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Abstract—To simplify the engineering of field devices,e
almost every fieldbus organization has developed its own Device
Description Language (DDL), a formal language to describe the
services and configuration options of field devices. The DDLs
are usually tailored to the needs of the associated fieldbus engi-
neering tool chain and unusable in tool chains of other vendors
or in tools for other lifecycle phases. This paper describes a
generic approach to overcome these shortcomings by means of
AutomationML and provides an example for IO-Link masters
and devices and for CC-Link IE Field devices. The proposed
method is generic and re-usable for other DDLs.
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L. INTRODUCTION

Modern field devices for process and factory automation
have a number of identification and configuration options and
are customizeable to their individual use case. For this
purpose they are wusually equipped with a digital
communication interface, such as IO-Link, HART,
PROFIBUS, Fieldbus Foundation, Ethernet/IP, PROFINET,
CC-Link, CC-Link IE Field, etc.. Each of these communi-
cation standards has developed its own dedicated software
tool ecosystem to control and configure the devices, usually
based on a Device Description Language (DDL) approach,
where a generic software can configure and control different
devices through the interpretation of a Device Description
(DD) associated to the individual device type. The economic
benefit lies in the fact that the creation of a DD with the DDL
requires much less effort than writing a dedicated software
tool.

The newer XML-based formats such as GSDML, FDCML,
ESI, CSP+ and IODD offer advantages compared to the
traditional text-based formats GSD, EDDL and EDS, because
they can rely on data model schematics (XSDs) and the
related XML parser features for consistency checking of both
syntax and semantics.

Whenever a field device is required, the DD file is loaded
and interpreted by the engineering tool, providing user
dialogs and functionality to enter property parameters in
order to configure the individual device instance.

All devices of the same type have the same DD file, but the
individual parameters of individual devices may have
different parameter values dependent on the use case of a
device. This illustrates general limitations of DDLs:
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In many cases there is a strict split between type information
and individual device information implies that type specific
information is stored in the neutral DD file while the
individual parameters are stored in the proprictary
engineering tool. No tool independent storage of individual
device configuration across the devices life cycle is
established.

Once multiple field devices are interconnected into a
communication network, the topology configuration is stored
in the proprietary engineering tool. There is no tool
independent archiving, distribution, re-use or further re-use
of topology configurations available.

This paper presents a method to overcome both issues by
utilizing AutomationML and provides examples for IO-Link
components in an automation systems (see devices of type
Master and Device in Fig. 1) and CC-Link IE Field. Clause II
mentions related work and existing fieldbus standards, clause
[T defines requirements for fieldbus topology modelling,
clause IV provides an example for IO-Link topologies,
whereas clause V does the same for a CC-LINK IE Field
topology with IO-Link components. Finally, clause VI
discusses potential use cases and clause VII summarizes the
findings and gives an outlook into next steps of this research.
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Fig. 1. Basic structure of an automation system with fieldbus and 10-Link
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II. RELATED WORK

A. Fieldbus technologies

An overview of the integration issues for fieldbus
technologies is presented in [2-3], additionally the horizontal,
vertical and lifecycle integration problem is outlined in [3].

Regarding horizontal integration, IEC 61158 lists 79
existing communication technologies and describes an
approach how all fieldbus technologies could be brought to
an unified foundation, whereas IEC 62390 attempts to unify
device profiles. Device controller programming is
standardised in IEC 61131. The overall integration is covered
by ISO 15745, providing a sophisticated data model for
device descriptions (see Fig. 2). An early adoption of ISO
15745 for a system neutral DDL was the Field Device
Configuration Markup Language (FDCML) [4], which could
not gain widespread acceptance.
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Fig. 2. Ontology of ISO15745-1

B. Existing DDL Standards

In this chapter, some existing DDL standards are shortly
presented, see also [2-3]. The main weakness of these
existing fieldbus standards are their incompatibility and
insufficient suitability for horizontal and lifecycle
integration.

1) EDDL

The Profibus Nutzerorganisation (PNO), Fieldbus Foun-
dation, HART Communication Foundation, OPC Foundation
and FDT Group have created the the EDDL Cooperation
Team (ECT) and merged their individual dialects of the DDL.
The result was the Electronic Device Description Language
(EDDL), which does not make use of XML and was
published as IEC 61804. It is mainly used in the proces
automation industry.

2) EDS

The ODVA maintains the Ethernet/IP fieldbus standard,
where the Electronic Data Sheets (EDS) describe how a
device can be used on an EtherNet/IP network. It describes
the objects, attributes and services available in the device, not
making use of XML. They contain an ASCII representation

of a device’s parameter objects and some additional
information required for object addressing. There are
discussions within ODVA to generate an XML based EDS
format in the future [5].

3) ESI

For the EtherCAT fieldbus, Every EtherCAT device must
be delivered with an EtherCAT Slave Information file (ESI),
a device description document in XML format [6]. The
structure of an ESI file is defined in the EtherCATInfo.xsd
XML schema document (Fig. 3.) EtherCAT is also part of
ISO 15745-4.
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Fig. 3. Structure of EtherCATInfo.xsd

Information about device functionality and settings is pro-
vided by the ESI, whereas the EtherCAT Network
Information File (ENI) describes the network topology, the
initialization commands for each device and the commands
which have to be sent cyclically [7]. The ENI file is provided
to the master, which sends commands according to this file.

4) GSDML

The characteristics of a PROFINET IO Device are
described by the manufacturer in a General Station Descrip-
tion (GSD) file, providing the engineering and supervision
software with a basis for configuring and monitoring the de-
vices of a PROFINET IO system. The language used for this
purpose is the GSDML (GSD Markup Language) - an XML
based language that structurally complies to ISO 15745-1.

