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Abstract — This paper describes a concept for an electronic 

data exchange of System Control Diagrams (SCDs) from the 
process engineering to control engineering domain allowing 
automatic generation of automation code in the control enginee-
ring. SCDs are standardized by the Norwegian NORSOK orga-
nisation and contain, in contrast to P&IDs, concrete function 
blocks and their interrelations, a real representation of the 
actual control application. SCDs are of interdisciplinary nature 
containing process and automation information at the same 
diagram. Their application in the Norwegian oil and gas 
industry is well established and of high value for the automation 
departments and control room operators. Seamless electronic 
data exchange is however not established today, the printed dia-
gram is still the main input for the control system supplier’s 
engineers. This paper investigates a way to utilize Auto-
mationML to overcome this issue. 

Keywords— AutomationML; P&ID; SCD; IEC PAS 63131; 
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I.  INTRODUCTION 
The engineering of process plants is usually carried out in 

interdisciplinary teams using various software tools [1]. An 
essential and internationally established document in this 
planning is the piping and instrumentation diagram (P&ID). 
The P&ID is the central document in which information on 
process engineering, piping technology and process control 
technology is brought together. In many discussions and plan-
ning steps it forms the basis for information and coordination 
of the various trades. Especially of interest in the P&ID, beside 
tanks, pumps and pipes, is the process control engineering re-

quest (PCE request) that is represented by the instrumentation 
and main control functions, graphical elements that models 
key information relevant to the automation engineering team. 
It is a special interdisciplinary elements on the P&ID, 
designed by process engineers, modelling the requested main 
automation functions in the process and their connection to the 
process equipment. A PCE request is abstract and usually does 
not define the concrete technical implementation of the 
requested functions.  

The P&ID, once handed over to the automation team, is 
evaluated with focus on the PCE requests. Finally, the auto-
mation engineering team develops automation functions to 
fulfill the PCE requests, but the technical implementation 
usually remains competitive and vendor specific.  

To interpret PCE requests across interdisciplinary teams, 
the graphical notation of the PCE request is matter of different 
standards, e.g. IEC62424 [2][3]. In modern workflows, PCE 
requests are exported as proprietary files, e.g. as Excel sheets. 
The standardization community currently works on detailed 
standardization of electronic models of the PCE request, e.g. 
the NAMUR container according to NE150 [4][5].  

Widely hidden and not in the spot of the international stan-
dardization community, the national Oil&Gas industry of 
Norway has developed and introduced a new type of diagram, 
targeting the better modeling of automation relevant 
information connected to the P&ID: the system control 
diagrams (SCD). An SCD is not a replacement of a P&ID, but 
really a logic diagram made to cover the control application of 
the Process Control and Process safety functions in detail. It 



can be regarded as the next step in control system design after 
the making of the P&ID’s. It is based on the information 
developed through P&ID design, but it also includes input 
from other discipline design, such as Safety, Mechanical and 
Electrical. SCDs are standardized as IEC PAS 63131 [6]. 

The 63131 standard provides a set of standardized function 
blocks. But similar to the state of the art in the P&ID world, 
the electronic data exchange of those function blocks across 
the engineering workflow is a bottleneck due to a lack of an 
electronic information model. The function blocks, annotated 
in the SCDs, are either manually interpreted by the automation 
teams, or treated by proprietary software solutions that vary 
from project to project.  

To overcome this issue, a generic way to electronically 
model the function blocks in the SCDs is needed. The authors 
initiated a research initiative in order to investigate the capa-
bilities of AutomationML for the given purpose. The present 
paper first time describes a generic methodology to model the 
63131 standard. The result is a general and re-usable metho-
dology which will be proposed to become a normative part of 
the IEC 63131 standard. 

Section II gives an overview about SCDs and describes the 
state of the art. Section III proposes a modelling concept based 
on AutomationML including examples. Finally, section IV gi-
ves an outlook and summarizes the findings.  

II. RELATED WORK  

A. A brief overview about SCDs 
The history of logic diagrams for control systems goes 

back into the late 70s and the early 80s. The process control 
logic design was designed using elementary function blocks 
only. Simple logic diagrams were then made for the main part 
of the process. In the early 90s, more control and operational 
functionality and more uniformity in the control application 
have been desired. It has been experienced that the control 
applications become too varied and directly not 
understandable for later maintenance. Norsk Hydro did 
Oseberg field development in 1985-1989 much based on 
control narratives only and the need for improved documenta-
tion became clear after experiencing how creative engineers 
will solve similar tasks in many different ways. More standar-
dization was needed. At the same time Statoil introduced 
higher level functions blocks in 1990, type of blocks that later 
have been defined as Application blocks.  

