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Abstract — This paper describes a concept for an electronic
data exchange of System Control Diagrams (SCDs) from the
process engineering to control engineering domain allowing
automatic generation of automation code in the control enginee-
ring. SCDs are standardized by the Norwegian NORSOK orga-
nisation and contain, in contrast to P&IDs, concrete function
blocks and their interrelations, a real representation of the
actual control application. SCDs are of interdisciplinary nature
containing process and automation information at the same
diagram. Their application in the Norwegian oil and gas
industry is well established and of high value for the automation
departments and control room operators. Seamless electronic
data exchange is however not established today, the printed dia-
gram is still the main input for the control system supplier’s
engineers. This paper investigates a way to utilize Auto-
mationML to overcome this issue.

Keywords— AutomationML; P&ID; SCD; IEC PAS 63131;
Function Blocks; XML

1. INTRODUCTION

The engineering of process plants is usually carried out in
interdisciplinary teams using various software tools [1]. An
essential and internationally established document in this
planning is the piping and instrumentation diagram (P&ID).
The P&ID is the central document in which information on
process engineering, piping technology and process control
technology is brought together. In many discussions and plan-
ning steps it forms the basis for information and coordination
ofthe various trades. Especially of interest in the P&ID, beside
tanks, pumps and pipes, is the process control engineering re-
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quest (PCE request) that is represented by the instrumentation
and main control functions, graphical elements that models
key information relevant to the automation engineering team.
It is a special interdisciplinary elements on the P&ID,
designed by process engineers, modelling the requested main
automation functions in the process and their connection to the
process equipment. A PCE request is abstract and usually does
not define the concrete technical implementation of the
requested functions.

The P&ID, once handed over to the automation team, is
evaluated with focus on the PCE requests. Finally, the auto-
mation engineering team develops automation functions to
fulfill the PCE requests, but the technical implementation
usually remains competitive and vendor specific.

To interpret PCE requests across interdisciplinary teams,
the graphical notation of the PCE request is matter of different
standards, e.g. IEC62424 [2][3]. In modern workflows, PCE
requests are exported as proprietary files, e.g. as Excel sheets.
The standardization community currently works on detailed
standardization of electronic models of the PCE request, e.g.
the NAMUR container according to NE150 [4][5].

Widely hidden and not in the spot of the international stan-
dardization community, the national Oil&Gas industry of
Norway has developed and introduced a new type of diagram,
targeting the better modeling of automation relevant
information connected to the P&ID: the system control
diagrams (SCD). An SCD is not a replacement of a P&ID, but
really a logic diagram made to cover the control application of
the Process Control and Process safety functions in detail. It



can be regarded as the next step in control system design after
the making of the P&ID’s. It is based on the information
developed through P&ID design, but it also includes input
from other discipline design, such as Safety, Mechanical and
Electrical. SCDs are standardized as IEC PAS 63131 [6].

The 63131 standard provides a set of standardized function
blocks. But similar to the state of the art in the P&ID world,
the electronic data exchange of those function blocks across
the engineering workflow is a bottleneck due to a lack of an
electronic information model. The function blocks, annotated
in the SCDs, are either manually interpreted by the automation
teams, or treated by proprietary software solutions that vary
from project to project.

To overcome this issue, a generic way to electronically
model the function blocks in the SCDs is needed. The authors
initiated a research initiative in order to investigate the capa-
bilities of AutomationML for the given purpose. The present
paper first time describes a generic methodology to model the
63131 standard. The result is a general and re-usable metho-
dology which will be proposed to become a normative part of
the IEC 63131 standard.

Section II gives an overview about SCDs and describes the
state of the art. Section III proposes a modelling concept based
on AutomationML including examples. Finally, section IV gi-
ves an outlook and summarizes the findings.