5) POWERLINK XDD

The Ethermnet Powerlink XML Device Description [8]
complies to ISO 15745-1 and defines the following file types:

e The profile definition file (XPD) is an XML
representation of a POWERLINK framework, device
profile or application profile.

e The device description file (XDD) models the device
type of a POWERLINK device, to be used as a
blueprint for instantiation of devices in an actual
network configuration. An XDD file contains the
default values of the device but no commissioning
values and no actual values.

e The device configuration file (XDC) describes a
configured POWERLINK device and stores the
information for a specific instantiation of a device in a
specific network environment. All information from
the XDD file plus actual values and/or device
commissioning values can be stored in an XDC file.



6) CSP+

The CC-Link Partner Association (CLPA) maintains the
CC-Link family network standards, where the Control &
Communication Profile (CSP+) describes how a device can
be used in a CC-Link family network [16][17][18]. CSP+
files are written in XML.

In the CSP+ model, the modules are separated into virtual
field devices which represent the communication function
related information and into virtual control devices which
represent the module-specific information and functionality.

A CSP+ file consists of four sections. A FILE section
which describes management information of the CSP+ file
itself, a DEVICE section which describes information about
the module such as name, identification and specifications, a
BLOCK section which describes the virtual control devices
and a COMM _IF section which describes the virtual field
devices. For each module function a BLOCK section and for
each supported communication protocol a COMM _IF section
exists in the CSP+ file.

In this way different communication protocols, e.g. CC-
Link and CC-Link IE Field, can be integrated in the same
format.

7) 10DD

10-Link was developed by the IO-Link consortium and has
first been published in 2006 [1]. In 2010 it was integrated into
IEC 611319 as “Single-drop digital communication
interface for small sensors and actuators” (SDCI). IO-Link is
not a fieldbus, but a non-TCP/IP serial point-to-point
communication protocol designed to communicate with both
analogue and digital sensors and actuators on the last meters
in the field level (see Fig. 4).
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Fig. 4. Ethernet/IO-Link Device Topology

Every 10-Link device must be delivered with an 10-Link
Device Description File (IODD), a device description docu-
ment in XML format. The IODD complies to ISO 15745-1.
A dedicated DD format of IO-Link Masters is not defined by
the IO-Link consortium, instead they are usually covered
within the fieldbus DDs, which has often shown to be a
weakness of the I0-Link ecosystem in terms of horizontal
and lifecycle integration.

C. AutomationML

AutomationML is a neutral data format based on XML. It
has been initiated by Daimler in 2006, its architecture is
specified in the IEC 62714 part 1 [9]. Its lean and distributed
architecture interconnects existing established file formats
for different domains [10]. With CAEX (IEC62424, [11]) it
allows to store object models following the object oriented
paradigm, covering class libraries, interfaces, attributes,
links, and instances modelled in instance hierarchies.
Furthermore it has the functionality to reference external
formats. AutomationML covers the modeling of geometry via
the file format COLLADA and discrete logics via PLCopen
XML.

D. AutomationML communication modeling

A working group within the AutomationML community
has developed a generic and technology independent
proposal how to model communication networks with
AutomationML [12]. An application example for Ethernet/IP
was presented in [13]. Key elements of this modeling is a
strict separation of the physical network that models the
physical wiring of the network infrastructure, and the logical
network that models the logical interconnections in the
communication network. Consequently, the AutomationML
communication white paper comprises a set of role classes
for physical and logical network items and a set of technology
independent interface classes. Furthermore, it describes how
to apply these technology independent roles and interfaces in
order to model technology specific communication networks.
However, the embedding of DDLs is not covered.

III. REQUIREMENTS FOR MODELING FIELDBUS
TOPOLOGIES

A. General concept

The key question is: how can configurations and
topologies be modeled based on the limited classical DDs?
The most obvious approach is be to extend the classical DD
standards, but this requires long term standardization cycles
and would reduce acceptance in industry. The approach
presented in this paper intends to keep the existing standards
and allows immediate applicability by using AutomationML
in the way it has been designed for: AutomationML becomes
the glue.

The idea of the presented concept is to add an Automa-
tionML model on top of DD models. The classical Device
Descriptions deliver the type information of devices, while
AutomationML provides classes and also instances with
individual configurations, and the modelling of hierarchies
and links between object instances.



The following basic requirements must be fulfilled by the
AutomationML-based engineering solution approach for mo-
delling fieldbus configurations and topologies.

B. Requirements related to Device Descriptions

/1/ As in the existing fieldbus solutions, the AML-based
solution must provide one AML file per DD file for each
device type, called DD.AML. All DD information of one
device type are modelled in one System UnitClass within
one DD.AML file.

/2/ For a single device instance, the same DD.AML shall be
used, but with individual parameter values and identi-
fiable via a dedicated ID. Thus the user shall be able to
clearly assign one DD.AML file to one specific
individual device in his network.

/3/ The AML-based solution must be able to reference
within the DD.AML to an exisiting classical DD file. The
mapping of the parameters of that classical file to the
AML representation must be defined by the respective
fieldbus organisation that wants to support the AML
approach.

/4/ Tt must be possible to manage libraries of DD.AML
models in DD.AMLX containers [14].

/5/  Self-explainable naming conventions for DD.AML and
DD.AMLX files must be defined.

/6/  DD.AML files should only model needed data. When an
existing classical DD or an DD.AML library is referen-
ced, only the required instance parameter values shall be
modelled, all data that is not required or unchanged is not
explicitly modelled. This results in slim DD.AML files.

C. Requirements related to connections

/1/ The AML-based solution must provide the ability to
model connections.

/2/ The AML-based solution must support connection types
in a similar way as device types thus describing cable and
connectors as products. This can be achieved in separate
connection description files, called CD.AML or
containers thereof (CD.AMLX). For instances of
connections, the same CD.AML files can be used, but
with differing parameter values (i.e. cable length and
connection name) and individually identifiable via a
dedicated ID.

/3/ Thus the user shall be able to clearly assign individual
connections in his network to CD.AML files.

D. Requirements related to fieldbus topology descriptions

/1/ A topology graph basically consists of nodes (devices
with interfaces) and edges (connecting interfaces).

/2/ The AML-based solution models device types as CAEX
SystemUnitClass, device instances as CAEX Internal-
Elements and Interfaces as CAEX Externallnterfaces.

