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Abstract—Automating data exchange in a heterogeneous 

engineering tool environment is considered a challenge due to 

typically large amounts of differences between data models of 

the involved tools. [6] defines a levels of conceptual interoper-

ability model, and this paper interprets it for the application of 

AutomationML in a heterogeneous engineering tool landscape. 

The focus of the present paper is on level 3 or semantic 

interoperability which requires that a mapping between the 

different engineering tool data models be performed. Perfor-

ming this mapping is a major effort and, as a result, most engi-

neering data exchange is still executed through manual means 

via paper format since a human is needed to at least interpret 

the particular semantics of the data. In this paper, three basic 

approaches for enabling semantic interoperability are examined 

and the benefits and drawbacks of each method are explored. 

Following the analysis, a best practice proposal is described. 

Possible future extensions of this approach are also described. 
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I. INTRODUCTION 

Engineering is characterized by tool chains: across 
different phases of engineering, multiple tools of different 
vendors are used in order to perform different engineering 
tasks, e.g. 3D product planning, factory layout planning, 
software engineering, hardware engineering etc. [1][2]. In the 
last decades, the key focus of engineering tool vendors was on 
optimizing the functionality of the tools themselves. Mean-
while, the growing maturity of engineering tools makes it 
difficult to differentiate comparable tools by their tool functio-
nality. Furthermore, growing complexity of automation 
systems, increasing number of engineering artifacts, and 
growing heterogeneity of automation systems under rising 
cost and time pressure require innovations in managing the 
consistency and correct usage of engineering data across all 
tools in the tool chain. Hence, interoperability of engineering 
tools raises into focus, which is seen as a key future 
differentiator and especially difficult to achieve when 
engineering tools originate from different vendors [3].   

A common definition of interoperability is “the ability of 
two or more systems or components to exchange information 
and to use the information that has been exchanged” [4]. Since 
engineering tools are usually model-based systems, engi-
neering tool interoperability requires interoperability between 
their models. Typically these models are abstractions of real 
world objects and phenomena purposefully designed to 
address problems of the respective domains. Consequently, 
differences between the models can arise at many different 
levels ranging from syntax usage to semantical terms to 

operational procedures to underlying assumptions and 
constraints. Interoperability as defined above comprising of 
information exchange and usage can accordingly be 
understood using the Levels of Conceptual Interoperability 
Model (see Fig. 1).  The model with its increasing levels of 
interoperability was first described in [5] and later extended in 
[6]. A presentation of the underlying mathematical framework 
using model theory can be found in [8] and [9]. Initially 
developed for M&S engineering for military simulation 
software, the interoperability model has since been referred in 
diverse applications [10][11][12][13].  

 
Fig. 1: Levels of Conceptual Interoperability Model [7] 

It can be interpreted in the following manner for 
engineering tools and their data models: 

Level 0—No Interoperability: No exchange of information 
between the engineering tools is possible or intended. Here, 
engineering tools are typically standalone, closed systems 
with no electronic interfacing possibilities, e.g. control 
engineering tools of competitors that are not designed to 
exchange their data. 

Level 1—Technical Interoperability: A communication 
protocol exists for exchanging raw data between engineering 
tools together with requisite exporter and importer interfaces. 
A first step in interoperability, the engineering tools at this 
level are capable of exchanging bits and bytes or signals. 

Level 2—Syntactic Interoperability: The structure or 
format of the data can be unambiguously interpreted between 
the engineering tools, e.g. via use of a common data format 
such as Excel, XML or AutomationML. As a result, tools can 
clearly interpret symbols and perform related functionalities, 
e.g. difference calculation, using their exporter/importer 
interfaces. 



Level 3—Semantic Interoperability: The semantic or 
informational content of data can be aligned between the 
engineering tools via use of a common information exchange 
reference model or a neutral semantic standard. This means 
that the meaning of the data is shared, consequently the tools 
with the help of their interfaces can clearly interpret terms. 