II. RELATED WORK

A. A brief overview about SCDs

The history of logic diagrams for control systems goes
back into the late 70s and the early 80s. The process control
logic design was designed using elementary function blocks
only. Simple logic diagrams were then made for the main part
of the process. In the early 90s, more control and operational
functionality and more uniformity in the control application
have been desired. It has been experienced that the control
applications become too varied and directly not
understandable for later maintenance. Norsk Hydro did
Oseberg field development in 1985-1989 much based on
control narratives only and the need for improved documenta-
tion became clear after experiencing how creative engineers
will solve similar tasks in many different ways. More standar-
dization was needed. At the same time Statoil introduced
higher level functions blocks in 1990, type of blocks that later
have been defined as Application blocks.

The former Norsk Hydro Oil and Gas (merged with Statoil
in 2007) started to develop the SCD concept in 1991 and it
was first time used on the Brage project. Next out was Conoco
(today ConocoPhillips) to use it on the HEIDRUN project in
1995. In 1996 the work started to make it a standard within the
Norwegian O&G business. In 1999 the rev.1 of the NORSOK
1-005 standard was issued. Since 2018, Statoil ASA is named
Equinor ASA.

From 1995, on 29 Equinor installations the ICSS control
application design have been done in accordance with NOR-
SOK 1-005 (now issued as IEC PAS 63131). Nearly all other
installation build for the Norwegian Continental Shelf in the
same period by other operators have used it as well. This gives
the Norwegian Oil and Gas business over 20 year’s experience
with this standard. Fig. 1 illustrates the 29 industrial Oil&Gas
Equinor platforms that have been engineered based on the
63131 standard.

Fig. 1: Equinor O&G plants where all the control logic is defined by SCD’s.

The 63131 standard describes a method of designing con-
trol system logic. The standard actually consists of two parts.
The first part defines a set of control function templates (func-
tion blocks), the second part defines a diagram type used to
show the interconnection of the control functions templates.

16 different templates for logical function blocks are
defined. Figure 2 gives an example of a function template. The
usage of vendor specific function blocks is allowed but rarely
used. Internal Equinor statistics from the ongoing Johan Sver-
drup mega project show that 99% of the control application is
covered by the 16 predefined function from IEC PAS 63131.
Additionally, it defines a number of elementary function
blocks as AND, OR or SPLIT OF SIGNAL. See fig. 5.

Inputs MA Outputs

Normal function input X Y [ Normal function output
External fault XF YF | Function failed

Force blocking alarm HH FBHH AHH | Action alarm HH
Force blocking alarm LL FBLL BHH | Status alarm HH
Force suppression alarm HH | FUHH WH | Warning alarm HY
Force suppression alarm WH | FUWH WL | Warning alarm L’
Force suppression alarm WL | FUWL ALL | Action alarm LL
Force suppression alarm LL FULL BLL | Status alarm LL

BBHH | Action alarm HH is blocked
BBLL | Action alarm LL is blocked
BU | Status suppressed
BB | Status blocked
BXHH | Status event HH
BXH | Status event H
BXL | Status event L
BXLL | Status event LL

Operator station:
Alarms and faults
Alarm and event limits
Blocked

Suppressed

Operator station:

Blocking HH on/off
Blocking LL on/off
Suppression on/off

Fig. 2: MA function template schematics

The SCDs are relatively easy to learn and read. In that way
it makes the process control logic available for others than the
programmers themselves.. The function blocks are on a
functional and operational high level. Tag numbers on SCD
corresponds to the object names on the operator station
objects. They are ’the point of access’ for operators. The
diagram presents the control logic on a process-diagram,
including the safety interlocks. It gives an easy overview of
interlock logic during trouble shooting. Fig. 3 gives an idea
about an SCD: the blue color illustrates the process, magenta
color represents the process safety system logic, black color is
the process control system logic. Additionally, there are some
green signals lines, these are interface signals between the pro-
cess control and process safety system.
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Fig. 3: SCD example

The importance of the SCD concept can be illustrated by
the Johan Sverdrup oil platform: a giant platform for one of
the largest oil fields at the Norwegian continental shelf,
requiring the total of 51.000 Norwegian man years to develop
and construct. 598 SCDs have been developed by 4
contractors as configuration basis for more than 120 nodes and
500 cabinets.