/3/ Edges should be modelled as CAEX InternalElements
with individual interfaces. The modelling of Edges as
individual objects allows modellling of e.g. physical cab-
les. Even logical connections could be objects. The inter-
faces of an Edge can be connected to Interfaces of the
devices via CAEX InternalLinks.

/4/ The AML-based solution must be able to model arbitrary
topologies of automation devices in one (TD.AML) or

more filess (TD.AMLX). A clear distinction between
e.g. hierarchical, logical, and physical topology must be
modelled in the same AML topology file.

/5/ Tt must be possible to model different physical topologies
in the same AML topology file(s), such as power wiring,
communication wiring, or even installations of different
technologies, such as pneumatic pipes between devices.

/6/  An overall topology model file must be able to make use
of multiple underlying topology files. A topology model
file basically consists of the following sections: List of
underlying topology files (if any), Hierarchical list of
nodes with their associated interfaces (can point to
underlying DD.AML files), List of connections between
nodes in this and the underlying files.

IV. PROPOSAL FOR MODELING IO-LINK TOPOLOGIES

A. General concept

This chapter illustrates the previously described basic
concept ideas of modelling fieldbus topologies exemplarily
by means of IO-Link. IODDs deliver the type information of
10 Link devices, while AutomationML provides classes and
also instances with individual configurations, and the
modelling of links between object instances. For 10-Link
masters, an AML-based device description schema has to be
developed.

In the first step, following the recommendations of the
AutomationML communication working group, the authors
developed technology specific AutomationML classes. In the
second step, IO Link master and device type libraries are
modelled within AutomationML class libaries, referencing
the original DDs. From here, the device types can be in-
stantiated and parameterized individually enabling the neu-
tral storage of IO Link master and device configurations.
Third, the full IO Link example topology is modelled.

B. Example

Fig. 5 illustrates an example 10-Link topology comprising
two IO-Link masters and three IO-Link devices connected via
10-Link cables.

10 Link Master BNI EIP-502-105-R015

10 Link Master BNI EIP-502-105-2015

10Link 1OLink

10 Link Device BNI I0L-750-V08-K007

10 Link Device BSPO086V1.1

10 Link Device BES M12MI-PSIC20C-504G

Fig. 5. Example IO-Link topology

Fig. 6 illustrates the IO-Link topology in more detail with
physical and logical connections. In addition, both 10-Link
masters are connected with each other via an Ethernet



connection. Furthermore, both IO-Link masters are
connected via a power supply daisy-chain, not shown in the
figure. Hence, this example combines three different physical
networks.

Fig. 6. Schematics of the logical and physical networks of the IO-Link
topology example

C. Step 1: Developing technology specific role classes

The first step for modelling the topology example is the
development of specific role class libraries for each used
technology 10-Link, Ethernet and PowerPort, as shown in
Fig. 7.

o ExamplelOLinkRoleClassLib,

o ExampleEthernetRoleClassLib and

e ExamplePowerPortRoleClassLib

These classes only illustrate the method, all role classes
currently have no further attributes, those may be added later.

4 9 ExamplelOLinkRoleClassLib
I0OLinkPhysicalDevice {Class: PhysicalDevice }
IOLinkDeviceDescriptionFile {Class: ExternalData }
I0LinkPhysicalMaster {Class: PhysicalDevice }
I0LinkPhysicalPortList {Class: PhysicalEndpointlist }
I0OLinkPhysicalConnection {Class: PhysicalConnection }
IOLinkPhysicalNetwork {Class: PhysicalNetwork }
IOLinkLogicalDevice {Class: LogicalDevice }
I0LinkLogicalMaster {Class: LogicalDevice }
IOLinkLogicalPortList {Class: LogicalEndpointlist }
IOLinkLogicalConnection {Class: LogicalConnection }
IOLinkLogicalNetwork {Class: LogicalNetwork }

4 [ ExampleEthernetRoleClassLib
PhysicalEthernetPortList {Class: PhysicalEndpointlist }
PhysicalEthernetConnection {Class: PhysicalConnection }
PhysicalEthernetNetwork {Class: PhysicalNetwork }
LogicalEthernetDevice {Class: LogicalDevice }
LogicalEthernetPortList {Class: LogicalEndpointlist }
LogicalEthernetConnection {Class: LogicalConnection }
LogicalEthernetNetwork {Class: LogicalNetwork }

4 [ ExamplePowerPortRoleClassLib
PhysicalPowerPortNetwork {Class: PhysicalNetwork }
PhysicalPowerPortConnection {Class: PhysicalConnection }
PhysicalPowerPortList {Class: PhysicalEndpointlist }

Fig. 7. Derivation of the IO-Link specific role class library out of the
extended role class library

These libraries comprise 21 role classes and form the basis
for the AutomationML modelling of IO-Link topologies. All
role classes are derived from the AutomationML communi-
cation white paper [12], except the role IOLinkDevice-
DescriptionFile which is derived from the role class
ExternalData [15]. This role is of importance for the
presented concept: it activates the ability of AutomationML
to model and to reference documents in the AutomationML
object model.

Based on the recommendations of the AutomationML
communication working group [12], the authors derived
technology dependent interface classes for the IO-Link-,
Ethernet- and PowerPort-wiring. These classes model
literally the interfaces: the plugs and sockets and a related
logical end point of each of the mentioned technologies, see
Fig. 8.

