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Abstract—Automating data exchange in a heterogeneous
engineering tool environment is considered a challenge due to
typically large amounts of differences between data models of
the involved tools. [6] defines a levels of conceptual interoper-
ability model, and this paper interprets it for the application of
AutomationML in a heterogeneous engineering tool landscape.
The focus of the present paper is on level 3 or semantic
interoperability which requires that a mapping between the
different engineering tool data models be performed. Perfor-
ming this mapping is a major effort and, as a result, most engi-
neering data exchange is still executed through manual means
via paper format since a human is needed to at least interpret
the particular semantics of the data. In this paper, three basic
approaches for enabling semantic interoperability are examined
and the benefits and drawbacks of each method are explored.
Following the analysis, a best practice proposal is described.
Possible future extensions of this approach are also described.
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I. INTRODUCTION

Engineering is characterized by tool chains: across
different phases of engineering, multiple tools of different
vendors are used in order to perform different engineering
tasks, e.g. 3D product planning, factory layout planning,
software engineering, hardware engineering etc. [1][2]. In the
last decades, the key focus of engineering tool vendors was on
optimizing the functionality of the tools themselves. Mean-
while, the growing maturity of engineering tools makes it
difficult to differentiate comparable tools by their tool functio-
nality. Furthermore, growing complexity of automation
systems, increasing number of engineering artifacts, and
growing heterogeneity of automation systems under rising
cost and time pressure require innovations in managing the
consistency and correct usage of engineering data across all
tools in the tool chain. Hence, interoperability of engineering
tools raises into focus, which is seen as a key future
differentiator and especially difficult to achieve when
engineering tools originate from different vendors [3].

A common definition of interoperability is “the ability of
two or more systems or components to exchange information
and to use the information that has been exchanged” [4]. Since
engineering tools are usually model-based systems, engi-
neering tool interoperability requires interoperability between
their models. Typically these models are abstractions of real
world objects and phenomena purposefully designed to
address problems of the respective domains. Consequently,
differences between the models can arise at many different
levels ranging from syntax usage to semantical terms to
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operational procedures to underlying assumptions and
constraints. Interoperability as defined above comprising of
information exchange and usage can accordingly be
understood using the Levels of Conceptual Interoperability
Model (see Fig. 1). The model with its increasing levels of
interoperability was first described in [5] and later extended in
[6]. A presentation of the underlying mathematical framework
using model theory can be found in [8] and [9]. Initially
developed for M&S engineering for military simulation
software, the interoperability model has since been referred in
diverse applications [10][11][12][13].
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Fig. 1: Levels of Conceptual Interoperability Model [7]

It can be interpreted in the following manner for
engineering tools and their data models:

Level 0—No Interoperability: No exchange of information
between the engineering tools is possible or intended. Here,
engineering tools are typically standalone, closed systems
with no electronic interfacing possibilities, e.g. control
engineering tools of competitors that are not designed to
exchange their data.

Level 1—Technical Interoperability: A communication
protocol exists for exchanging raw data between engineering
tools together with requisite exporter and importer interfaces.
A first step in interoperability, the engineering tools at this
level are capable of exchanging bits and bytes or signals.

Level 2—Syntactic Interoperability: The structure or
format of the data can be unambiguously interpreted between
the engineering tools, e.g. via use of a common data format
such as Excel, XML or AutomationML. As a result, tools can
clearly interpret symbols and perform related functionalities,
e.g. difference calculation, using their exporter/importer
interfaces.



Level 3—Semantic Interoperability: The semantic or
informational content of data can be aligned between the
engineering tools via use of a common information exchange
reference model or a neutral semantic standard. This means
that the meaning of the data is shared, consequently the tools
with the help of their interfaces can clearly interpret terms.

Level 4—Pragmatic Interoperability: The context in
which data is used, associated methods and procedures within
the different engineering tools are made known, allowing
common understanding about the use of terms within different
engineering tools. At this level of interoperability, tool
interfaces could be used to access or extend other methods.

Level 5—Dynamic Interoperability: Any changes in the
models’ constraints or assumptions can be communicated for
alignment about the effects on operations between the
engineering tools. As a result, there is common understanding
about appropriate interpretation of the information exchanged
between engineering tools.

Level 6—Conceptual Interoperability: The conceptual
models of the engineering tool models, i.e. used assumptions
and constraints, are documented and aligned as part of a
common reference model for the engineering tools, ensuring
the same underlying theory. Full understanding between the
tools is reached at this highest level of interoperability.