B. Electronic data exchange in systems engineering

The engineering of industrial plants in process or
manufacturing industry including Oil&Gas platforms is
characterized by the separation of the overall workflow in
multiple engineering phases as mechanical construction,
process engineering, electrical engineering, automation
engineering etc. The different domains perform multiple
activities and require different specialized engineers of
different education using individual software tools. The
overall workflow forms a value creation chain, and all
activities typically base on input from other activities and
deliver output for other activities.

Today, seamless data exchange between engineering tools
becomes more and more a bottleneck in engineering effi-
ciency. This statement is valid for all industries with complex
and automated plants. The handover of engineering data from
one activity to the next, from one tool to another tool is iden-
tified to be a key cost driver in engineering. In many cases, it
is done manually or via proprictary solutions. While an
integrated tool suite, combining all used tools in top of a
common database, would elegantly solve this issue, most of
the used engineering tools are from different vendors and are
not designed to interact with one another. The approach to
perform data exchange via proprietary files results to an ex-
plosion of required exporters and importers with high version
and maintenance effort.

Both approaches are unsatisfactory [8][9]. But
globalization and digitalization trends [10] require digital
solutions to bridge the gaps [11]. How do other industries
solve this problem?

o The chemical and pharmaceutical industry delivers a very
common example for the lack of data exchange: the hand-
over of P&I diagrams between the process engineering and
the control engineering phase. Up to now, no comprehensive
electronic data model has been established. With IEC62424
and the data format CAEX (Computer Aided Engineering

Exchange), an electronic data model of the PCE request has
been standardized in 2006. CAEX itself is a meta model
allowing to model any classes, it does not predefine domain
specific libraries. With the IEC62424, CAEX is utilized in
order to model the PCE request. A more comprehensive
approach to model PCE requests has been developed by the
GMA 6.16 with the NAMUR container [5][9][12]. Further
approaches to standardize he data exchange between process
and control engineering are NE100 [13], STEP [14],
ISO19526 [15], Dexpi [16], Pandix [17] and many more, but
with no focus on SCDs.

The discrete industry delivers another typical example for
the lack of data exchange. Among other scenarios, the
handover of geometry or kinematics data is identified in
2005 [18] to be a key cost driver in engineering which takes
about 50% of the overall cost of an automation system. This
is why Daimler initiated 2006 the development of Auto-
mationML [19][20].

For the Oil&Gas industry, the data exchange of SCDs
between the engineering contractor and ICSS supplier is,
until today, unsolved. Due to the promising flexibility of
AutomationML, the question is: can AutomationML model
the function blocks according to the given general
requirements described in I1I.A?

C. CAEX

CAEX is an XML based file format standardized in
IEC62424. 1t provides a generic object oriented modelling
approach allowing to model libraries of object classes, and the
modelling of an instance hierarchy. Hence, it provides means
to model both, types and individual instances. It is not bound
to any industry.

Whereas IEC62424 has originally been initiated to define
the graphical representation of PCE requests in the process
industry, the definition of the CAEX data format has been
added in order to provide an electronic information model for
the PCE request on top of its graphical representation. Hence,
the CAEX model of the PCE request was the first time of
digitalizing a standard.

D. AutomationML

AutomationML [19][20][21] is a free and neutral file
format, initiated 2006 by the Daimler AG in the
manufacturing industry. It aims for modelling various
engineering information of different domains. It is
standardized in the IEC62714 [20]. For different types of
information, it re-uses existing and well established data
formats and only standardizes their application and their
interlinking. The plant topology is described through CAEX
according to IEC62424, Kinematics and geometry through
COLLADA [22] and behaviors through PLCopen [23].