4 [ ExamplelOLinkCommunicationinterfaceClassLib
+0 |OLinkPlug {Class: PhysicalEndPoint }
+0 |OLinkSocket {Class: PhysicalEndPoint }
+0 |OLinkLogicalEndPoint {Class: LogicalEndPoint }

4 [ ExampleEthernetCommunicationinterfaceClassLib
+0 EthernetPlug {Class: PhysicalEndPoint }
+0 EthernetSocket {Class: PhysicalEndPoint }
+0 LogicalEthernetEndPoint {Class: LogicalEndPoint }

4 [ ExamplePowerPortInterfaceClassLib
+0 PowerPortPlug {Class: PhysicalEndPoint }
+0 PowerPortSocket {Class: PhysicalEndPoint }
+0 LogicalPowerPortEndPoint {Class: LogicalEndPoint }

Fig. 8. Derivation of tecchnology specific interface classes

Finally, we need models for the physical wires of all three
required technologies. Those are modelled in a user defined
CAEX system unit class library containing the classes
IOLinkWire, EthernetWire and PowerSupplyWire. Fig. 9
shows the classes with each individual end points: the 10-
Link wires have a plug and a socket, while Ethernet wires
have two plugs. PowerPort has multiple configurations, the
present example models a wire with two plugs.

4 [ WireClassLib
4 [0] |OLinkWire
4 =%, 10LinkWire-Interfaces
+0 |OLinkPhysicalPlug {Class: |OLinkPlug }
+0 |OLinkPhysicalSocket {Class: 10LinkSocket }
4[] EthernetWire
4 Y EthernetWire-Interfaces
+0 EthernetPlug1{Class: EthernetPlug}
+0 EthernetPlug2 {Class: EthernetPlug}
4 [su] PowerSupplyWire
b [u] PowerSupply5PinPlugPlugWire

Fig. 9. SystemUnit class library for the cables of I0-Link, Ethernet and
power supply



All mentioned classes form the basis for the modelling of
I0-Link device configuration as well as IO-Link topologies.
They can be re-used across multiple IO-Link use cases: for
the modelling of the configuration of a single and individual
I0-Link device configuration up to complex networks of
multiple master and device topologies including the
PowerPort daisy chain and the Ethernet network connecting
the I0-Link masters.

D. Step 2: Modelling of 10-Link devices and masters in
AutomationML

Utilizing these new roles, the I0-Link device and master
types must be modelled each as AutomationML class. In
order to model the example, the authors developed a vendor
specific system unit class library with all required example
I0-Link devices that directly reference the related IODD
files. Fig. 10 shows this by means of the I0-Link device
BSP0086. This class contains an internal element /OLink-
DescriptionDocument that references its related IODD file
with an attached external interface named DocumentLink.
The interface models the binding of the AML device class to
the IODD file. The CAEX attribute refURI of this interface
references the physical IODD file. The CAEX attribute
MIMEType of this interface is set to “application/xml” in
order to indicate that this IODD file is an XML file.

Furthermore, the class models the logical node of the
device, and one physical IO-Link plug.

10-Link device cl
4 [ BSP0086 (V1.1) {Class: BSP0086 }

4 [i] IOLinkDescriptionDocument {Role: I0LinkDeviceDescriptionFile}
Reference to the

4 I0LinkDescriptionDocument-Interfaces -
10DD File

+0 DocumentLink {Class: ExternalDataReference }
4 [ig] LogicallOLinkNode {Role: I0LinkLogicalDevice}

é] . 4 [iE] EndPoints {Role: IOLinkLogicalPortList} W
4 =2 EndPoints-Interfaces one logical port
+0 LogicalPort1{Class: I0LinkLogicalEndPoint }
4 [1E] PortList {Role: I0LinkPhysicalPortList}
4 PortList-Interfaces one physical port
+0 EndPoint {Class: I0LinkPlug }

Fig. 10. IO-Link device model referencing an external IODD file

Fig. 11 and Fig. 12 show the system unit classes for the
devices BES MI12MI-PSIC20C-S04G and BNI IOL-750-
V08-K007. The architecture of the models are identical to the
previous IO-Link device.

4 [0 BES M12MI-PSIC20C-S04G {Class: BES } 10-Link device class

4 [iE] IOLinkDescriptionDocument {Role: I0LinkDeviceDescriptionFile}
Reference to the
10DD File

Logical port list containing ]

4 % |0LinkDescriptionDocument-Interfaces
» +0 DocumentLink {Class: ExternalDataReference }
/" 4 [i]]LogicallOLinkNode {Role: I0LinkLogicalDevice}
4 [1E]EndPoints {Role: I0LinkLogicalPortList}
\( one logical port

\’"\' ‘
+0 LogicalPort1{Class: |0OLinkLogicalEndPoint }
4 [ig] PortList {Role: IOLinkPhysicalPortList} Physical port list with
one physical port

4 =9 PortList-Interfaces
Fig. 11. I0-Link device model referencing an external IODD file

EndPoints-Interfaces

+0 EndPoint {Class: 10LinkPlug }

10-Link device class
4 [ BNI_IOL-750-V08-K007-20150130-10DD1.1 {Class: BNI - Valve plug }
4 [iE] IOLinkDescriptionDocument {Role: I0LinkDeviceDescriptionFile}

4 =% |0LinkDescriptionDocument-Interfaces

+0 DocumentLink {Class: ExternalDataReference } 10DD File

4 ELogicaIIOLinkNode {Role: [OLinkLogicalDevice}

4 [iE]EndPoints {Role: I0LinkLogicalPortList} Logical port list containing
P one logical port

EndPoints-Interfaces

+0 LogicalPort1{Class: |0LinkLogicalEndPoint }
4 [1g] PortList {Role: I0LinkPhysicalPortList}
4 =9 PortList-Interfaces

+0 EndPoint {Class: |0LinkPlug }

Physical port list with
one physical port

Fig. 12. I0-Link device model referencing an external IODD file

Parameters of the device types from the IODD files are re-
modeled in the AutomationML classes in order to mirror
them in the AutomationML space. This means, that the [ODD
parameters are now available in the AutomationML class
model and can be utilized on instance level.

Fig. 13 and Fig. 14 illustrate the AutomatioML classes for
two 10-Link master examples: BNI-EIP-502-105-R015 and
BNI-EIP-502-T015-105-Z015. The mechanism to reference
the related device description is identical. The masters have,
in difference to the IO-Link devices, multiple ports, and each
physical port has a logical counterpart. Furthermore, each
master has two Ethernet ports and two power ports. Further
ports could be added, the focus in this example was not in the
completeness, but in the general modelling principles.