The former Norsk Hydro Oil and Gas (merged with Statoil 
in 2007) started to develop the SCD concept in 1991 and it 
was first time used on the Brage project. Next out was Conoco 
(today ConocoPhillips) to use it on the HEIDRUN project in 
1995. In 1996 the work started to make it a standard within the 
Norwegian O&G business. In 1999 the rev.1 of the NORSOK 
I-005 standard was issued. Since 2018, Statoil ASA is named 
Equinor ASA.  

From 1995, on 29 Equinor installations the ICSS control 
application design have been done in accordance with NOR-
SOK I-005 (now issued as IEC PAS 63131). Nearly all other 
installation build for the Norwegian Continental Shelf  in the 
same period by other operators have used it as well. This gives 
the Norwegian Oil and Gas business over 20 year’s experience 
with this standard. Fig. 1 illustrates the 29 industrial Oil&Gas 
Equinor platforms that have been engineered based on the 
63131 standard.  

  

Fig. 1: Equinor O&G plants where all the control logic is defined by SCD’s. 

The 63131 standard describes a method of designing con-
trol system logic. The standard actually consists of two parts. 
The first part defines a set of control function templates (func-
tion blocks), the second part defines a diagram type used to 
show the interconnection of the control functions templates.  

16 different templates for logical function blocks are 
defined. Figure 2 gives an example of a function template. The 
usage of vendor specific function blocks is allowed but rarely 
used. Internal Equinor statistics from the ongoing Johan Sver-
drup mega project show that 99% of the control application is 
covered by the 16 predefined function from IEC PAS 63131. 
Additionally, it defines a number of elementary function 
blocks as AND, OR or SPLIT OF SIGNAL. See fig. 5.  

 

Fig. 2: MA function template schematics 

The SCDs are relatively easy to learn and read. In that way 
it makes the process control logic available for others than the 
programmers themselves.. The function blocks are on a 
functional and operational high level. Tag numbers on SCD 
corresponds to the object names on the operator station 
objects. They are ’the point of access’ for operators. The 
diagram presents the control logic on a process-diagram, 
including the safety interlocks. It gives an easy overview of 
interlock logic during trouble shooting. Fig. 3 gives an idea 
about an SCD: the blue color illustrates the process, magenta 
color represents the process safety system logic, black color is 
the process control system logic. Additionally, there are some 
green signals lines, these are interface signals between the pro-
cess control and process safety system. 



 

Fig. 3: SCD example 

The importance of the SCD concept can be illustrated by 
the Johan Sverdrup oil platform: a giant platform for one of 
the largest oil fields at the Norwegian continental shelf, 
requiring the total of 51.000 Norwegian man years to develop 
and construct. 598 SCDs have been developed by 4 
contractors as configuration basis for more than 120 nodes and 
500 cabinets.  

B. Electronic data exchange in systems engineering 
The engineering of industrial plants in process or 

manufacturing industry including Oil&Gas platforms is 
characterized by the separation of the overall workflow in 
multiple engineering phases as mechanical construction, 
process engineering, electrical engineering, automation 
engineering etc. The different domains perform multiple 
activities and require different specialized engineers of 
different education using individual software tools. The 
overall workflow forms a value creation chain, and all 
activities typically base on input from other activities and 
deliver output for other activities.  

Today, seamless data exchange between engineering tools 
becomes more and more a bottleneck in engineering effi-
ciency. This statement is valid for all industries with complex 
and automated plants. The handover of engineering data from 
one activity to the next, from one tool to another tool is iden-
tified to be a key cost driver in engineering. In many cases, it 
is done manually or via proprietary solutions. While an 
integrated tool suite, combining all used tools in top of a 
common database, would elegantly solve this issue, most of 
the used engineering tools are from different vendors and are 
not designed to interact with one another. The approach to 
perform data exchange via proprietary files results to an ex-
plosion of required exporters and importers with high version 
and maintenance effort.  

Both approaches are unsatisfactory [8][9]. But 
globalization and digitalization trends [10] require digital 
solutions to bridge the gaps [11]. How do other industries 
solve this problem?  