Since AutomationML has adopted CAEX as the base for-
mat, it inherits its flexibility: it allows to model domain
specific libraries, and is not bound to any special industry.
Two key properties of AutomationML are substantial in its
application in a heterogeneous tool landscape:

e The modelling of mixed semantics — this means that stan-
dard classes and proprietary classes are modelled in the
same way, and can be stored together in the same Auto-
mationML file. This allows to standardize where needed



and still model and transport proprietary data that can only
be interpreted by prepared target tools.

e The labelling of AutomationML files — this means that
every AutomationML file gets a meta information block
containing information about the source of the file. This
allows any receiver to distinguish AutomationML files
from different tools and to identify the needed semantics
or dialect.

Meanwhile, AutomationML has reached industrial appli-
cation in a wide range of applications, e.g. in virtual com-
missioning [24], in data synchronization across multiple
engineering tool platforms [25][26], in the modelling of
communication networks [27][28], in the extended modelling
of PCE requests [5][8][9] or in the evaluation of openness of
engineering tools [29].

E. Electronic models of SCDs

There is currently no electronic data format for SCDs
available, but the community around the 63131 standard aims
for achieving electronic data exchange instead of exchanging
printed diagrams or proprietary files.

III. PROPOSAL FOR MODELLING 63131 FUNCTION BLOCKS
WITH AUTOMATIONML

A. General requirements

The modelling of the 63131 function blocks should fulfill
the following general requirements:

1. The data model should allow modelling 63131 standard function
blocks and user defined function blocks.

2. The data model should allow modeling both function block types
and SCDs with function block instances, and connections between
function blocks, and between SCDs.

3. The data model should be extensible for future purposes and
should allow to identify standard data and extensions.

4. The data should allow black box modelling of function blocks with
no internals in order to be vendor independent.

B. General Modelling strategy

Since the 63131 function blocks are standardized, their
inner logics is known and usually proprietary and individually
implemented by target automation engineering tools. There-
fore, the inner logics can be excluded from electronic data ex-
change, a blackbox modelling of function blocks is sufficient.
This general modelling decision simplifies the model, makes
the overall approach more robust and allows for vendor
specific implementations of the function blocks. Hence, no
PLCopen XML modelling of the logics is required, instead, all
modelling is covered by the object modelling capabilities
based in CAEX.

The key focus of the modelling is in the function block
library defined in the 63131 standard function blocks, how-
ever the modelling of elementary function blocks is required,
as well as the modelling of user defined function blocks.
Finally, a modelling strategy is required for unknown function
blocks.

C. 63131 function block library

The 63131 standard comprises a set of 16 function block
types, see Table 1. Each function block has input and output

signals of certain types. Since AutomationML supports object
oriented modelling of classes, the authors created a new
CAEX SystemUnitClassLibrary and a generic CAEX System-
UnitClass NorsokFunctionBlockClass. All further 63131
function blocks are derived from this class. Then, for each
required function block, a new SystemUnitClass are created:
MA, CA, HA, SBV, SB, CS, HB, LB, MB, OA, QA, SBB,
SBC and SBE.

TABLE 1: AB - APPLICATION BLOCKS ACC. TO 63131

Abbreviation Designation
CA PID Controller
CS Step Controller
HA Manual analogue input
HB Manual binary input
KB Sequence header
LB Shutdown level
MA Analogue measurement
MAS Analogue measurement from subsystem
MB Binary input
OA Analogue output
QA Totalizer
SB Binary output
SBB Breaker operation
SBC Coordination of multiple SBE
SBE Electrical equipment binary operation
SBV Pneumatic/ Hydraulic equipment binary operation

In the last step, common input and output signals are
predefined. Those signals are not, fixed, supported by Auto-
mationML principles they may be augmented or reduced at
the instance level. The used signals are defined in as signal
class library described in section F of this paper. Fig. 4 gives
an impression about the function block library: a subset of all
function blocks, neutrally modelled in CAEX.