Level 4—Pragmatic Interoperability: The context in 
which data is used, associated methods and procedures within 
the different engineering tools are made known, allowing 
common understanding about the use of terms within different 
engineering tools. At this level of interoperability, tool 
interfaces could be used to access or extend other methods. 

Level 5—Dynamic Interoperability: Any changes in the 
models’ constraints or assumptions can be communicated for 
alignment about the effects on operations between the 
engineering tools. As a result, there is common understanding 
about appropriate interpretation of the information exchanged 
between engineering tools.  

Level 6—Conceptual Interoperability: The conceptual 
models of the engineering tool models, i.e. used assumptions 
and constraints, are documented and aligned as part of a 
common reference model for the engineering tools, ensuring  
the same underlying theory. Full understanding between the 
tools is reached at this highest level of interoperability.  

With integratability or Levels 1 and 2 already addressed 
via the openness criteria [14] and interpretation of data 
formats [15][16][17][18][19] respectively, the focus currently 
lies on Levels 3 and above. The central aspects of inter-
operability are covered by Levels 3 and 4, whereas Levels 5 
and 6 address composability at higher modelling levels.  The 
exchange of semantics or informational content and 
pragmatics or utility content are the focus of our current paper 
(Level 3) and continued research (Level 4). 

The AutomationML data format [17][18] itself is 
explicitly designed for Level 2 and provides only basic role 
libraries for Level 3. The strict separation of syntactic 
neutrality and semantic expressiveness is intended: the 
mechanisms of data modelling allow for modelling of any 
semantics in user-defined or standard libraries. In contrast to 
other data formats which directly aim for Level 3, Auto-
mationML is extensible and flexible for future integration of 
further semantic standards.  

The question is how to beneficially make use of this flexi-
bility to perform data exchange in a heterogeneous 
engineering tool landscape without relying upon neutrally-
defined semantics or a common data model in participating 
tools. We aim for a best practice recommendation and 
demonstrate how to reach semantic interoperability in a cost 
efficient and elegant way, useful for practical applications.  In 
particular, in this paper we describe three basic approaches for 
AutomationML-based semantic mapping together with the 
benefits and drawbacks of each approach.  Section II describes 
general approaches to perform semantic mappings and 
analyzes their benefits and drawbacks. Section III 
recommends a preferred method and explores it in detail. The 
proposed method has been implemented in an industrial data 
exchange at ABB HVDC and conceptually published in [20]. 
Areas of further extension to overcome current limitations of 
the preferred method and achieve pragmatic interoperability 
are presented in Section IV. The paper concludes with closing 
remarks in Section V.  

II. GENERAL APPROACHES TO PERFORM MAPPINGS BETWEEN 

DATA MODELS 

A.  Overview 

Consider a tool chain from Tool A to Tool B meeting 
syntactic interoperability (Level 2) as described in Section I. 
The data flows from the database of Tool A through an 
exporter into a file (with a common or interpretable data 
format), and then through an importer into Tool B (see Fig. 2).  

 
Fig. 2: Three general layers to place mapping functionality 

For achieving interoperability at the semantic level (Level 
3), a mapping would need to be performed between the 
engineering tools. The mapping definition and execution may 
generally be placed on three different layers, see Fig. 2:  

 Layer A: in the tool layer 

 Layer B: in the exporter and importer interface layer 

 Layer C: in the intermediate file data model layer 

From the industrial perspective, these basic approaches 
have to furthermore be evaluated for their complexity, cost 
and effort in terms of initial development, maintenance, 
regulation, risk and and ownership. 

B. Option 1: harmonizing on tool layer (Layer A)  

A most obvious and ideal method to solve the mapping 
problem between different data models across different tools 
is to harmonize the semantics used in the data models across 
all participating engineering tools. This method is typically 
applied in tool suites using common databases where the 
semantic harmonization happens in a vendor specific and 
proprietary way. The key benefit is the elegant avoidance of 
any mapping, with common semantics automatically leading 
to semantic interoperability across all participating tools.  