• The chemical and pharmaceutical industry delivers a very 
common example for the lack of data exchange: the hand-
over of P&I diagrams between the process engineering and 
the control engineering phase. Up to now, no comprehensive 
electronic data model has been established. With IEC62424 
and the data format CAEX (Computer Aided Engineering 

Exchange), an electronic data model of the PCE request has 
been standardized in 2006. CAEX itself is a meta model 
allowing to model any classes, it does not predefine domain 
specific libraries. With the IEC62424, CAEX is utilized in 
order to model the PCE request. A more comprehensive 
approach to model PCE requests has been developed by the 
GMA 6.16 with the NAMUR container [5][9][12]. Further 
approaches to standardize he data exchange between process 
and control engineering are NE100 [13], STEP [14], 
ISO19526 [15], Dexpi [16], Pandix [17] and many more, but 
with no focus on SCDs.  

• The discrete industry delivers another typical example for 
the lack of data exchange. Among other scenarios, the 
handover of geometry or kinematics data is identified in 
2005 [18] to be a key cost driver in engineering which takes 
about 50% of the overall cost of an automation system. This 
is why Daimler initiated 2006 the development of Auto-
mationML [19][20].  

• For the Oil&Gas industry, the data exchange of SCDs 
between the engineering contractor and ICSS supplier is, 
until today, unsolved. Due to the promising flexibility of 
AutomationML, the question is: can AutomationML model 
the function blocks according to the given general 
requirements described in III.A? 

C. CAEX 
CAEX is an XML based file format standardized in 

IEC62424. It provides a generic object oriented modelling 
approach allowing to model libraries of object classes, and the 
modelling of an instance hierarchy. Hence, it provides means 
to model both, types and individual instances. It is not bound 
to any industry.  

Whereas IEC62424 has originally been initiated to define 
the graphical representation of PCE requests in the process 
industry, the definition of the CAEX data format has been 
added in order to provide an electronic information model for 
the PCE request on top of its graphical representation. Hence, 
the CAEX model of the PCE request was the first time of 
digitalizing a standard.  

D. AutomationML 
AutomationML [19][20][21] is a free and neutral file 

format, initiated 2006 by the Daimler AG in the 
manufacturing industry. It aims for modelling various 
engineering information of different domains. It is 
standardized in the IEC62714 [20]. For different types of 
information, it re-uses existing and well established data 
formats and only standardizes their application and their 
interlinking. The plant topology is described through CAEX 
according to IEC62424, Kinematics and geometry through 
COLLADA [22] and behaviors through PLCopen [23].  

Since AutomationML has adopted CAEX as the base for-
mat, it inherits its flexibility: it allows to model domain 
specific libraries, and is not bound to any special industry. 
Two key properties of AutomationML are substantial in its 
application in a heterogeneous tool landscape:  

• The modelling of mixed semantics – this means that stan-
dard classes and proprietary classes are modelled in the 
same way, and can be stored together in the same Auto-
mationML file. This allows to standardize where needed 



and still model and transport proprietary data that can only 
be interpreted by prepared target tools.  

• The labelling of AutomationML files – this means that 
every AutomationML file gets a meta information block 
containing information about the source of the file. This 
allows any receiver to distinguish AutomationML files 
from different tools and to identify the needed semantics 
or dialect.  

Meanwhile, AutomationML has reached industrial appli-
cation in a wide range of applications, e.g. in virtual com-
missioning [24], in data synchronization across multiple 
engineering tool platforms [25][26], in the modelling of 
communication networks [27][28], in the extended modelling 
of PCE requests [5][8][9] or in the evaluation of openness of 
engineering tools [29].  

E. Electronic models of SCDs  
There is currently no electronic data format for SCDs 

available, but the community around the 63131 standard aims 
for achieving electronic data exchange instead of exchanging 
printed diagrams or proprietary files.  

III. PROPOSAL FOR MODELLING 63131 FUNCTION BLOCKS 
WITH AUTOMATIONML 

A. General requirements 
The modelling of the 63131 function blocks should fulfill 

the following general requirements: 

1. The data model should allow modelling 63131 standard function 
blocks and user defined function blocks.  

2. The data model should allow modeling both function block types 
and SCDs with function block instances, and connections between 
function blocks, and between SCDs.  

