-4c75-8311-584c9dc168f2">
 <InternalElement Name="001_Motor"
 RefBaseSystemUnitPath="AmlEclassExampleSystemUnitClassLib_PlantComponents/Motor"
 ID="de53ae62-fb0c-4f93-b5de-f32ce3e9b4eb">
 <SupportedRoleClass RefRoleClassPath="AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Resource" />
 <RoleRequirements RefBaseRoleClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering /
 27-02 Electrical drive/27-02-25 DC engine/
 27-02-25-01 DC engine (IEC)/BASIC_27-02-25-01 DC engine (IEC)" />
 </InternalElement>
 <InternalElement Name="002_InduktiveProximitySwitch_instance_1"
 RefBaseSystemUnitPath="AmlEclassExampleSystemUnitClassLib_PlantComponents/InduktiveProximitySwitch"
 ID="ed77a2d8-b1a1-4532-9393-f07f801f4bce">
 <ExternalInterface Name="SensorValue_Pin1"
 RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaseInterface/Communication/SignalInterface"
 ID="5e84e31b-c3b6-4390-b4b2-5bb2442a50b9" />
 <SupportedRoleClass RefRoleClassPath="AutomationMLBaseRoleClassLib/AutomationMLBaseRole/
 Structure/ResourceStructure/Device" />
 <RoleRequirements RefBaseRoleClassPath="ExampleEClassRoleClassLib/eClassClassSpecification/
 27 Electric engineering, automation, process controll engineering /
 27-27 Binary sensor technology, safty-related sensor technology/27-27-01 Proximity switch/
 27-27-01-01 Induktive proximity switch/BASIC_27-27-01-01 Induktive proximity switch" />
 </InternalElement>
 <SupportedRoleClass RefRoleClassPath="AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Structure/
 ResourceStructure/MechatronicAssembly" />
 </InternalElement>
 <RoleRequirements RefBaseRoleClassPath="AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Structure/ResourceStructure/Cell" />
 </InternalElement>
 <RoleRequirements RefBaseRoleClassPath="AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Resource" />
 </InternalElement>
</InstanceHierarchy>

Figure 42 – XML representation of the example instance hierarchy

6.3 Generation process for eCl@ss advanced AutomationML model

This generation process will be defined in a later version of this whitepaper.

 AutomationML and
 eCl@ss integration

58

7 Literature

[1] AutomationML e.V.: AutomationML Whitepaper Part 1 - Architecture and general
requirements, https://www.automationml.org/o.red/uploads/dateien/1375858464-
AutomationML Whitepaper Part 1 - AutomationML Architecture V2.2.pdf, (last access August
2014).

[2] AutomationML e.V.: AutomationML Whitepaper Part 2 - Role class libraries,
https://www.automationml.org/o.red/uploads/dateien/1375858483-AutomationML Whitepaper
Part 2 - AutomationML Libraries_v2.2.pdf.pdf, (last access August 2014).

[3] AutomationML e.V.: AutomationML Whitepaper Part 3 - Geometry and Kinematics,
https://www.automationml.org/o.red/uploads/dateien/1378299113-AutomationML Whitepaper
Part 3 AutomationML GeometryV2.2.pdf, (last access August 2014).

[4] AutomationML e.V.: AutomationML Whitepaper Part 4 - Logic Description,
https://www.automationml.org/o.red/uploads/dateien/1375858589-AutomationML Whitepaper
Part 4 - AutomationML Logic Description v2.pdf, (last access August 2014).

[5] J. Prinz: Formalization of object constraints in AutomationML, 3d AutomationML user
conference, October 7th. 2014,
https://www.automationml.org/o.red/uploads/dateien/1417687897-
AutomationML_ConferenceProceedings_2014.zip.