5 [suf NorsokFunctionBlockClass { Class }
[su] MA { Class NorsokFunctionBlockClass }
MA-Interfaces
«0 AHH { Class AHH }
«0 ALL{Class ALL}
«0 WH {Class WH }
0 BXH {Class BXH }
«0 X{Class X}
w0 Y{Class Y}
5 [suf CA{ Class NorsokFunctionBlockClass }
7 [su] HA { Class NorsokFunctionBlockClass }
# [su] SBV { Class NorsokFunctionBlockClass }
# [sug SB{ Class NorsokFunctionBlockClass }
[sug] CS { Class NorsokFunctionBlockClass }
[su HB { Class NorsokFunctionBlockClass }
[sug LB { Class NorsokFunctionBlockClass }
[sug] MB { Class NorsokFunctionBlockClass }
[sug] OA { Class NorsokFunctionBlockClass }
[suf QA{ Class NorsokFunctionBlockClass }
[sug SBB { Class NorsokFunctionBlockClass }
[sug] SBC { Class NorsokFunctionBlockClass }
[sug] SBE { Class NorsokFunctionBlockClass }
= NorsokFunctionBlockClass-Role references

AutomationMLBaseRoleClassLib/AutomationMLBaseRole

Fig. 4: AutomationML model of the 63131 function block library

In the result, the authors achieved a neutral Automation-
ML file containing a neutral class library with neutral 63131
standard function block classes. This file is the MASTER
library, it is re-usable and distributable for all data exchange



scenarios. Further classes will be added as described in the
following sections.

The 63131 library may change in future, but the general
methodology  for  modelling  function  blocks in
AutomationML is generic. However, similar to the CAEX
library for PCE requests, the presented approach is considered
as a digitalized 63131 standard to be reused across all SCD
exchange partners. Hence, the authors propose to standardize
this library and to make it a normative part requested for all
SCD related data exchange.

D. Elementary function block type library

In order to model glue logic in SCDs, elementary function
blocks as OR, AND, Split or Timer are needed. The general
methodology for modelling them is identical to the 63131
function block classes.

TABLE 2: EFB - ELEMENTARY FUNCTION BLOCK ACC. TO 63131 1-005

Notation Designation Function
0 Logic “OR” XlorX2=Y
& Logic “AND” X1and X2 =Y
# Logical “XOR” Exclusive X1 or X2,Y =1
H High selector Y =the higher of X1 and X2
L Low selector Y =the lower of X1 and X2
> Comparator high Y =1whenX1>X2,0/wY=0
< Comparator low Y =1whenX1<X2,0/wY=0
+ Arithmetic plus X1+X2=Y
- Arithmetic minus X1-X2=Y
* Arithmetic multiply | X1 *X2=Y
/ Arithmetic division X1/X2=Y
M Memory element S =Set R = Reset
S Split of signal
# Operational formula | Users choice
A Analogue select Y=X1 when S=0 Y=X2 when S=1

Fig. 5 shows a subset of elementary function block types,
the modelling of further classes follows the same rules as
described.

= [ ElementaryFunctionBlockLibrary
= @ NorsokElementaryFunctionBlockClass { Class }
# [sug OR{ Class NorsokElementaryFunctionBlockClass }
7 [su] AND { Class NorsokElementaryFunctionBlockClass }
1 [sug TimerR { Class NorsokElementaryFunctionBlockClass }
# [suf Split { Class NorsokElementaryFunctionBlockClass }
- @ PulseF { Class NorsokElementaryFunctionBlockClass }
o @ PulseR { Class NorsokElementaryFunctionBlockClass }
1 [sug] TimerF { Class NorsokElementaryFunctionBlockClass }
e @ Invert { Class NorsokElementaryFunctionBlockClass }
[suf) SystemUnitClass4 { Class NorsokElementaryFunctionBlockClass }
- @ ARITHMETIC { Class NorsokElementaryFunctionBlockClass }
# [sif) SELECTOR { Class NorsokElementaryFunctionBlockClass }

Fig. 5: AutomationML model of the elementary function block library

E. Vendor specific function block type library

AutomationML allows modelling user defined vendor
specific function blocks that are not part of the 63131
standard. The modelling methodology is identical to previous
classes. A potential use case for the industrial application of
this method is to import function block libraries from different

automation vendors in order to use them in the
interdisciplinary SCD engineering process. Using those libra-
ries significantly simplifies the mapping of SCD data to target
specific tools. Fig. 6 give an example of a user defined
function block library.