With integratability or Levels 1 and 2 already addressed
via the openness criteria [14] and interpretation of data
formats [15][16][17][18][19] respectively, the focus currently
lies on Levels 3 and above. The central aspects of inter-
operability are covered by Levels 3 and 4, whereas Levels 5
and 6 address composability at higher modelling levels. The
exchange of semantics or informational content and
pragmatics or utility content are the focus of our current paper
(Level 3) and continued research (Level 4).

The AutomationML data format [17][18] itself is
explicitly designed for Level 2 and provides only basic role
libraries for Level 3. The strict separation of syntactic
neutrality and semantic expressiveness is intended: the
mechanisms of data modelling allow for modelling of any
semantics in user-defined or standard libraries. In contrast to
other data formats which directly aim for Level 3, Auto-
mationML is extensible and flexible for future integration of
further semantic standards.

The question is how to beneficially make use of this flexi-
bility to perform data exchange in a heterogeneous
engineering tool landscape without relying upon neutrally-
defined semantics or a common data model in participating
tools. We aim for a best practice recommendation and
demonstrate how to reach semantic interoperability in a cost
efficient and elegant way, useful for practical applications. In
particular, in this paper we describe three basic approaches for
AutomationML-based semantic mapping together with the
benefits and drawbacks of each approach. Section Il describes
general approaches to perform semantic mappings and
analyzes their benefits and drawbacks. Section Il
recommends a preferred method and explores it in detail. The
proposed method has been implemented in an industrial data
exchange at ABB HVDC and conceptually published in [20].
Avreas of further extension to overcome current limitations of
the preferred method and achieve pragmatic interoperability
are presented in Section V. The paper concludes with closing
remarks in Section V.

Il. GENERAL APPROACHES TO PERFORM MAPPINGS BETWEEN
DATA MODELS

A. Overview

Consider a tool chain from Tool A to Tool B meeting
syntactic interoperability (Level 2) as described in Section |I.
The data flows from the database of Tool A through an
exporter into a file (with a common or interpretable data
format), and then through an importer into Tool B (see Fig. 2).
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Fig. 2: Three general layers to place mapping functionality
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For achieving interoperability at the semantic level (Level
3), a mapping would need to be performed between the
engineering tools. The mapping definition and execution may
generally be placed on three different layers, see Fig. 2:

e Layer A: inthe tool layer
e Layer B: in the exporter and importer interface layer
e Layer C: in the intermediate file data model layer

From the industrial perspective, these basic approaches
have to furthermore be evaluated for their complexity, cost
and effort in terms of initial development, maintenance,
regulation, risk and and ownership.

B. Option 1: harmonizing on tool layer (Layer A)

A most obvious and ideal method to solve the mapping
problem between different data models across different tools
is to harmonize the semantics used in the data models across
all participating engineering tools. This method is typically
applied in tool suites using common databases where the
semantic harmonization happens in a vendor specific and
proprietary way. The key benefit is the elegant avoidance of
any mapping, with common semantics automatically leading
to semantic interoperability across all participating tools.

However, this method suffers from a semantic stan-
dardization deadlock, as described in [22], implying stalling
of progress. This method, due to practical reasons, is usually
bound to the ownership of all participating tools, which has
the power to set the semantic standard. The acceptance on the
market is limited since it requires that customers bind
themselves to one common vendor, a significant risk. Further-
more, a common database requires high effort in continuously
agreeing on the semantics in case of change requests and
reduces the general willingness and ability of the individual
tool participants to innovate. As a result, the innovation speed
of those tools is significantly reduced com-pared to
independent tools. Applied in a vendor independent way, this
method requires a powerful standardization community that
develops neutral engineering semantics. However, this has not
yet been achieved and would constitute a long term activity.
According to [22] and [23], for most cases, this approach is
not suitable for practical industrial purposes. Industrial users
usually prefer to select their best-in-class tools individually.



C. Option 2: Mapping between data models in exporters
and importers (Layer B)

A second and very popular option is to keep the tools A
and B independent and instead perform the semantic mapping
in Layer B, i.e. the importer and exporter layer. The mapping
functionality would in this case be built into the exporter and
importer. There are three suboptions: 1) the exporter needs
relevant knowledge of the Tool B data model; 2) the importer
requires relevant knowledge of the Tool A data model; or 3)
the exporter and importer interact via an intermediate neutral
data model for the relevant aspects.

In any of the above cases, innovations in either tool would
require corresponding modifications of the exporter and/or
importer, leading to a combinatorial version explosion of these
software interfaces. Furthermore, case 3) would additionally
require continuous adaptation of the neutral data model with
related innovations in Tools A or B. Since there is a variety of
engineering tools in the market that publish new versions
every year, the maintenance effort scales significantly with
more than two participating tools.