However, this method suffers from a semantic stan-
dardization deadlock, as described in [22], implying stalling 
of progress. This method, due to practical reasons, is usually 
bound to the ownership of all participating tools, which has 
the power to set the semantic standard. The acceptance on the 
market is limited since it requires that customers bind 
themselves to one common vendor, a significant risk. Further-
more, a common database requires high effort in continuously 
agreeing on the semantics in case of change requests and 
reduces the general willingness and ability of the individual 
tool participants to innovate. As a result, the innovation speed 
of those tools is significantly reduced com-pared to 
independent tools. Applied in a vendor independent way, this 
method requires a powerful standardization community that 
develops neutral engineering semantics. However, this has not 
yet been achieved and would constitute a long term activity. 
According to [22] and [23], for most cases, this approach is 
not suitable for practical industrial purposes. Industrial users 
usually prefer to select their best-in-class tools individually. 
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C. Option 2: Mapping between data models in exporters 

and importers (Layer B) 

A second and very popular option is to keep the tools A 
and B independent and instead perform the semantic mapping 
in Layer B, i.e. the importer and exporter layer. The mapping 
functionality would in this case be built into the exporter and 
importer. There are three suboptions: 1) the exporter needs 
relevant knowledge of the Tool B data model; 2) the importer 
requires relevant knowledge of the Tool A data model; or 3) 
the exporter and importer interact via an intermediate neutral 
data model for the relevant aspects.   

In any of the above cases, innovations in either tool would 
require corresponding modifications of the exporter and/or 
importer, leading to a combinatorial version explosion of these 
software interfaces.  Furthermore, case 3) would additionally 
require continuous adaptation of the neutral data model with 
related innovations in Tools A or B. Since there is a variety of 
engineering tools in the market  that publish new versions 
every year, the maintenance effort scales significantly with 
more than two participating tools. 

Although this option overcomes the tremendous initial 
development effort required for harmonizing in Layer A, 
significant maintenance effort would nevertheless be required 
in Layer B, followed by the need of version support for all 
combinations of upcoming versions of Tools A and B over 
time. Moreover, some oversight of the tools development may 
be needed to ensure that changes in the data models can be 
appropriately conveyed for representation in the exporter-
importer interfaces. Consequently, ownership of some degree 
may also be required.  

D. Option 3: Mapping between data models in the 

intermediate data file (Layer C) 

The third option is to keep the tools A and B as they are, 
and to make the exporter and importer software generic 
without semantic knowledge about other data models, and to 
instead model all the required semantic mappings directly into 
the data model of the intermediate data file in Layer C. The 
effect of this approach is that all mappings contain 
interoperability information between the data models that are 
readily interpretable by the exporter and importer software. 
Consequently, modifications of the data model in Tool A or B 
only require adaptations of the mapping in the intermediate 
file layer; no software modification in the other tools or in the 
exporter and importer layer are necessary.  

Using this option, both the initial development and 
maintenance effort of the exporter and importer interfaces are 
low. The tools innovate independently and no regulation is 
required. All risk is reduced to successfully maintaining the 
intermediate model. Furthermore, this approach has proven 
successful for Level 3 interoperability and allows for several 
efficiency benefits as observed in an actual industrial scenario 
[20][21]. We therefore recommend it as a best practice for 
exchanging engineering data. The following section explains 
the method in details, followed by possible extensions in 
Section IV.  

III. SEMANTIC MAPPING IN THE INTERMEDIATE DATA MODEL 

A. Description of the method 

The main idea is to map the semantically equivalent parts 
of the source and target engineering tools in the data model of 

an external intermediate file format using source tool 
semantics. The chosen intermediate file format is 
AutomationML [17][18][26][27] since it allows for exchange 
of proprietary semantics in a syntactically neutral format and 
follows common object-oriented design principles. The 
method can be described as follows: 

1. Experts on participating tools manually determine the data 
objects relevant for data exchange based on source tool 
semantics. For each such data object: 

a. A System Unit Class is created based on source tool 
semantics.  

b. A SourceToolID attribute is assigned to the System 
Unit Class for storing the data object’s ID in the source 
tool. 

c. An additional Content attribute is assigned for storing 
the data object’s description and unit in the 
corresponding Content.Description and Content.Unit 
attribute value fields.   