Not part of this research but a useful next step is to auto-
matically generate those libraries by reading and converting
libraries of IODD and Master-DD-files (IOLM) into Auto-
mationML system unit classes. A unified [IOLM-DD standard
does yet not exist and is recommended to be created entirely
out of AutomationML in the continuation of this work.

4 [ BNI-EIP-502-105-R015-20151110-I0LM1.3
4 [ig] I0LinkMasterDescriptionDocument {Role: I0LinkDeviceDescriptionFile}
4 9 10LinkMasterDescriptionDocument-Interfaces
+0 DocumentLink {Class: ExternalDataReference }
4 [ig] LogicallOLinkNode {Role: IOLinkLogicalDevice}
4 [i€] EndPoints {Role: I0LinkLogicalPortList}

4 =9 EndPoints-Interfaces

4

4

4

+0 LogicalPort1 {Class:
+0 LogicalPort2 {Class:
+0 LogicalPort3 {Class:
+0 LogicalPort4 {Class:
+0 LogicalPort5 {Class:
+0 LogicalPort6 {Class:
+0 LogicalPort7 {Class:
+0 LogicalPort8 {Class:
4 [1g]I0LinkPorts {Role: I0LinkPhysicalPortList}
I0LinkPorts-Interfaces

I0LinkLogicalEndPoint }
I0LinkLogicalEndPoint }
I0LinkLogicalEndPoint }
I0LinkLogicalEndPoint }
IOLinkLogicalEndPoint }
I0LinkLogicalEndPoint }
I0LinkLogicalEndPoint }
IOLinkLogicalEndPoint }

+0 |OLinkPort1 {Class: 10LinkSocket }
+0 |0LinkPort2 {Class: 10LinkSocket }
+0 |OLinkPort3 {Class: 10LinkSocket }
+0 |0LinkPort4 {Class: 10LinkSocket }
+0 |0LinkPort5 {Class: 10LinkSocket }
+0 |0LinkPort6 {Class: 10LinkSocket }
+0 |0OLinkPort7 {Class: 10LinkSocket }
+0 |0LinkPort8 {Class: 10LinkSocket }
4 [iE] EthernetPorts {Role: PhysicalEthernetPortList}

EthernetPorts-Interfaces

+0 EthernetPort1 {Class: EthernetSocket }
+0 EthernetPort2 {Class: EthernetSocket }
4 [iE] PowerPorts

PowerPorts-Interfaces

+0 Powerln {Class: PowerPortPlug }

+0 PowerOut {Class: PowerPortSocket }
I0LinkPhysicalMaster



Fig. 13.

10-Link Master library referencing an external IOLM file

4 [0 BNI-EIP-502-105-Z015-20151110-I0LM1.3

4 [i] IOLinkMasterDescriptionDocument {Role: 10LinkDeviceDescriptionFile}

4 =9 |0LinkMasterDescriptionDocument-Interfaces
+0 DocumentLink {Class: ExternalDataReference }
4 [iE] LogicallOLinkNode {Role: IOLinkLogicalMaster}
4 [iE]EndPoints {Role: I0LinkLogicalPortList}
4 2 EndPoints-Interfaces
+0 LogicalPort1 {Class: |OLinkLogicalEndPoint }
+0 LogicalPort2 {Class: |OLinkLogicalEndPoint }
+0 LogicalPort3 {Class: |OLinkLogicalEndPoint }
+0 LogicalPort4 {Class: |OLinkLogicalEndPoint }
+0 LogicalPort5 {Class: |OLinkLogicalEndPoint }
+0 LogicalPort6 {Class: |OLinkLogicalEndPoint }
+0 LogicalPort7 {Class: |OLinkLogicalEndPoint }
+0 LogicalPort8 {Class: I0LinkLogicalEndPoint }
4 [ig] IOLinkPorts {Role: I0LinkPhysicalPortList}
4 =9 |0LinkPorts-Interfaces
+0 |0LinkPort1{Class: I0LinkSocket }
+0 |OLinkPort2 {Class: 10LinkSocket }
+0 |OLinkPort3 {Class: 10LinkSocket }
+0 |OLinkPort4 {Class: 10LinkSocket }
+0 |OLinkPort5 {Class: 10LinkSocket }
+0 |OLinkPort6 {Class: 10LinkSocket }
+0 |OLinkPort7 {Class: 10LinkSocket }
+0 |OLinkPort8 {Class: 10LinkSocket }
4 [iE] EthernetPorts {Role: PhysicalEthernetPortList)

4 % EthernetPorts-Interfaces
+0 EthernetPort1{Class: EthernetSocket }
+0 EthernetPort2 {Class: EthernetSocket }
4 [ig] PowerPorts
4 PowerPorts-Interfaces
+0 Powerln {Class: PowerPortPlug }
+0 PowerOut {Class: PowerPortSocket }
% 10LinkPhysicalMaster

Fig. 14. Figure 1 - SystemUnitClass modelling an IO Link Master BNI EIP-
502-105-Z015

E. Step 3: modelling the 10-Link topology

Since the object modelling in AutomationML bases on
CAEX, all classes can be instantiated in a CAEX Instance-
Hierarchy. The instance hierarchy represents a concrete
project or configuration. Here, according to the modelling
recommendations [12], in the first level below the root object,
the authors model the logical network, the physical 10-Link

network, the physical Ethernet network, the physical Power-

4 [iE] LogicalNetwork {Role: IOLinkLogicalNetwork}

I [[E]Wire1 {Class: 10LinkWire}
4 [E‘Ethernetwiring {Role: PhysicalEthernetNetwork}

Ethernet
1 [[E] PowerPortPlugPlugWire {Class: PowerSupplyWire:
- [E]I0LinkPorts {Rele: IOLinkPhysicalPortList}
1> [1€] PortList {Role: 10LinkPhysicalPortList}

