
Generation of hierarchical OPC UA-Servers from

AutomationML-Models

Michael Okon

Information Management and Production Control (ILT)

Fraunhofer Institute of Optronis, System Technologies and

Image Exploitation IOSB

Karlsruhe, Germany

michael.okon@iosb.fraunhofer.de

Ljiljana Stojanovic

Information Management and Production Control (ILT)

Fraunhofer Institute of Optronis, System Technologies and

Image Exploitation IOSB

Karlsruhe, Germany
ljiljana.stojanovic@iosb.fraunhofer.de

Abstract— Fraunhofer IOSB has developed an

AML2UAConverter that transforms an AutomationML model

in an UA-XML-Nodeset. This has been done based on the rules

of the DIN SPEC 16592 – Combining OPC Unified Architecture

and Automation Markup Language (published in December

2016), which is built on the OPC UA companion specification

„AutomationML for OPC UA“ (Version February 2016).

Furthermore, an expanded AutomationML-File, which

describes the new OPC UA (Aggregation)-Server properties and

its DataVariables (Version May 2017), is provided:

 The new server is described with its properties,
such as DiscoveryURL, NameSpaceTable and
more.

 For each DataVariable-Attribute in the initial
model an attribute of type OPC UA-DataVariable
is created for the new server.

The converted UA-XML-Nodeset is used for automatic

creation of C-Code for an aggregating OPC UA-Server based on

the open62541 toolkit. For all DataVariables of type OPC UA

available in the initial AutomationML-File an integrated OPC

UA Client, which subscribes to all variables in the underlying

OPC UA-Servers, is integrated into the aggregating server

automatically.

In the project iTEXFer an enhanced multilevel concept for

generating OPC UA-Servers and a Master OPC UA-Server from

AutomationML Models has been developed. The steps are:

1. The AutomationML Models that model different
aspects (e.g. different stations in a production line)
are combined in an AutomationML Container.

2. This container is used for the generation of several
UA-XML NodeSets (one for each AutomationML
model) and expanded AutomationML-Files.

3. Combining these generated AutomationML files
into one master AutomationML file is the basis for
the next generation step: The Master-UA-XML
NodeSet and the master AutomationML file for the
corresponding MasterAggregation Server, which
references only the servers generated before.

4. All the converted UA-XML NodeSets can again be
used for creating C-Code for aggregating OPC UA-
Servers based on the open62541 toolkit. So, the
Master OPC UA-Server of step 3 represents a
hierarchical OPC UA Server referencing the OPC
UA-Servers of step 2.

1 OPC UA Objects and OPCUA Variables are standardized entities in an OPC UA address space.

The proposed concept can be used for the generation of

hierarchical OPC UA Servers with arbitrary layers – simply by

applying it in an iterative way. The approach is evaluated in the

context of the iTEXFer project by describing the STFI’s demo

production line.

Some benefits of this concept are:

 Automatic generation of OPC UA-Nodesets from
AutomationML-Files considering hierarchical
aspects

 Dynamic modifications of OPC UA-Nodesets after
AutomationML model changes

 Consistency of data models because of automatic
generation and modification

 OPC UA-Wrapping of (not only OPC UA)
variables via the DataVariable concept

In future the concept could be enhanced for integrating

Industrie 4.0 concepts as „Asset Administration Shell“

Submodels in AutomationML and UA-XML NodeSets for

hierarchical layer views.

Keywords—AutomationML, OPC UA, UA-XML-Nodeset,

DIN SPEC 16592, open62541, iTEXFer

I. INTRODUCTION

The following explanations refer to the CAEX [1] version
2.15 on which AutomationML is based. Extensions and
changes in CAEX version 3.0 are mentioned explicitly.The
DIN specification DIN SPEC 16592 - Combining OPC
Unified Architecture and Automation Markup Language
(December 2016) [2], which is based on the OPC UA
Companion Specification AutomationML for OPC UA
(version February 2016) [3], describes how to transform an
AML model into an OPC UA model using special mapping
rules. An automatic generation of an OPC UA server based on
open52641 [4] using the AML2UACenter [5] is possible.