3. The data model should be extensible for future purposes and 
should allow to identify standard data and extensions. 

4. The data should allow black box modelling of function blocks with 
no internals in order to be vendor independent.  

B. General Modelling strategy 
Since the 63131 function blocks are standardized, their 

inner logics is known and usually proprietary and individually 
implemented by target automation engineering tools. There-
fore, the inner logics can be excluded from electronic data ex-
change, a blackbox modelling of function blocks is sufficient. 
This general modelling decision simplifies the model, makes 
the overall approach more robust and allows for vendor 
specific implementations of the function blocks. Hence, no 
PLCopen XML modelling of the logics is required, instead, all 
modelling is covered by the object modelling capabilities 
based in CAEX.  

The key focus of the modelling is in the function block 
library defined in the 63131 standard function blocks, how-
ever the modelling of elementary function blocks is required, 
as well as the modelling of user defined function blocks. 
Finally, a modelling strategy is required for unknown function 
blocks.  

C. 63131 function block library 
The 63131 standard comprises a set of 16 function block 

types, see Table 1. Each function block has input and output 

signals of certain types. Since AutomationML supports object 
oriented modelling of classes, the authors created a new 
CAEX SystemUnitClassLibrary and a generic CAEX System-
UnitClass NorsokFunctionBlockClass. All further 63131 
function blocks are derived from this class. Then, for each 
required function block, a new SystemUnitClass are created: 
MA, CA, HA, SBV, SB, CS, HB, LB, MB, OA, QA, SBB, 
SBC and SBE. 

TABLE 1: AB - APPLICATION BLOCKS ACC. TO 63131  

Abbreviation  Designation  
CA  PID Controller  
CS  Step Controller  
HA  Manual analogue input  
HB  Manual binary input  
KB  Sequence header  
LB  Shutdown level  
MA  Analogue measurement  
MAS  Analogue measurement from subsystem  
MB  Binary input  
OA  Analogue output  
QA  Totalizer  
SB  Binary output  
SBB  Breaker operation  
SBC  Coordination of multiple SBE  
SBE  Electrical equipment binary operation  
SBV  Pneumatic/ Hydraulic equipment binary operation  

In the last step, common input and output signals are 
predefined. Those signals are not, fixed, supported by Auto-
mationML principles they may be augmented or reduced at 
the instance level. The used signals are defined in as signal 
class library described in section F of this paper. Fig. 4 gives 
an impression about the function block library: a subset of all 
function blocks, neutrally modelled in CAEX.  

 

Fig. 4: AutomationML model of the 63131 function block library 

In the result, the authors achieved a neutral Automation-
ML file containing a neutral class library with neutral 63131 
standard function block classes. This file is the MASTER 
library, it is re-usable and distributable for all data exchange 



scenarios. Further classes will be added as described in the 
following sections.  

The 63131 library may change in future, but the general 
methodology for modelling function blocks in 
AutomationML is generic. However, similar to the CAEX 
library for PCE requests, the presented approach is considered 
as a digitalized 63131 standard to be reused across all SCD 
exchange partners. Hence, the authors propose to standardize 
this library and to make it a normative part requested for all 
SCD related data exchange. 

D. Elementary function block type library 
In order to model glue logic in SCDs, elementary function 

blocks as OR, AND, Split or Timer are needed. The general 
methodology for modelling them is identical to the 63131 
function block classes.  

TABLE 2: EFB - ELEMENTARY FUNCTION BLOCK ACC. TO 63131 I-005 

Notation  Designation  Function  
O  Logic “OR”  X1 or X2 = Y  
&  Logic “AND”  X1 and X2 = Y  
≠  Logical “XOR”  Exclusive X1 or X2, Y = 1  
H  High selector  Y = the higher of X1 and X2  
L  Low selector  Y = the lower of X1 and X2  
>  Comparator high  Y = 1 when X1 > X2, o/w Y = 0  
<  Comparator low  Y = 1 when X1 < X2, o/w Y = 0  
+  Arithmetic plus  X1 + X2 = Y  
-  Arithmetic minus  X1 - X2 = Y  
*  Arithmetic multiply  X1 * X2 = Y  
/  Arithmetic division  X1 / X2 = Y  

M  Memory element  S = Set R = Reset  
S  Split of signal    
#  Operational formula  Users choice  
A  Analogue select  Y=X1 when S=0 Y=X2 when S=1  

Fig. 5 shows a subset of elementary function block types, 
the modelling of further classes follows the same rules as 
described.  

 
Fig. 5: AutomationML model of the elementary function block library 

E. Vendor specific function block type library 
AutomationML allows modelling user defined vendor 

specific function blocks that are not part of the 63131 
standard. The modelling methodology is identical to previous 
classes. A potential use case for the industrial application of 
this method is to import function block libraries from different 

automation vendors in order to use them in the 
interdisciplinary SCD engineering process. Using those libra-
ries significantly simplifies the mapping of SCD data to target 
specific tools. Fig. 6 give an example of a user defined 
function block library.  