Port network, and the master instances.
4 B Project01
1 [i] LogicallOLinkConnection {Role: I0LinkLogicalConnection}
4[] IOLinkWiri : 0L ical k
[iE]10LinkWiring {Role: 10LinkPhysic: } Pt NeEwoT
10Link
» [E]Wire2 {Class: 10LinkWire}
i [[E] Wire3 {Class: 10LinkWire}
I [[E] EthernetWire1 {Class: EthernetWire}
4 [E]PowerPortWiring {Role: PhysicalPowerPortNetwork)
) Powerport
4 [[EJRO15 {Class: [BNI-EIP-502-105-R015-20151110-I0LM1.3] Role: IOLinkPhysicalMaster}
i [€] LogicallOLinkNode {Role: I0LinkLogicalMaster} 10Link Master
RO15
1 [[E] EthernetPorts {Role: LogicalEthernetPortList}
1> [1€] PowerPorts
4 [1IE]BSP0086V1.1 {Class: [BSP0086 (V1.1)] Role: I10LinkPhysicalDevice}
1 [[€] LogicallOLinkNode {Role: IOLinkLogicalDevice} TRV
2015
4 [[]Z15 {Class: [BNI-EIP-502-105-2015-20151110-I0LM1.3] Role: 10LinkPhysicalMaster}
1 [[E] EthernetPorts {Role: PhysicalEthernetPortList}

I [€] LogicallOLinkNode {Role: IOLinkLogicalMaster}
10Link Devices
1> [1€] PowerPorts

1 [[E]I0LinkPorts {Role: 10LinkPhysicalPortList}
1 [[E]BES M12MI-PSIC20C-S04G {Class: BES M12MI-PSIC20C-S04G Role: |0LinkPhysicalDevice}

1 [[E] BNI_IOL-750-V08-K007 {Class: BNI_IOL-750-V08-K007-20150130-I0DD1.1 Role: I0LinkPhysicalDevice}

Fig. 15. 10-Link device model referencing an external IODD file

The master object contains nested objects which are pre-

defined in the related classes. Additionally, the belonging 10-
Link devices are modeled.

Fig. 16 illustrates the interlinking between ports
connecting the end points of physical or logical wires to the
related ports.

Fig. 16. 10-Link device model referencing an external IODD file

The resulting AutomationML file now contains all
required standard AutomationML libraries, all IO-Link
device and master classes and the individual configuration.

V. PROPOSAL FOR MODELLING CC-LINK IE FIELD
TOPOLOGIES

A. General Concept

This chapter illustrates the previously described basic
concept ideas of modelling fieldbus topologies exemplarily
by means of the Ethernet based CC-Link IE Field network.
CSP+ files deliver the type information of CC-Link IE Field
devices, while AutomationML provides classes to assign
commonly understandable semantics and also instances
which contain the individual configuration information.
Additionally AutomationML enables the modelling of links
between object instances. In case of CC-Link IE Field, both
Master and Slave devices are described by CSP+ device
description files.

In the first step, following the recommendations of the
AutomationML communication working group and in
alignment with the previous chapter, the authors developed
technology specific AutomationML Role and Interface
Classes. In the second step, CC-Link IE Field device type
libraries are modelled within AutomationML System Unit
Class Libaries, referencing the original DDs and adding
additional engineering information (e.g. physcial/logical
ports) to model the topology in AutomationML. From here,
the device types can be instantiated and parameterized indivi-
dually enabling the neutral storage of CC-Link IE Field
device configurations. Third, the full CC-Link IE Field
network topology is modelled exemplary.



B. Example

Fig. 17 illustrates an example CC-Link IE Field topology
comprising of one CC-Link IE Field master and three CC-
Link IE Field slave devices connected via compatible
Ethernet cables. The following modules are used:
RJ71GF11-T2 (CC-Link IE Field Master)
MR-J4-10GF-RJ (Servo Amplifier)
NZ2GF2B1-16D (16 points DC Input module)

BNI CIE-104-105-Z015 (CC-Link IE Field IO-Link
gateway)

The CC-Link IE Field IO-Link gateway module can be seen
as an IO-Link master. Hence, in later steps, this example
could be extended with the modelling of an IO-Link
configuration below this master module.

CC-Link IE Field Master Station
RI71GF11-T2

CC-Link IE Field Remote Device Station
NZ2GFB1-16D

ce-Li

nk IE Fiel
MR-14-10GF-R) CC-Link IEField

Fig. 17. Example CC-Link IE Field toplogy

Fig. 18 illustrates the CC-Link IE Field topology in more
detail with physical and logical connections.

CC-Link IE Field
Logical

Logical
CCLink E Field
CCCCCCC

Fig. 18. Schematics of the logical and physical networks of the CC-Link IE
Field topology example

C. Step 1: Developing technology specific role classes

The first step for modelling the example is the
development of specific role class libraries for the
additionally used technology CC-Link IE Field as shown in
Fig. 19. The role class libraries for IO-Link, Ethernet and
PowerPort, as shown in Fig. 8 will be reused in this example.
These classes only illustrate the method, all role classes
currently have no further attributes, which may be added
later.

cC-Link IEField Intelligent Device Station
BNI CIE-104-1052015

4 [ ExampleCCLinklEFieldRoleClassLib
CCLinkIEFieldDeviceDescriptionFile{Class: ExternalData }
[rc] CCLinkIEFieldMaster{Class: PhysicalDevice }
CCLinkIEFieldSIave{Class: PhysicalDevice }
[rc] CCLinkIEFieldLogicalSlave{Class: LogicalDevice }
[fc] CCLinkIEFieldPhysicalPortList {Class: PhysicalEndpointlist }
[fc] CCLinkIEFieldLogicalMaster{Class: LogicalDevice }
[’c] CCLinkIEFieldLogicalPortList {Class: LogicalEndpointlist }
[fc] CCLinkIEFieldLogicalNetwork {Class: LogicalNetwork }

Fig. 19. CC-Link IE Field technology specific Role Class Library

This library comprises 8 role classes and forms the basis

for the AutomationML modelling of CC-Link IE Field
topologies. All role classes are derived from the
AutomationML communication white paper [12], except the
role CCLinkIEFieldDeviceDescriptionFile which is derived
from the role class ExternalData [15]. This role is of
importance for the presented concept: it activates the ability
of AutomationML to model and to reference documents in
the AutomationML object model.
Based on the recommendations of the AutomationML com-
munication working group [12], the authors derived a techno-
logy dependent interface class for the CC-Link IE Field
logical connections. For the physical connections the
previously defined EthernetWiring Interface Class Library is
reused.