The applied concepts are also described in more detail in
[6] and [7].

The main mapping rules for AML elements on OPC UA
elements can be found in Fig. 1 and Fig. 2. For example, an
AML InternalElement is mapped to an OPC UA Object and
an AML Attribute to an OPC UA Variable.1

Fig. 1. AML2UA mapping, base elements

Fig. 2. AML2UA mapping, basic elements

An extension to an automatic generation of hierarchical
OPC UA servers, which result from several AutomationML
descriptions, has been developed in the iTEXFer [8] project
and integrated into the existing AML2UACenter.

II. THE CONCEPT AND ITS IMPLEMENTATION

A. The current AML2UAConverter-Capabilities

Only a few components are needed for the generation of
simple aggregating OPC UA servers:

AML2UAConverter

In the engineering phase, the AML2UAConverter
component converts an AutomationML file into an OPC UA
NodeSet2 according to the "OPC UA Information Model for
AutomationML" or "DIN SPEC 165922016-12" specification
and an extended AutomationML file (for aggregating server).
It interacts with other components within the
AML2UACenter, but can be considered as standalone and
independent. (see Fig. 3).

2 An OPC UA Nodeset is a standardized XML description of the information model of an OPC UA

server.

Fig. 3. The current AML2UAConverter, embedded in the AML2UACenter

AML2UACenter

The AML2UACenter component is a framework for
generating OPC UA servers, node sets and extended
descriptions (for aggregating servers) from individual AML
files. The main component is the AML2UAConverter
described above. The underlying platform is WebGenesis®
[9] and is hosted by an Apache Tomcat. In addition to the
output of the AML2UAConverter, it provides source code (in
the programming language C) based on open62541 and an
executable OPC UA server via an integrated compiler/linker
for Windows 10. The start page is shown in Fig. 4. After
registration and subsequent personal login, a user can upload
his or her AutomationML-compliant files, start the generation
and download the described output.

Fig. 4. The IOSB AML2UACenter

B. The extended AML2UAConverter-Capabilities

The existing concept was extended to generate
hierarchical OPC UA servers: new components had to be
added and existing ones extended:

AML2UAConverter

The component AML2UAConverter did not need to be
changed.

AMLConfigurator

In the engineering phase, the AMLConfigurator
component creates an AutomationML container (AMLX)
from the given AutomationML files (for the description of
individual plants - with process connection via the
DataVariable concept). The component does not interact with
any other component. It can be regarded as independent. Fig.
5 shows the user interface of the component.

Fig. 5. The IOSB AMLConfigurator

3 The DiscoveryURL describes a connection to an OPC UA Server in a network.

Note: The AutomationML Editor of the AutomationML
Consortium provides similar functionality.

AML2UAAggregator

In the engineering phase, the AML2UAAggregator
component creates the associated OPC UA NodeSets and
extended AutomationML descriptions (with additional
descriptions of the aggregated servers) from the
AutomationML files contained in an AutomationML
container (for the description of individual plants with process
connection according to the DataVariable concept) and
aggregates these into an integrated description of the plant in
an AutomationML file (master). It interacts with other
components within the AML2UACenter, but can be regarded
as independent.

AML2UACenter

The AML2UACenter component was enhanced with the
components described above; its interactions are shown in
Fig. 6. The user interface presents itself to the user in the same
form as before, the generation logic is recognized by the input:
AML files are treated as before, AMLX files are treated
according to the new logic.

Interactions

The AML2UAConfigurator component groups all the
underlying AML files together in an AutomationML
container, which is imported by the AML2UAAggregator and
processed into a new master AML file. The "intermediate
products" generated by the AML2UAConverter (NodeSets
and C code) can be used to generate executable OPC UA
servers. This iterative procedure was transparently integrated
into the AML2UACenter. Using the DataVariable concept,
the newly created master component (as a hierarchical OPC
UA server) is directly linked to the subordinate servers. In a
further step, this master file can be prepared by means of an
editor with entries for the executability of the servers (a
posteriori Discovery URL 3 Configuration). The prepared
master can then be processed by the AML2UAConverter in
the old way. The complete process of generating a hierarchy
level with the resulting "intermediate products" is shown in
Fig. 6. The iterative application of this procedure then delivers
an arbitrary number of hierarchy levels.

