AutomationML 1n a continuous products life cycle:
a technical implementation of RAMI 4.0

Markus Kiesel
Faculty of engineering
Albstadt-Sigmaringen University
Albstadt, Germany
kiesel @hs-albsig.de

Abstract—The global market for manufacturing companies
is highly competitive, especially the differences between low-
wage and high-wage countries lead to various market strategies.
The focus of companies in high-wage countries is often on the
preservation of a technical advantage, or prime quality products
[1]. The technical advantage often come from the core areas of
the manufacturers, such as machining technologies, but currently
new technologies are increasingly emerging from the information
technology sector. In Germany, this trend, which has been going
on for several years now, is summarized under the keyword
“Industrie 4.0”. By setting the focus on such technologies, there
is a high chance of increasing key factors e.g. productivity or
flexibility [2]. To maintain an interoperability between the, by
information technology enhanced, systems there are currently
multiple concepts such as the Reference Architecture Model
Industry 4.0 (RAMI 4.0) [3] or the Industrial Internet Reference
Architecture (IIRA) [4]. While IIRA focuses on interdisciplinary
interoperability, the German RAMI 4.0 is particularly suitable
for production-intensive industries. The RAMI 4.0 concept re-
quires the introduction of an Asset Administration Shell for
each material and immaterial object (asset), which provides
several functionalities such as communication or identification.
The Asset Administration Shell is connected with the asset
throughout the whole product life cycle. Thus it needs to be
able to save the heterogeneous data which is generated in
each step of the product life cycle. Therefore an approach is
necessary which is able to provide such a flexibility within the
data structure and also provide the functionality to communicate
range of RAMI 4.0. This contribution presents the approach of an
AutomationML-based Asset Administration Shell, which is able
to handle the heterogeneous data due to the AutomationML basis,
provides an RAMI 4.0 compatible communication functionality
and is extensible for further features. The implementation of the
framework is platform-independent, which enables integration
in classic PLC systems (e.g. Beckhoff) as well as several IOT
Platforms (e.g. Raspberry PI).

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

In most common development processes, the individual
departments are separated according to their specific focus,
which leads to various intersections with other departments,
especially regarding information and data. Since the respective
department communicates predominantly among itself as well
as with other departments of similar fields, the data formats are
also adapted to this purpose. Due to increasing digitalization,
however, the boundaries between the departments are becom-
ing increasingly blurred. In these area of conflict it is difficult

Nicolai Beisheim
Faculty of engineering
Albstadt-Sigmaringen University
Albstadt, Germany
beisheim @hs-albsig.de

to maintain a persistent and complete data model throughout
the complete product lifecycle, as the generated data is highly
heterogeneous. For this reason the use of a universal data for-
mat which can contain the heterogeneous data of the individual
domains is therefore increasingly necessary in the future.
One example for such a format is AutomationML. However,
digitization does not only affect the departments of a company
or the cooperation between them. The machines themselves
are also increasingly changed by digitization. One example
is the distribution of intelligence to individual assemblies in
order to achieve the most modular structure possible. Here,
too, standards are an important factor, since the integration
of external modules can otherwise involve a great deal of
effort. Several approaches are currently available to counteract
this impending problem as early as possible. One promising
approach is the reference architecture model Industry 4.0,
which, like AutomationML, enables a very flexible structure.

II. RELEVANT WORK

For a better understanding of the following explanations,
some basic information is discussed in the following section.

A. Reference Architecture Model Industry 4.0

In order to give Industry 4.0 a tangible structure and
to ensure the interoperability of the systems, the German
Electrical and Electronic Manufacturers’ Association (ZVEI)
developed the reference architecture model Industrie 4.0 in
cooperation with various industrial companies.

1) Layer model: The core of the reference model is a
three-axis layer model which is depicted in figure 1. It
provides the possibility to represent any state of an arbitrary
technical asset within the product life cycle.

2) CP-Classification: The CP Classification is intended
to enable a simple classification of technical objects in the
grid of the reference architecture model Industry 4.0. The
matrix of the CP classification is shown in Figure 2. The
X-axis shows the communication capability and the Y-axis
the recognition in the system.