4 [ ExampleCCLinkIEFieldInterfaceClassLib
+0 CCLinklEFieldLogicalEndPoint{Class: LogicalEndPoint }

Fig. 20. CC-Link IE Field technology specific Interface Class Library

Classes for modeling the actual wiring as shown in Fig. 17 of
the example above are reused.

All mentioned classes form the basis for the modeling of
CC-Link IE Field device configurations as well as network
topologies in a vendor neutral way so that the configurations
and topologies can be seamlessly exchanged between various
tools in the engineering process.

D. Step 2: Modelling of CC-Link IE Field devices and
masters in AutomationML

Utilizing these new roles, the CC-Link IE Field device
types can be modelled each as an AutomationML System
Unit Class. The authors developed a sample System Unit
Class Library for each device shown in Fig. 21, Fig. 22, Fig.
23 and Fig. 24. that directly reference their related CSP+ files.
Therefore each System Unit Class contains an internal
element CCLinkIEFieldDescriptionFile that references its
related CSP+ file with an attached external interface named
DocumentLink. The CAEX attribute refURI of this interface
references the physical CSP+ file. The CAEX attribute
MIMEType of this interface is set to “application/xml” in
order to indicate that this CSP+ file is an XML file.
Furthermore, each class models the physical and logical ports
of the device.



< ERITIGF11-T2 Role Class and Interface Class Libraries, all CC-Link IE Field

+ ECCLinkIEFieldMasterDevice DescriptionFile (Role: CCLinkIEFieldDeviceDescriptionfile)  device types as System Unit Classes and the individual
4 CCLmklEFre[dMasterDevnceDescnptwonFlle-Interfacw conﬁguration and tOpOlOgy in the Instance Hierarchy‘
+0 DocumentLink {Class: ExternalDataReference } CSP+ File
4[] LogicalCCLinklEFieldNode {Role: CCLinkIEFieldLogicalMaster} “ lﬂﬂ

[@CCLinkIEFieldNetwork {Role: CCLi ogicalNetwork}

4 [E)EndPoints {Role: CCLinklEFieldLogicalPortList . T T
C { IR o i5t) /" Togical port list containing 4 [@CCLinklEWiring {Role: CCLinkIEFieldPhysicalNetwork) — PTG AT
4 =2 EndPoints-Interfaces one logical port CC-LinkIE Field

[ MasterToSlave1 {Class: EthernetWire}
+o LogicalPort1{Class: CCLinklEFieldLogicalEndPoint } [@SlavelToSlave2 {Class: EtheretWire}

4 [ PortList {Role: CCLinkIEFieldPhysicalPortList} - — [@Slave2ToSlave3 {Class: EthernetWire} CC-Link IE Field Master Station
Physical port list with RIZIGFILT2
4 =9 PortList-Interfaces e e e [EHRI71GF11-T2 {Class: RI71GF11-T2Role: CCLinkIEFieldMaster}
+o P1{Class: EthernetPlug } [DMR-J4-GF {Class: MR-J4-10GF-RJRole: CCLinkiEFieldSlave}
w0 P2{Class: EthernetPlug } ENZZGFZBLW {Class: NZ2GF2B1-16DRole: CCLinkiEFieldSlave} T
. . - . N BNI CIE-104-105-Z015 {Class: BNI CIE-104-105-Z015Role: CCLinkiEFieldSlave,IOLinkPhysicalMaste
[#J ExampleCCLinkIEFieldRoleClassLib/CCLinkIEFieldMaster (Class ole inkiEFieldSlave OLinkPhysicalMaster}

Fig. 21. CC-Link IE Field device model referencing an external CSP+ file

« EMR-J4-10GF-RJ CC-Link IE Field device class

4 [)CC-LinkIEFieldSlaveDeviceDescriptionFile {Role: CCLinkIEFieldDeviceDescriptionFile}
4 =2 CC-LinklEFieldSlaveDeviceDescriptionFile-Interfaces Reference to the VI DISCUSSION AND USE CASES
0 DocumentLink{Class: ExternalD. ce } CSP+ File :
| « [ELogicalCCLinkiEFieldNode {Role: CCLinkIEFieldLogicalSlave} . The proposed apPrOaC.h Comblnes the beneﬁts Of the Clas_
Il « @endpoints (Role: CCLinkiEFieldLogicalPortlist) sical DD concept (in this example case IODD and CSP+)
s wendRointsnerfaces B P L related to type information and AutomationML capability to
+o LogicalPort1{Class: CCLinklEFieldLogicalEndPoint }

+ @PortList (Role: CCLinkIEFieldPhysicalPortList) model one or multiple instances and their relations. This

Fig. 25. CC-Link IE Field topology

Physical port list with .
4 =@ PortList-Interfaces keeps the well-defined and established IODD and CSP+
0 CH1A{Class: EthernetSocket } .
o CH1B Class: EtheretSocket} standards and tool ecosystems unchanged and provides
@PowerPort {Role: PhysicalPowerPortList) investment protection for related stakeholders and tool

B E: leCCLinklIEFieldRoleClassLib/CCLinkIEFieldS| . .
EBemPIECCLKERldRoleClassLb/CCLnERelaSiave vendors. But it opens the door to overcome the unsatisfactory

usability across tool chains for other lifecycle phases. Well-

PP engineered configurations of devices can now be stored as

4 [@CC-LinkIEFieldSlaveDeviceDescriptionFile {Role: CCLinkIEFieldDeviceDescriptionFile} AutomationML files and even further enriched with addi-