= [@ GeneralFunctionBlockClass { Class NorsokFunctionBlockClass }
[su] GeneralFunctionBlock { Class GeneralFunctionBlockClass }
[su] GeneralController { Class GeneralFunctionBlockClass }
[sif] GeneralEquipmentControl { Class GeneralFunctionBlockClass }

[su] GeneralMeasure { Class GeneralFunctionBlockClass }

Fig. 6: AutomationML model of a general function block library

F. SCD related libraries

For the general organization of SCDs, two base classes
have been introduced: the SCD and SCDCollection class, see
Fig. 7. They allow to model the SCDs.

4 [ DocumentClassLibrary
SCD
SCDCollection

Fig. 7: AutomationML model of SCD related libraries

Fig. 8 shows how the SCD classes are used: SCDs are
collected in an SCD Collection element. This collection
depicts 1:1 the diagram view of SCD source tools. Multiple
SCDs and their internal content can be modelled this way.

4 °E TestProject
4 [iE] SCDCollection {Class: SCDCollection}
[[E]SCD1 {Class: SCD}
4 [IE]SCD2 {Class: SCD}
[[E]OR.66 {Class: OR}
[[E] A-20PDI0O135 {Class: MA}

Fig. 8: General architecture of an SCD export

Since SCDs can be connected with one another, another
organizational library is requested to model page connectors.
Page connectors are not part of the 63131 standard, but for
practical reasons, they are required to indicate that a signal is
continued on another SCD page. From the perspective of the
electronic data model, this approach seems to be outdated and
a contribute to the old diagram oriented way of engineering.
Target control engineering tools will indeed ignore those page
connectors. But for the sake of completeness and archiving
purposes, they are useful. Fig. 9 shows the input and output
connector classes for SCD pages.

4 [ PageConnectorLibary
4 [5u] SignalOffPageClass
4 7 SignalOffPageClass-Interfaces
+0 IN{Class: IN}
4 [5u] SignalOnPageClass
4 7 SignalOnPageClass-Interfaces
+0 OUT {Class: OUT}

Fig. 9: AutomationML model of a page connector library

G. Signal type library

The modelling of signals is possible in different ways: e.g.
one interface class whereas all different types (input, output,
digital, analogue etc.) are modelled by means of parameters,
or by modelling every possible signal type in an own class.



The authors decided to model all signal types explicitly
without descriptive parameters.

The parent signal is the NorsokSignalClass, derived from
the AutomationML standard signal interface class Signal-
Interface. Then, further generic interface classes Analogue,
Binary are derived from NorsokSignalClass. Based on the
described classification, all detail signal interfaces are derived.
Fig. 10 shows the AutomationML interface class library.

[ FunctionBlockSignals «0 XOH { Class Input }
5«0 NorsokSignalClass { Class Signalinterface } «0 XOL{ Class Input )
«o0 Analogue { Class NorsokSignalClass } «o0 XP{Class Input }
«0 Y {Class Analogue } «0 XP1H { Class Input )
«0 X {Class Analogue } «0 XP1L { Class Input }
+0 XR [ Class Binary } «0 XP2H { Class Input )
«0 X1{Class Analogue } «o EXP2L { Class Input }
«0 X2 { Class Analogue ) «0 XQ{Class Input )
«o Binary { Class NorsokSignalClass } «0 XQHH { Class Input }
«o AlarmClass { Class Binary } «0 XQLL { Class Input }
«0 AHH { Class AlarmClass } «0 XQWH { Class Input }
«0 ALL { Class AlarmClass } «0 XQWL { Class Input }
«0 WH { Class AlarmClass } «0 XR { Class Input }
«0 WL { Class AlarmClass } «0 XS (Class Input }
«0 WV {Class AlarmClass } «0 XT {Class Input }
«0 W {Class AlarmClass } «0 XWH { Class Input }
+0 A {Class AlarmClass ) «0 XWL { Class Input }
«0 Input { Class Binary } «0 X0 {Class Input }
«0 XGL { Class Input } «0 X1{Class Input }
«0 XGH { Class Input } «0 X1H { Class Input }
+o FSH { Class Input } «0 X1L{ Class Input }
«0 FSL{ Class Input } «0 X2 {Class Input }
«0 LSL{ Class Input } «0 X2H {Class Input }