 
Fig. 6: AutomationML model of a general function block library 

F. SCD related libraries 
For the general organization of SCDs, two base classes 

have been introduced: the SCD and SCDCollection class, see 
Fig. 7. They allow to model the SCDs.  

 
Fig. 7: AutomationML model of SCD related libraries 

Fig. 8 shows how the SCD classes are used: SCDs are 
collected in an SCD Collection element. This collection 
depicts 1:1 the diagram view of SCD source tools. Multiple 
SCDs and their internal content can be modelled this way.  

 
Fig. 8: General architecture of an SCD export  

Since SCDs can be connected with one another, another 
organizational library is requested to model page connectors. 
Page connectors are not part of the 63131 standard, but for 
practical reasons, they are required to indicate that a signal is 
continued on another SCD page. From the perspective of the 
electronic data model, this approach seems to be outdated and 
a contribute to the old diagram oriented way of engineering. 
Target control engineering tools will indeed ignore those page 
connectors. But for the sake of completeness and archiving 
purposes, they are useful. Fig. 9 shows the input and output 
connector classes for SCD pages.  

 
Fig. 9: AutomationML model of a page connector library 

G. Signal type library 
The modelling of signals is possible in different ways: e.g. 

one interface class whereas all different types (input, output, 
digital, analogue etc.) are modelled by means of parameters, 
or by modelling every possible signal type in an own class. 



The authors decided to model all signal types explicitly 
without descriptive parameters.  

The parent signal is the NorsokSignalClass, derived from 
the AutomationML standard signal interface class Signal-
Interface. Then, further generic interface classes Analogue, 
Binary are derived from NorsokSignalClass. Based on the 
described classification, all detail signal interfaces are derived. 
Fig. 10 shows the AutomationML interface class library.  

  

Fig. 10: AutomationML interface class library for signals, alarms, events  

H. Strategy to manage unknown data 
An interesting aspect of the resulting AutomationML 

export file is its ability to hold unknown information. 
Whenever the source tool specific exporter detects an object 
type that is not existing in the predefined AutomationML class 
library, it creates a new class in the AutomationML library and 
instantiates this. The authors have those classes a prefix 
“dummy” in order to illustrate the effect. In the result, the 
AutomationML file does not skip information, it holds a mix 
of known and unknown classes and instances. This is a special 
ability of AutomationML and will be further used in the data 
exchange to the target control engineering tool. Fig. 11 shows 
the AutomationML structures in the AutomationML Editor 

[21].  

The target control engineering tool is interpreting the 
AutomationML file. Known objects are identified by their 
class reference and are mapped to target tool specific function 
blocks, signals and links. Unknown objects are identified and 
copied into a separate AutomationML file that contains all 
unknown classes.  

 
Fig. 11: The resulting AutomationML file visualized with the 
AutomationML Editor 

Finally, the unknown objects do not hinder the import, 
they are taken aside, whereas known blocks are imported. The 
library of unknown objects is an electronic data model of 
unknown things and represents a suited software requirement 
specification to start a formal software development process 
for the missing function blocks on the target side, or to start a 
discussion with the source tool team to figure out the meaning 
of those.  

 
Fig. 12: One important result of an import is a library of unknown classes.  

I. Overall Workflow 
The overall workflow comprises the following steps: 

1. The source engineering exporter loads the predefined 
master AutomationML library file. It saves a copy of 
and creates an empty CAEX InstanceHierarchy. 

2. The source engineering exporter creates an Internal-
Element SCDs and searches for all SCDs in the source 
engineering tool. It identifies the SCDs and for each 
source SCD, it creates a child InternalElement of type 
SCD representing the current SCD in the source 
engineering tool.  

The libraries

A,ributes

Instances

Unknown Classes

Unknown
Instances

Library of Unknown
Classes



3. The exporter runs through all source SCDs. 

4. The exporter identifies all objects of the current SCD 
and searches for counterparts in the master Auto-
mationML library. If an object type is found, it is 
instantiated in the CAEX InternalElement SCD. If the 
type is not found, the exporter creates a new dummy 
class in the CAEX library and instantiates this dummy 
class in the SCD element.  