Fig. 22. CC-Link IE Field device model referencing an external CSP+ file

‘eCtnEResSmenecebescpontle Ineraces [ Referencetothe | tional information, such as CAD and other model data. The
o DocumentLink{Class: ExternalDataReference } CSP+ File . X X R
+ MLogicalCCLinkEFieldNode (Role: CCLinkiEFieldLogicalSlave} following basic use cases can be satisfied with the new
4 [EEndPoints {Role: CCLinkiEFieldLogicalPortlist} ' Logical port list containing h
. approach:
4 =2 EndPoints-Interfaces one logical port
2 LogicalPort1 {Class: CCLinkIEFieldLogicalEndPoint } /1/ Export and archiving of device conﬁgurations or
4 [ig)PortList {Role: CCLinkIEFieldPhysicalPortList} T - = . . . .
PRSI network topologies such as IO-Link or CC-Link IE Field
"oP1(Class: EthemetSocket } in a neutral format, out of the proprietary engineering
0 P2 {Class: EthernetSocket } . .
@PowerPorts {Role: PhysicalPowerortlist) tool. This makes the data independent of the tool and
[ ExampleCCLinkIEFieldRoleClassLib/CCLinkIEFieldSlave leads tO more independence on tOOlS. It prOVideS
Fig. 23. CC-Link IE Field device model referencing an external CSP+ file investment protection for the data and promises future
readability of data that are usually encapsulated in
4 BIBNI CIE-104-105-2015 . . .
4 [JCC-LinklEFieldSlaveDeviceDescriptionFile {Role: CCLinklEFieldDeviceDescriptionFile} proprletary englneenng tOOIS'
‘ (f;::ul::lfn‘xizcesiisjf:mH‘er‘mergj e /2/ Transfer of those configurations between engineering
+ @I0LinkMasterDescriptionFile {Role: IOLinkDev\'(eDes(riptionF;I:)f - tools. This is useful when suppliers perform the conﬁgu—
4 =% |0OLinkMasterDescriptionFile-Interfaces eference to the . . .
.ﬁ,;, 9 o Documentlink(Class: ExternalD c;) 10DD File ration with their own best-of-class tool and need to trans-
= [E]LogicallOLinkNode {Role: I0LinkLogicalMaster} _ _ _ f th lt . t th t . . t 1 f
@IOLinkPortList (Role: IOLinkPhysicalPortList) ﬁ 10-Link Logch?I{Physlcalpoﬁ er € results into € customer englneerlng 00 S, ori
. 1! . . . .
« [LogicalCCLinkiFieldNode (Role: CCLinklEFieldLogicalSiave} = one engineering tool is going to be replaced by another

4 [ EndPoints {Role: CCLinkIEFieldLogicalPortList} Logical port list containing
oo engineering tool.
+o LogicalPort1{Class: CCLinklEFieldLogicalEndPoint }

+ EICCLinEFieldPortist (Rele: CCLinkiEFieldPhysicalPortist) /3/ Distribution of device configurations on a server or cloud
HHCCE edren s meraces two physical ports for later re-use in other projects, to share them with cus-

9 LK1{Class: EthernetSocket}

o 2 e teresocer) tomers, and to enable new services and business options
werPorts {Role: PhysicalPowerPortList . . . .
EExampleCCLinKEeldRoleClassLib/CCLINKEFelds! in a future engineering market place. For instance, when

B ExamplelOLinkRoleClassLib/IOLinkPhysicalMaster

. . . ) ) ! devices are exchanged by newer generations of devices,
Fig. 24. CC-Link IE Field device model referencing an external CSP+ file

a future cloud-based configuration service may auto-
matically find suited parameter sets to automatically

E. Step 3: Modelling the CC-Link IE Field topology configure the new devices and may actively ask for open

Since the object modelling in AutomationML bases on questions.
CAEX, all classes can be instantiated in a CAEX Instance-  /4/ Configuration of Digital Twins (e.g. an OPC-UA server)
Hierarchy. The instance hierarchy represents a concrete by the upload of device configurations of a future IO-Link
project or configuration. Here, according to the modelling device or master into the digital twin. This typical
recommendations [12], in the first level below the root object, Industry 4.0 use case would enable data access to up-
the authors model the logical network, the physical CC-Link coming software services like consistency checks, main-

IE Field network as well as the device instances. tenance services or and data mining.

The resulting AutomationML file (see Fig. 25) now contains  There are more possibilities, the mentioned use cases are only
all required standard and technology specific AutomationML a first initial collection.
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The proposed approach overcomes the issue that DD files
are neither able to store individual device configurations but
type information only and are not easily extendable, nor they
are suited to model fieldbus topologies in a vendor indepen-
dent way. A generic approach with AutomationML has been
proposed, which allows to include classic DDs into an Auto-
mationML wrapper that can contain the glue and all further
missing specification items, such as mechanical, electrical
and configuration information or even fully replace the
classic DD.

The generic problem has been exemplarily investigated by
means of the IO Link and CC-Link IE Field standards, but the
proposed solution can be applied to all other fieldbus
standards. The ability of AutomationML to remove
unchanged data in comparison to the class definition allows
to easily shrink the XML code to the essence of modified
data. This keeps the AutomationML DD files short and
readable and increases the industrial acceptance rate.

The next step in this investigation will be the modelling of
complex hierarchical topologies across multiple topology
files. This will be developed in future according to the Auto-
mationML communication white paper.

The AutomationML Application Recommendation AR
APC [19] describes the exchange of Hardware
Configurations, [O-Labels and Network Configurations
between ECAD and PLC engneering tools. The described
approach will be aligned with the AR APC [19] document in
the future as well.

A further recommendation is to automatically generate the
AutomationML system unit classes by scanning the DD files
and converting them into AutomationML classes. Finally, the
authors aim for bringing this research results into the [O-Link
community and other fieldbus organizations in order to
develop a method for the establishment of AutomationML-
based device description files.

SUMMARY AND OUTLOOK
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