«0 LSH { Class Input } «o0 Output { Class Binary }

«0 X {Class Input } «o Y { Class Output }
«0 XH2 { Class Input } «0 Status { Class Binary }
«0 XF { Class Input } «0 BCH { Class Status }
«0 XAHH { Class Input } «0 BCL{ Class Status )
«0 XALL { Class Input } «o Event { Class Binary }
+0 XE{Class Input } +0 BXHH { Class AlarmClass }
«0 XEQ{ Class Input } «0 BXLL { Class AlarmClass )
«0 XFF {Class Input } «o BXL { Class AlarmClass }
«0 XFX{Class Input } «0 BXH { Class AlarmClass }
«0 XGX { Class Input } «o InterfaceClass2 { Class }

+0 XGZ { Class Input }

«0 XH { Class Input }

«0 XL {Class Input }

Fig. 10: AutomationML interface class library for signals, alarms, events

H. Strategy to manage unknown data

An interesting aspect of the resulting AutomationML
export file is its ability to hold unknown information.
Whenever the source tool specific exporter detects an object
type that is not existing in the predefined AutomationML class
library, it creates a new class in the AutomationML library and
instantiates this. The authors have those classes a prefix
“dummy” in order to illustrate the effect. In the result, the
AutomationML file does not skip information, it holds a mix
of known and unknown classes and instances. This is a special
ability of AutomationML and will be further used in the data
exchange to the target control engineering tool. Fig. 11 shows
the AutomationML structures in the AutomationML Editor

[21].

The target control engineering tool is interpreting the
AutomationML file. Known objects are identified by their
class reference and are mapped to target tool specific function
blocks, signals and links. Unknown objects are identified and
copied into a separate AutomationML file that contains all
unknown classes.
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Finally, the unknown objects do not hinder the import,
they are taken aside, whereas known blocks are imported. The
library of unknown objects is an electronic data model of
unknown things and represents a suited software requirement
specification to start a formal software development process
for the missing function blocks on the target side, or to start a
discussion with the source tool team to figure out the meaning
of those.

g Johan Sverdrup
[iE] SCDs ( Class SCDCollction Role |
= [[E] C151-AS-J-XZ-42001-01 { Class SCD Role }
o (1) A4225 ( Class SignalOffPageClass Role |
5 [I£] ORO1 {Class O Role |
4 [[1] OR02 {Class OR Role )
o (1] SO { lass Spit Role }
5 (1) 502 { lass Spit Role |
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KongsbergLibraryOfUnknownFunctionBlocks
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Library of Unknown
Classes

Fig. 12: One important result of an import is a library of unknown classes.

1L Overall Workflow
The overall workflow comprises the following steps:

1. The source engineering exporter loads the predefined
master AutomationML library file. It saves a copy of
and creates an empty CAEX InstanceHierarchy.

2. The source engineering exporter creates an Internal-
Element SCDs and searches for all SCDs in the source
engineering tool. It identifies the SCDs and for each
source SCD, it creates a child InternalElement of type
SCD representing the current SCD in the source
engineering tool.
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The exporter runs through all source SCDs.

4. The exporter identifies all objects of the current SCD
and searches for counterparts in the master Auto-
mationML library. If an object type is found, it is
instantiated in the CAEX InternalElement SCD. If the
type is not found, the exporter creates a new dummy
class in the CAEX library and instantiates this dummy
class in the SCD element.

5. After having exported all elements on the SCD, the
exporter continues with the next SCD.

6. After having exported all SCDs with their elements,
the exporter runs through all connections in the SCDs
and creates InternalLinks or PageConnectors. It is im-
portant to do this step after having exported all
elements of all SCDs, otherwise the connectors
possibly have no counterpart in the AutomationML
model.