Although this option overcomes the tremendous initial
development effort required for harmonizing in Layer A,
significant maintenance effort would nevertheless be required
in Layer B, followed by the need of version support for all
combinations of upcoming versions of Tools A and B over
time. Moreover, some oversight of the tools development may
be needed to ensure that changes in the data models can be
appropriately conveyed for representation in the exporter-
importer interfaces. Consequently, ownership of some degree
may also be required.

D. Option 3: Mapping between data models in the
intermediate data file (Layer C)

The third option is to keep the tools A and B as they are,
and to make the exporter and importer software generic
without semantic knowledge about other data models, and to
instead model all the required semantic mappings directly into
the data model of the intermediate data file in Layer C. The
effect of this approach is that all mappings contain
interoperability information between the data models that are
readily interpretable by the exporter and importer software.
Consequently, modifications of the data model in Tool A or B
only require adaptations of the mapping in the intermediate
file layer; no software modification in the other tools or in the
exporter and importer layer are necessary.

Using this option, both the initial development and
maintenance effort of the exporter and importer interfaces are
low. The tools innovate independently and no regulation is
required. All risk is reduced to successfully maintaining the
intermediate model. Furthermore, this approach has proven
successful for Level 3 interoperability and allows for several
efficiency benefits as observed in an actual industrial scenario
[20][21]. We therefore recommend it as a best practice for
exchanging engineering data. The following section explains
the method in details, followed by possible extensions in
Section IV.

I11. SEMANTIC MAPPING IN THE INTERMEDIATE DATA MODEL

A. Description of the method

The main idea is to map the semantically equivalent parts
of the source and target engineering tools in the data model of

an external intermediate file format using source tool
semantics. The chosen intermediate file format is
AutomationML [17][18][26][27] since it allows for exchange
of proprietary semantics in a syntactically neutral format and
follows common object-oriented design principles. The
method can be described as follows:

1. Experts on participating tools manually determine the data
objects relevant for data exchange based on source tool
semantics. For each such data object:

a. A System Unit Class is created based on source tool
semantics.

b. A SourceToollD attribute is assigned to the System
Unit Class for storing the data object’s ID in the source
tool.

¢. An additional Content attribute is assigned for storing
the data object’s description and unit in the
corresponding Content.Description and Content.Unit
attribute value fields.

Fig. 3 below illustrates this by means of a System Unit
Class named ParameterClass.
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Fig. 3: Attributes of ParameterClass in the neutral class
model library

2. A System Unit Class Library is created for each source
tool as a type library containing System Unit Classes for
the relevant source tool data objects as defined in step 1.
Furthermore, to each System Unit Class, a target tool ID
storage attribute is added for each tool requiring data
import of the corresponding data object (as determined by
experts in Step 1).

3. During data exchange, each exporter tool reads the System
Unit Class Library for its source tool. For each
SystemUnitClass within the library it creates an instance
of it in the InstanceHierarchy. It reads the provided source
tool 1D, finds the corresponding value of the data object in
the source tool, and finally writes this value in the
Content.Value entry, keeping the semantics of the source
tool. Note that the exporter itself does not know of any
target tool, rather it only instantiates the predefined
SystemUnitClass containing mapping attributes for any
target tools.

4. The resulting AutomationML file with exported values is
passed on to each of the target tool importers for importing
relevant parameter values into the target systems. Each
importer filters the relevant Internal Elements of the
Instance Hierarchy using the corresponding target tool ID
attribute (objects without the mapping identifier attributes
are safely ignored). For each such Internal Element, it
imports the Content.Value into the appropriate field in the
corresponding target tool given by the target tool 1D
attribute value.



In the described method, the exporter software does not
require any knowledge about a neutral data model or target
tool data models. Similarly, the importer requires no
knowledge about source tool semantics or any semantics in
the neutral format as it only looks for relevant mapping
information in a mechanical and transparent way. As a
consequence, both the exporter and importer remain generic.
In case of changes in the source or target tool data models,
only the intermediate data model with mapping information
requires udpate.

B. Simple Example illustrating the method

The above method is illustrated below using a small
example involving a source tool A and a target tool B (Fig. 4).
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Fig. 4: Example of Mapping in Layer C

1. The experts on Tools A and B determine that a source
tool output parameter with ID N corresponds
semantically (e.g. for volume of a particular tank) to
Tool B input parameter with 1D Num, and thereby
declare its value to be of interest for data exchange
from Tool A to Tool B. A neutral System Unit Class
Library is created with a ‘ParameterClass”, see
“BaseLibrary” in Fig. 3. Additionally, SourceToollID
and Content attributes are assigned to this class for
storing the parameter 1D and content information (e.g.
description, unit, sub-attributes) of individual tool
parameters.