5. After having exported all elements on the SCD, the 
exporter continues with the next SCD.  

6. After having exported all SCDs with their elements, 
the exporter runs through all connections in the SCDs 
and creates InternalLinks or PageConnectors. It is im-
portant to do this step after having exported all 
elements of all SCDs, otherwise the connectors 
possibly have no counterpart in the AutomationML 
model.  

7. The AutomationML export file is saved submitted to 
the target engineering tool. 

8. The importer of the target engineering tool opens the 
AutomationML file and searches for the Instance-
Hierarchy. It finds the SCD collection object and the 
contained SCDs.  

9. The importer runs through all InternalElements of 
each SCD and searches for counterparts in the target 
engineering tools type library. For each identified 
object it creates an object instance (function block) in 
the target tool. For each unknown object it submits the 
type into a new library UnknowLibrary within a se-
parate AutomationML file.  

J. Example 
The presented approach has been prototypically tested by 

the authors together with the engineering supplier Aker 
Solution and the automation provider Kongsberg Maritime by 
means of a real project.  

The selected example SCD is shown in Fig. 13 and 
contains more than 200 objects, 800 signals and around 200 
connections.  

The source data is Aker Solutions Comos Oil & Gas, as 
tool example the authors used the Aker Solutions COMOS 
version.  

 
Fig. 13: Example SCD with more that 200 objects [Aker Solutions]  

The resulting AutomationML file has been generated out 

of the COMOS tool and submitted to the target engineering 
tool, the Kongsberg Maritime AIM-2000. Fig. 14 shows the 
result: the visualization of the mentioned 200 objects 
including the un–known types.  

 
Fig. 14: Target tool visualization of the mentioned 200 objects including the 

unknown types [Kongsberg Maritime] 

IV. CONCLUSION AND OUTLOOK 
This paper first time investigates the application of Auto-

mationML in the electronic data exchange of SCDs according 
to the 63131 standard, prototypically developed and tested by 
means of real diagrams. As result, it has been proven that 
AutomationML is able to fulfill the requirements defined in 
III.A - the AutomationML format is able to model required 
information. The method how to model 63131 standard 
function blocks in AutomationML has been proven, ele-
mentary and generic function blocks have been added, and an 
alarm and signal library has been created. Together with Aker 
Solutions and Kongsberg Maritime, the authors developed and 
tested the concept by a prototypic COMOS-to-Automation-
ML-exporter on the source side, and an importer for the 
Kongsberg AIM 2000 on the target side. The overall 
feasibility by means of a realistic example SCD has been 
successfully tested.  

The present work is a further step in the digital transfor-
mation of the engineering of production systems. As the SCD 
is on a level that there is a 1:1 relation with the function blocks 
that should be in the control system, the automation supplier 
can automatically generate more or less the complete control 
application when he gets the information in digital format. 
This will potentially save a significant amount of hours. Addi-
tionally, the proposed concept has the potential to reduce the 
time used on the factory acceptance tests (FAT) to yellowline 
the implemented logic versus the SCD's. As the SCD standard 
have been lifted from PAS 63131 to IEC standard, the authors 
will propose this AutomationML content definition into the 
SCD IEC standard IEC 63131. In that way we can expect that 
this methods will be known to the contractors and ICSS/DCS 
suppliers internationally and we can include it in future 
contracts. 

Beside the present digitalization of a so far unsolved data 
exchange problem, the scientific value of the present method 
is in a variety of potential future applications, possibly 
executable as software service in the cloud. Since the logic 
information is now available in an electronic machine 
readable object model, the AutomationML files for SCDs 
could be investigated by algorithms/apps for inconsistencies, 
errors, re-usable patterns, etc. Those apps could also 
automatically solve errors based on rules. The AutomationML 



files for SCDs could be used for archiving purposes, e.g. 
together with a PDF as graphical visualization. The 
AutomationML files could be used to calculate and visualize 
differences between SCD versions and to check those changes 
against rules in order to validate their impact (interesting for 
the sender and the receivers side). The AutomationML files 
could be a base for a workflow support tool providing 
difference management between multiple senders and 
receivers, e.g. as described in [8] and [25]. Artificial Intelli-
gence could be an interesting technology approach to be 
applied based on big data to automatically learn data, perform 
e.g. automatic linking, IO allocation, parameterization, or 
finding inconsistencies in the linking and parameterization.  

Observing the sequence of ETFA papers about Automa-
tionML since 2011, this paper forms a significant milestone in 
the transfer of AutomationML methods and concepts into new 
industrial applications. 
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