Fig. 6. Interactions between the components, partly embedded in the new
AML2UACenter

III. WORKFLOWS FOR USER

For a user of the above concept, the following workflows
result. They refer to the initial conversion and post-
conversion, whereby it is important to ensure that all AML
files considered comply with the AML specifications and
rules:

A. Workflow for Initial Conversion

1. Create AML files.

2. Check created files for correctness in the AMLTest-
Center and correct them if necessary.

3. Integrate files into an AML container.

4. Make AML containers available in the
AML2UACenter for generation and generate
NodeSets, code and executable servers, as well as the
master AML file.

4 The AML2UAConverter uses the AutomationML ID to generate an unique NodeId in the NodeSet

of an OPC UA server

5. Carry out any subsequent changes to the master
AML file on your own responsibility, in particular to
the DiscoveryURL, test it for correctness in the
AMLTest Center and correct it if necessary.

6. Provide the (modified) AML master file in the
AML2UACenter for generation and generate
NodeSet, code and executable server.

a. Online-modification:
Import changed node sets and, if necessary,
reset subscriptions by the servers involved.

b. Offline-modification:
Recompile generated code and link, then
start server, or start finished generated
server. Any existing subscriptions of
external clients must be set up again.

B. Workflow for post-conversion (changes in one or

more AML files)

1. Modify the file(s) ensuring that elements describing

the same entity retain their AutomationML ID4.

2. Check changed file(s) for correctness in the
AMLTestCenter and correct if necessary.

3. Replace the file(s) in the AML container with the
modified file(s).

4. Provide the AML container in the AML2UACenter
for generation and generate NodeSets, code and
executable servers, as well as master AML file.

5. Carry out any subsequent changes to the master
AML file on your own responsibility, in particular to
the DiscoveryURL, test it for correctness in the
AMLTestCenter and correct it if necessary.

6. Use the (modified) AML master file in the
AML2UACenter for generation of NodeSet, code
and executable server.

a. Online-modification:
Import changed node sets and, if necessary,
have subscriptions reset by the servers
involved.

b. Offline-mofification:
Recompile generated code and link, then
restart server, or restart finished generated
server. Any existing subscriptions of
external clients must be reset.

Fig. 7 combines the two workflows in one representation.

User

User

Responsibility

Responsibility
Li

fe
 c

yc
le

Li
fe

 c
yc

le

Start

Check compliance of

AML-File(s)

(AMLTest-Center)

Error Revise AML-FILe(s)

OK

Compile

AMLX-Container

(AML2UA-

Aggregator)

Generate Nodeset(s),

Code, Server and

Master-AML-File

(AML2UA-Center)

Configure

DiscoveryURLs in

Master-AML-File

(Editor)

Check compliance of

Master-AML-File

(AMLTest-Center)

Revise

Master-AML-FILe

Fehler

OK

Generate Nodeset,

Code, Server for

Master

(AML2UA-Center)

End

Modify AML-FILe(s)

Continue processing

Nodeset, Code and

Server as required

Continue processing

Nodeset, Code and

Server as required

End

End

Error

in AML-File(s)

Error in Master-AML-File

Fig. 7. Workflows for users

IV. EXAMPLE

The iTEXFer project addresses, in one of its sub-areas, the
"uniform" representation - using AutomationML - of the
components involved in a complete production line in an area
of the textile industry. Detailed knowledge - e.g. of the process
flow - is not required for the further discussion, since only the
principle of the concept described above is to be clarified.
Likewise, modeling in the AutomationML files of the
participating components in English was dispensed with.

The production line consists of several processing and
transport components, which are first "hierarchized" into a
machine and transport park and then into an overall view. The
occurring combination "STFI" in the designations is due to the
fact that this demonstration line is set up at the Sächsisches
Textil Forschungs Institut (Saxon Textile Research Institute)
in Chemnitz (see also Fig. 5 for the hierarchy level
"Machinery").