Fig. 3 below illustrates this by means of a System Unit 

Class named ParameterClass. 

  

 
Fig. 3: Attributes of ParameterClass in the neutral class 

model library 

2. A System Unit Class Library is created for each source 
tool as a type library containing System Unit Classes for 
the relevant source tool data objects as defined in step 1. 
Furthermore, to each System Unit Class, a target tool ID 
storage attribute is added for each tool requiring data 
import of the corresponding data object (as determined by 
experts in Step 1).  

3. During data exchange, each exporter tool reads the System 
Unit Class Library for its source tool. For each 
SystemUnitClass within the library it creates an instance 
of it in the InstanceHierarchy.  It reads the provided source 
tool ID, finds the corresponding value of the data object in 
the source tool, and finally writes this value in the 
Content.Value entry, keeping the semantics of the source 
tool. Note that the exporter itself does not know of any 
target tool, rather it only instantiates the predefined 
SystemUnitClass containing mapping attributes for any 
target tools.  

4. The resulting AutomationML file with exported values is 
passed on to each of the target tool importers for importing 
relevant parameter values into the target systems. Each 
importer filters the relevant Internal Elements of the 
Instance Hierarchy using the corresponding target tool ID 
attribute (objects without the mapping identifier attributes 
are safely ignored).  For each such Internal Element, it 
imports the Content.Value into the appropriate field in the 
corresponding target tool given by the target tool ID 
attribute value. 



In the described method, the exporter software does not 
require any knowledge about a neutral data model or target 
tool data models. Similarly, the importer requires no 
knowledge about source tool semantics or any semantics in 
the neutral format as it only looks for relevant mapping 
information in a mechanical and transparent way.  As a 
consequence, both the exporter and importer remain generic. 
In case of changes in the source or target tool data models, 
only the intermediate data model with mapping information 
requires udpate.   

B. Simple Example illustrating the method 

The above method is illustrated below using a small 
example involving a source tool A and a target tool B (Fig. 4). 

 
Fig. 4: Example of Mapping in Layer C 

1. The experts on Tools A and B determine that a source 
tool output parameter with ID N corresponds 
semantically (e.g. for volume of a particular tank) to 
Tool B input parameter with ID Num, and thereby 
declare its value to be of interest for data exchange 
from Tool A to Tool B. A neutral System Unit Class 
Library is created with a “ParameterClass”, see 
“BaseLibrary” in Fig. 3. Additionally, SourceToolID 
and Content attributes are assigned to this class for 
storing the parameter ID and content information (e.g. 
description, unit, sub-attributes) of individual tool 
parameters.  

2. Next, from the neutral “ParameterClass”, a source 
tool specific System Unit Class named “N” is created 
and stored in the source tool specific System Unit 
Class Library, see “ToolALibrary” in Fig. 5. The 
“SourceToolID” attribute is assigned value N, a new 
attribute “ToolB_ID” is created for tool B with value 
Num and a further attribute “ToolC_ID” is introduced 
for a third target tool C with value Val. 

 
Fig. 5: Attributes of a Tool A parameter using a neutral class  

3. During data exchange, Tool A exporter reads the 
neutral class library file and instantiates each System 

Unit Class in “ToolALibrary” within the Instance 
Hierarchy, see “ExportFromToolA” in Fig. 6. It 
accesses the source tool value of parameter N using 
its property SourceToolID.Value, reads the value “5” 
within the source tool and writes this value into the 
Content.Value field. 