7. The AutomationML export file is saved submitted to
the target engineering tool.

8. The importer of the target engineering tool opens the
AutomationML file and searches for the Instance-
Hierarchy. It finds the SCD collection object and the
contained SCDs.

9. The importer runs through all InternalElements of
each SCD and searches for counterparts in the target
engineering tools type library. For each identified
object it creates an object instance (function block) in
the target tool. For each unknown object it submits the
type into a new library UnknowLibrary within a se-
parate AutomationML file.

J. Example

The presented approach has been prototypically tested by
the authors together with the engineering supplier Aker
Solution and the automation provider Kongsberg Maritime by
means of a real project.

The selected example SCD is shown in Fig. 13 and
contains more than 200 objects, 800 signals and around 200
connections.

The source data is Aker Solutions Comos Oil & Gas, as
tool example the authors used the Aker Solutions COMOS
version.
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Fig. 13: Example SCD with more that 200 objects [Aker Solutions]

The resulting AutomationML file has been generated out

of the COMOS tool and submitted to the target engineering
tool, the Kongsberg Maritime AIM-2000. Fig. 14 shows the
result: the visualization of the mentioned 200 objects
including the un—known types.

Fig. 14: Target tool visualization of the mentioned 200 objects including the

unknown types [Kongsberg Maritime]

IV. CONCLUSION AND OUTLOOK

This paper first time investigates the application of Auto-
mationML in the electronic data exchange of SCDs according
to the 63131 standard, prototypically developed and tested by
means of real diagrams. As result, it has been proven that
AutomationML is able to fulfill the requirements defined in
III.A - the AutomationML format is able to model required
information. The method how to model 63131 standard
function blocks in AutomationML has been proven, ele-
mentary and generic function blocks have been added, and an
alarm and signal library has been created. Together with Aker
Solutions and Kongsberg Maritime, the authors developed and
tested the concept by a prototypic COMOS-to-Automation-
ML-exporter on the source side, and an importer for the
Kongsberg AIM 2000 on the target side. The overall
feasibility by means of a realistic example SCD has been
successfully tested.

The present work is a further step in the digital transfor-
mation of the engineering of production systems. As the SCD
is on a level that there is a 1:1 relation with the function blocks
that should be in the control system, the automation supplier
can automatically generate more or less the complete control
application when he gets the information in digital format.
This will potentially save a significant amount of hours. Addi-
tionally, the proposed concept has the potential to reduce the
time used on the factory acceptance tests (FAT) to yellowline
the implemented logic versus the SCD's. As the SCD standard
have been lifted from PAS 63131 to IEC standard, the authors
will propose this AutomationML content definition into the
SCD IEC standard IEC 63131. In that way we can expect that
this methods will be known to the contractors and ICSS/DCS
suppliers internationally and we can include it in future
contracts.

Beside the present digitalization of a so far unsolved data
exchange problem, the scientific value of the present method
is in a variety of potential future applications, possibly
executable as software service in the cloud. Since the logic
information is now available in an electronic machine
readable object model, the AutomationML files for SCDs
could be investigated by algorithms/apps for inconsistencies,
errors, re-usable patterns, etc. Those apps could also
automatically solve errors based on rules. The AutomationML



files for SCDs could be used for archiving purposes, e.g.
together with a PDF as graphical visualization. The
AutomationML files could be used to calculate and visualize
differences between SCD versions and to check those changes
against rules in order to validate their impact (interesting for
the sender and the receivers side). The AutomationML files
could be a base for a workflow support tool providing
difference management between multiple senders and
receivers, e.g. as described in [8] and [25]. Artificial Intelli-
gence could be an interesting technology approach to be
applied based on big data to automatically learn data, perform
e.g. automatic linking, IO allocation, parameterization, or
finding inconsistencies in the linking and parameterization.

Observing the sequence of ETFA papers about Automa-
tionML since 2011, this paper forms a significant milestone in
the transfer of AutomationML methods and concepts into new
industrial applications.
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