Fig. 8 shows the desired final configuration, in which there
is currently only one subordinate OPC UA server from B&R
as a process-oriented external component for the weaving
machine, which is already connected using the DataVariable
concept.

Fig. 8. The desired hierarchical structured servers

For this purpose, the "uniformly" created AML
descriptions

 STFI-Beschichter (coater)

 STFI-Drucker (printer)

 STFI-Konturierer (contouring tool)

 STFI-Trockenvorbehandler (dry pretreater)

 STFI-Webmaschine (weaving machine)

were firstly combined to STFI-Maschinenpark (machinery)
and the AML descriptions

 STFI-Roboter (robot)

 STFI-Transporter (transporter)

 STFI-TransporterMitRoboter (transporter with
robot)

were combined to form the STFI Transporter Park.

The generated AML descriptions

 STFI-Maschinenpark (machinery)

 STFI-Transporterpark (transport fleet)

were finally combined to form the global description STFI.

The iterative generation provided a total of 11 executable OPC
UA servers in 3 generated hierarchy levels. The external OPC
UA server as a process-oriented component thus forms the 4th
level. The other process-related components are to be
integrated analogously later.

The generated OPC UA servers can all be addressed
separately and present themselves in an OPC UA client as in
Fehler! Verweisquelle konnte nicht gefunden werden..
Value changes are propagated to each hierarchy level.

Fig. 9. The hierarchical servers in an OPC UA client

V. SUMMARY AND OUTLOOK

This paper describes the extension of the existing concept
for generating an aggregating OPC UA server from an
AutomationML file to the concept for generating hierarchical
OPC UA servers from an AutomationML container. The
multiple iterative application of this concept leads to a
hierarchical arrangement of OPC UA servers.

Workflows for the use of the available implementations of
this concept were shown, in particular for changes in the
underlying AutomationML files with

Benefits of this concept are as follows:

 Automatic generation of OPC UA-Nodesets
from AutomationML-Files considering
hierarchical aspects

 Dynamic modifications of OPC UA-Nodesets
after AutomationML model changes

 Consistency of data models because of automatic
generation and modification

 OPC UA-Wrapping of (not only OPC UA)
variables via the DataVariable concept

The concept itself was evaluated with an example using a
multi-level hierarchy in the iTEXFer project.

The following enhancements to the concept in the Asset
Administration Shell (AAS) of Plattform Industrie 4.0 [10]
seem possible:

 Conversion of the mapping of the AAS in

AutomationML to OPC UA

 Creation of submodels as OPC UA server views
or independent servers

In both cases, however, the results of the current activities
on the mapping of the AAS specifications on to
AutomationML and OPC UA need to be completed by
Plattform Industrie 4.0.

ACKNOWLEDGMENT

The concept presented was developed within the
framework of the iTEXFer project.

REFERENCES

[1] https://www.plt.rwth-
aachen.de/cms/PLT/Forschung/Projekte2/~ejwy/CAEX-IEC-62424/

[2] (2016). DIN Spec 16529: Combining OPC Unified Architecture and
Automation Markup Language. Beuth.

[3] https://opcfoundation.org/developer-tools/specifications-unified-
architecture/opc-unified-architecture-for-automationml/

[4] https://open62541.org/

[5] https://aml2ua.iosb.fraunhofer.de/

[6] R. Henssen, M. Schleipen. (2014). Interoperability between OPC-UA
and AutomationML. Disruptive Innovation in Manufacturing
Engineering towards the 4th Industrial Revolution, Proceedings of the
8th International CIRP Conference on Digital Enterprise Technology -
DET. Stuttgart: Fraunhofer Verlag.

[7] https://www.automationml.org/o.red.c/news-173.html

[8] http://www.stfi.de/forschungsvorhaben/umsetzungsvorhaben/itexfer

[9] https://www.iosb.fraunhofer.de/servlet/is/18052/

[10] https://www.plattform-i40.de/