Ry

ife C
IEQ Yele & .
Layers 62890 Valye s‘l‘ea,," N 5 H2|264

Business

Functional

Information
Communication
Integration

Asset

n
P M“""&"ﬁ"ﬁu

Fig. 1. Layer model of RAMI4.0 [3]

-
=
8
€ =
7] £
2% = [8
- > 7] >
cn = %] = (=}
- o (0] [} q.
w S c a © =
-2 . .
0% 4 administrated as an entity
SE
§§ 3 indivudell known
c
<= 2 anonymously known
1 unkown .
>
1 2 3 4

communication capabilites

Fig. 2. CP classification of RAMI4.0 [3]

3) Asset Administration Shell: In order to depict a technical
object in the digital world, the concept of administration shells
is introduced in the reference architecture Industry 4.0. The
combination of administration shell and technical object is
referred to as Industry 4.0 component. According to the CP
classification, which was already discussed earlier, industry
4.0 components therefore correspond to a CP classification of
CP43 or CP44. In this paper, therefore, only elements of this
characteristic are considered. The administration shell not only
manages the data of the technical object but can also make its
own functions available. These are made available as digital
services in accordance with the reference architecture model.
An example of such a service can be the execution of a diagno-
sis of the technical object by the corresponding administration
shell. For example, statements about the remaining service life
or the next service assignment are then calculated on the basis
of the data collected.

B. AutomationML

Due to the rising complexity of Industry 4.0 based produc-
tion systems it is obligatory that engineering teams of different
departments can exchange information efficiently. One format
which can handle heterogeneous data is the XML based data
format AutomationML (see e. g. [6], [7]]). It can contain much
more information than for example a typical CAD exchange
format like STEP or IGES. To make AutomationML easy
accessible it incorporates several standards.

The open standards, which are used by AutomationML, are
shown in Figure 3. The AutomationML file itself is based on

CAEX |IEC 62424 COLLADA
Geometry
Plant topology
information Object A, PLCopen XML
Mechanics Behaviour
—
Electronics Sequencing

Communication

Further formats

Object A,

Further aspects of
engineering information
(e.g. documentation)

.

Fig. 3. AutomationML Overview [5]

the CAEX Format (IEC 62424) which is just slightly enriched.
As it is XML-based and due to the possibility to reference
other files, it is easy expandable. The present components,
the hierarchical structure as well as the connection between
the components are described with the CAEX Format. The
COLLADA standard provides the functionality for the repre-
sentation of geometry. It is capable of saving geometry as a
boundary representation (typically for CAD software) as well
as a triangulated mesh representation. Besides the geometry,
COLLADA can also contain information about the kinematics
and physics of an object, as well as other geometry related
information. The PLCopen XML format is also included into
AutomationML and makes it especially interesting for virtual
commissioning purposes. Since it is based on the IEC61131-
3, it adds the functionality to store and transfer programming
languages for PLCs, embedded controls and industrial PCs.
This data can be evaluated on software or hardware in the
loop systems typically required for virtual commissioning.
Also shown in Figure 3 is the ability to incorporate further
formats to add special functionality to AutomationML.

III. AUTOMATIONML BASED ASSET ADMINISTRATION
SHELLS

An administration shell accompanies a technical object over
the entire duration of the product life cycle. A wide variety
of data is generated, in the design phase, for example, this
is predominantly planning data such as 3D CAD data. As
soon as the technical object is used as an instance, the type
of additional data also changes, in this case measurement
data, for example, as well as service and service life data
is generated. In order to enable the persistent collection of
this highly heterogeneous data, it is necessary to select a very
flexible system or format for the asset administration shell.

A. Implementation overview

The reference architecture model Industry 4.0 provides a
basic overview of the objectives to be achieved with the
model. For the majority of the components, however, no
implementation recommendations can be derived. The authors
therefore make some assumptions in the following, which
serve as a basis for the later implementation.

e runtime environment

The software-technical execution of the administration
shells can be very varying. On the one hand, it is possible
to centrally store the data and the runtime environment
of the administration shells in a database-oriented
system. Depending on the choice of the database,
however, restrictions can arise with regard to the type
and structure of the data. Another possibility is to embed
the administration shells decentralized, for example
directly on the managed technical object. As there are
plausible use cases for both application scenarios, a
possibility should be chosen that enables both scenarios
equally.