2. Next, from the neutral “ParameterClass”, a source
tool specific System Unit Class named “N” is created
and stored in the source tool specific System Unit
Class Library, see “ToolALibrary” in Fig. 5. The
“SourceToolID” attribute is assigned value N, a new
attribute “ToolB_ID” is created for tool B with value
Num and a further attribute “ToolC_ID” is introduced
for a third target tool C with value Val.
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Fig. 5: Attributes of a Tool A parameter using a neutral class

3. During data exchange, Tool A exporter reads the
neutral class library file and instantiates each System

Unit Class in “ToolALibrary” within the Instance
Hierarchy, see “ExportFromToolA” in Fig. 6. It
accesses the source tool value of parameter N using
its property SourceToollD.Value, reads the value “5”
within the source tool and writes this value into the
Content.Value field.
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Fig. 6: Exporting and importing using mapping attributes
in an intermediate AutomationML file

4. Finally, Tool B importer reads the intermediate
AutomationML file prepared by the exporter. It looks
for all instances with a ToolB_ID attribute, i.e. all
Internal Elements that are relevant for import into
Tool B. For parameter N, it finds a Tool B identifier
attribute and hence a parameter of interest. It inserts
the parameter value provided by Content.Value into
the Tool B field having ID that matches
ToolB_ID.Value. Importing for Tool C works simi-
larly.

Data exchange is now complete.

Note that the described procedure allows developing
importer and exporter software generically and having no
knowledge about the “other” data format. This remains
unchanged whenever a new tool is added into the data
exchange chain, or in case of change in parameter IDs, or even
with the introduction of new parameters or modification of
existing ones. We achieve Level 3 (semantic interoperability)
without having a common data model in the tools or tool
interfaces with additional knowledge about third party data
models. The mapping is determined by common agreement
between the experts and is baked into the intermediate data
model. Any changes in the data model are automatically
reflected in the exporter and importer operations.

IV. POSSIBLE EXTENSIONS OF THE PROPOSED METHOD

The proposed approach has certain limitations described
below which we currently aim to overcome within the
framework of the research and development project
INTEGRATE.

The preferred method currently requires experts to
determine the semantically equivalent objects as well as
explicit mapping in the data model in advance of operation.
However, in industrial scenarios with multiple tools and
increasingly large amounts of data to be exchanged, it may be
infeasible to have all relevant experts identify the required
mappings in advance. Instead, identification of mappings
relevant for particular scenarios and based on sender-receiver
interaction during operations may be a more viable approach



for initialization of data exchange and gradual extension of
exchanged items. We currently research ways to enable such
dynamic mappings in a user-friendly manner.

Another constraint of the current approach is that it allows
for 1:1 semantic mappings where the source tool data objects
exactly correspond in meaning to target tool data objects and
no transformation is required for usage in the target tool, i.e.
any required processing must be performed either prior to or
after the data exchange within the respective tools. A need for
general m:n mappings for hierarchical object models was
noted in [24] and the expressibility of corresponding relations
in AutomationML is presented in [28]. As an extension of the
proposed method we currently investigate inclusion of such
transformations together with an intermediate processing
layer, in keeping with the general principle of unaltered tools
and tool interfaces.

Thirdly, we look at ways to render methods and
procedures available between tools using AutomationML
towards enabling pragmatic interoperability or Level 4 of the
Levels of Conceptual Interoperability Model (Fig. 1)

In the future, the collected mappings information could
serve as a common reference model and basis for formation of
a common data model by standardization communities.

V. CONCLUSION

This paper explains a core technical aspect of [20] which
describes a concept to achieve data exchange across multiple
engineering tools via AutomationML without the need of
harmonization of data models upfront. The ideas have been
successfully introduced for usage in an industrial scenario.
The focus of the present paper is a comparison of mapping
methods using A) tool Layer, B) interface layer or C) data
model layer.

In contrast to the common practice of positioning mapping
information in Layers A or B, the authors propose to use Layer
C for efficiency reasons. Since semantic standardization and
harmonisation across multiple tools is a significant effort that
usually runs into a standardization deadlock, the recom-
mended method and its possible extensions provide a
powerful means of overcoming the need and efforts for
harmonization in the engineering tools or even the exporter
and importer interface level development and maintenance. It
offers a low-cost and minimum effort solution to the problem
of data exchange in a heterogeneous tool landscape with
varying semantics.

By externalizing the semantical instructions from the tools
into the neutral data model on Layer C using an Automa-
tionML-based neutral class library, it is possible to retain the
original data models of the tools and program exporter and
importer interfaces generically, thereby allowing for imme-
diate data exchange. Finally, the data exchange can be deve-
loped with immediate success without waiting on standards,
because it decouples the industrial project pressure and long
term standardization activities, and allows for stepwise stan-
dardization over time as proposed in [22].
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