 
Fig. 6: Exporting and importing using mapping attributes 

in an intermediate AutomationML file 

4. Finally, Tool B importer reads the intermediate 
AutomationML file prepared by the exporter. It looks 
for all instances with a ToolB_ID attribute, i.e. all 
Internal Elements that are relevant for import into 
Tool B. For parameter N, it finds a Tool B identifier 
attribute and hence a parameter of interest. It inserts 
the parameter value provided by Content.Value into 
the Tool B field having ID that matches 
ToolB_ID.Value. Importing for Tool C works simi-
larly.  

Data exchange is now complete.  

Note that the described procedure allows developing 
importer and exporter software generically and having no 
knowledge about the “other” data format.  This remains 
unchanged whenever a new tool is added into the data 
exchange chain, or in case of change in parameter IDs, or even 
with the introduction of new parameters or modification of 
existing ones. We achieve Level 3 (semantic interoperability) 
without having a common data model in the tools or tool 
interfaces with additional knowledge about third party data 
models. The mapping is determined by common agreement 
between the experts and is baked into the intermediate data 
model. Any changes in the data model are automatically 
reflected in the exporter and importer operations. 

IV. POSSIBLE EXTENSIONS OF THE PROPOSED METHOD 

The proposed approach has certain limitations described 
below which we currently aim to overcome within the 
framework of the research and development project 
INTEGRATE.  

The preferred method currently requires experts to 
determine the semantically equivalent objects as well as 
explicit mapping in the data model in advance of operation. 
However, in industrial scenarios with multiple tools and 
increasingly large amounts of data to be exchanged, it may be 
infeasible to have all relevant experts identify the required 
mappings in advance. Instead, identification of mappings 
relevant for particular scenarios and based on sender-receiver 
interaction during operations may be a more viable approach 
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for initialization of data exchange and gradual extension of 
exchanged items. We currently research ways to enable such 
dynamic mappings in a user-friendly manner. 

Another constraint of the current approach is that it allows 
for 1:1 semantic mappings where the source tool data objects 
exactly correspond in meaning to target tool data objects and 
no transformation is required for usage in the target tool, i.e. 
any required processing must be performed either prior to or 
after the data exchange within the respective tools. A need for 
general m:n mappings for hierarchical object models was 
noted in [24] and the expressibility of corresponding relations 
in AutomationML is presented in [28].  As an extension of the 
proposed method we currently investigate inclusion of such 
transformations together with an intermediate processing 
layer, in keeping with the general principle of unaltered tools 
and tool interfaces.   

Thirdly, we look at ways to render methods and 
procedures available between tools using AutomationML 
towards enabling pragmatic interoperability or Level 4 of the 
Levels of Conceptual Interoperability Model (Fig. 1) 

In the future, the collected mappings information could 
serve as a common reference model and basis for formation of 
a common data model by standardization communities. 

V. CONCLUSION 

This paper explains a core technical aspect of [20] which 
describes a concept to achieve data exchange across multiple 
engineering tools via AutomationML without the need of 
harmonization of data models upfront. The ideas have been 
successfully introduced for usage in an industrial scenario. 
The focus of the present paper is a comparison of mapping 
methods using A) tool Layer, B) interface layer or C) data 
model layer.  

In contrast to the common practice of positioning mapping 
information in Layers A or B, the authors propose to use Layer 
C for efficiency reasons. Since semantic standardization and 
harmonisation across multiple tools is a significant effort that 
usually runs into a standardization deadlock, the recom-
mended method and its possible extensions provide a 
powerful means of overcoming the need and efforts for 
harmonization in the engineering tools or even the exporter 
and importer interface level development and maintenance. It 
offers a low-cost and minimum effort solution to the problem 
of data exchange in a heterogeneous tool landscape with 
varying semantics.  

By externalizing the semantical instructions from the tools 
into the neutral data model on Layer C using an Automa-
tionML-based neutral class library, it is possible to retain the 
original data models of the tools and program exporter and 
importer interfaces generically, thereby allowing for imme-
diate data exchange. Finally, the data exchange can be deve-
loped with immediate success without waiting on standards, 
because it decouples the industrial project pressure and long 
term standardization activities, and allows for stepwise stan-
dardization over time as proposed in [22].  
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