« data repository

As already mentioned in the runtime environment, data
can be stored central or decentral. In particular, the
choice of the data format in which the data is made
available plays a central role. A proprietary data format
can lead to integration problems with external systems,
especially due to there large variance in the software
products available. It is therefore advisable to choose
an open standard in order not to restrict the use of an
administration shell. The chosen data format must be
able to contain the already mentioned heterogeneous
data, which is generated during the product lifecycle.

e communication
The communication capability of an administration shell
is elementary and should therefore receive special at-
tention. In the reference architecture model, the term
,.service-oriented architecture” is used at this point. Com-
munication based on such an architecture has proven
itself in various software projects in recent years and is
therefore also recommended here. However, the authors
are of the opinion that a further communication option
that is closer to the machine would facilitate the inte-
gration of the administration shells at the machine level.
Therefore, two forms of communication are considered.

The resulting layer-like structure is shown in Figure 4.
In this figure, the individual layers are already occupied
with technologies that can fulfil the assumptions made. A
fundamental consideration which has to be addressed with
the selected programming language is the compatibility
with different execution systems. Therefor an approach was
selected which allows the execution of the code on different
platforms such as Windows or Linux environments. Thus
Java as programming language was selected, which allows
due to the Java Virtual Machine to run the same code on
different platforms.

B. Java AutomationML Framework
The framework provided by AutomationML e.V. is currently

only available on the basis of the .Net programming language
C#. A use in Java is therefore not possible. For this reason,

Communication Layer
REST, OpcUA

Business Logic Layer
Framework

Data Layer
AutomationML

Runtime Layer
Java Virtual Machine

Fig. 4. Implementation Layer Structure

a Java-based AutomationML Framework is required for the
approach described above, which allows the effective use of
AutomationML under Java. Since this AutomationML frame-
work is to be used in particular for the use in connection with
the administration shells, some additional requirements have
to be fulfilled.

o Easy integration of additional service life data
The main task of the framework to be created is the
integration of additional data that is generated during the
product lifecycle. It should be possible to integrate any
kind of additional data into the AutomationML file.

o Complete serialization and deserialization
In order to make the data more robust against malfunc-
tions and to reduce memory requirements, the data must
be able to be both saved and loaded as AutomationML
files (*.aml). This requires a serialization and deserializa-
tion mechanism.

o Toolkit for mathematical operations based on the
FrameAttributeType attributes
Positions and rotations of individual components can be
stored in AutomationML as FrameAttributeType. This
FrameAttributeType attribute contains the position and
rotation of an element. The rotation is held in Euler
angles, which is especially problematic for complex
mathematical operations in 3d space. Therefore two new
classes are introduced for the arithmetic operations based
on the FrameAttributeType attributes.
The FramePosition element contains the position portion
of the FrameAttributeType attribute.
The FrameRotation element contains the rotation part of
the FrameAttributeType attribute, which is converted into
a quaternion FrameRotation In order not to violate the
rotation sequence defined by AutomationML e.V. (XYZ),
the conversion is performed as shown in equation 1.

e * Qy * 4z = (Qres (D

The indices indicate the rotation around the individual
axes. By converting the rotations into quaternions, the
required arithmetic operations for spatial calculations are
reduced and the mathematical problem of the “gimbal
lock” (see also [8]) is avoided. Rotating a position pg

by a given quaternion ¢, can then be expressed in the
following way.

D1 = qn * Po)

This system makes it easy to perform complex mathe-
matical operations based on the FrameAttribute type.

o Integrated Toolkit for creating and modifying
PlcOpenXML data
In order to enable an administration shell and thus
also the managed technical object to react adaptively
to changed boundary conditions, it may be necessary
to adapt the PLC program used. The open standard
PlcOpenXML is integrated in the AutomationML
standard for the purpose of managing PLC programs. In
order to simplify the modification of these programs, a
toolkit is implemented which enables the semantically
and syntactically correct modification of PlcOpenXML
data.

C. Asset Administration Shell Framework

As shown in Figure 4, the administration shell framework
is located between the communication layer and the data layer
and represents the actual business logic. The mapping of the
data to the communication is basically possible in two different
forms.

1) Division of an AutomationML structure into individual
data elements

2) Mapping of the complete AutomationML structure as a
single data element

1 is particularly suitable for communication forms that
require such a granular division, e.g. machine controls. Usually
this is necessary for runtime-variable data. Variant 2 is e.g.
suitable for planning data which should be imported into a
software and extended if necessary.

1) Machine to Machine Communication: On aspect of
industry 4.0 is the relocation of intelligence by embedding
control units into subassemblies to form independent objects.
This increases the need of a standardized machine to machine
communication. Therefor the Asset Administration Shell
has to able to communicate in this standardized way. In
the recent past the OpcUA standard proves itself as valid
competitor for future standardized machine to machine
communication. Thus this standard was implement in the
Smart Asset Administration Shell Framework.

2) Human-Machine-Communication: As even in highly au-
tomated processes the influence of an operator is necessary, the
Human-Machine-Communication has to be in a comparable
quality as the machine to machine communication. To provide
a Human-Machine-Communication there are several options
available. One typical option nowadays is to embed a display
within the technical system, e.g. the control panel at a tooling
machine. As this is probably the best option for machines with
one single control unit, it can hardly be applied to machines

which consist of dozens of control units. Therefor the Human-
Machine-Communication is realized comparably to a service-
oriented architecture, to enable a user to easily interact with
arbitrary control units or Asset Adminstration Shells.

IV. CONCLUSION AND FURTHER RESEARCH

The acceptance of industry 4.0 components and the refer-
ence architecture model industry 4.0 will depend strongly on
whether the manufacturers of the systems find a common data
technology basis. The combination of AutomationML and the
reference architecture model industry 4.0 could represent such
a data technical basis and thus contribute to the improved
interoperability of these systems. In order to confirm this
assumption, however, further research is necessary in the
future.

REFERENCES

[1] G. Schuh, Ed., ,,Excellence in Production: Festschrift fiir Walter Ever-
sheim.” Aachen: Apprimus-Verl., 2007.

[2] M. Brettel, M. Klein, and N. Friederichsen, ,,The Relevance of Man-
ufacturing Flexibility in the Context of Industrie 4.0”, Procedia CIRP,
vol. 41, pp. 105-110, 2016.

[3] ,,Referenzarchitektur Industrie 4.0” (RAMI4.0), 91345, 2016.

[4] S.-W. Lin et al., ,,The Industrial Internet of Things Volume G1: Ref-
erence Architecture.” [Online] Available: https://www.iiconsortium.org/
IIC_PUB_G1_V1.80_2017-01-31.pdf.

[5] AutomationML e.V., "AutomationML data representation,” [Online].
Available: http://automationml.org/. [Accessed 18 10 2016].

[6] R. Draht, A. Luder, J. Peschke and L. Hundt, AutomationML - the glue
for seamless automation engineering, IEEE International Conference on
Emerging Technologies and Factory Automation, 2008.

[71 A. Liider, L. Hundt and A. Keibel, Description of manufacturing
processes using AutomationML, IEEE Conference on Emerging

[8] E. Hemingway, O. Reilly, ,,Perspectives on Euler Angle Singular-
ities, Gimbal Lock, and the Orthogonality of Applied Forces and
Applied Moments”, [Online] Available: http://dynamics.berkeley.edu/
assets/Gimbal-Lock-Final.pdf [Accessed 11 09 2018].

https://www.iiconsortium.org/IIC_PUB_G1_V1.80_2017-01-31.pdf
https://www.iiconsortium.org/IIC_PUB_G1_V1.80_2017-01-31.pdf
http://dynamics.berkeley.edu/assets/Gimbal-Lock-Final.pdf
http://dynamics.berkeley.edu/assets/Gimbal-Lock-Final.pdf

	Introduction
	Relevant Work
	Reference Architecture Model Industry 4.0
	Layer model
	CP-Classification
	Asset Administration Shell

	AutomationML

	AutomationML based Asset Administration Shells
	Implementation overview
	Java AutomationML Framework
	Asset Administration Shell Framework
	Machine to Machine Communication
	Human-Machine-Communication

	Conclusion and further research
	References

