
2018 5th AutomationML User Conference 
Mölndal, Sweden, 24-25 October 2018 

5th AutomationML User Conference ©2018 
 

Vendor-Independent modeling and exchange of Fieldbus 
Topologies with AutomationML  

Rainer Drath 
University of Applied Sciences  

Pforzheim, Germany 
rainer.drath@hs-pforzheim.de 

Markus Rentschler 
Balluff GmbH 

Neuhausen, Germany 
markus.rentschler@balluff.de 

Marco Hoch, Matthias Mueller 
Mitsubishi Electric Europe B.V. 

Ratingen, Germany 
marco.hoch@meg.mee.com 

matthias.mueller@meg.mee.com 

Abstract—To simplify the engineering of field devices, 
almost every fieldbus organization has developed its own Device 
Description Language (DDL), a formal language to describe the 
services and configuration options of field devices. The DDLs 
are usually tailored to the needs of the associated fieldbus engi-
neering tool chain and unusable in tool chains of other vendors 
or in tools for other lifecycle phases. This paper describes a 
generic approach to overcome these shortcomings by means of 
AutomationML and provides an example for IO-Link masters 
and devices and for CC-Link IE Field devices. The proposed 
method is generic and re-usable for other DDLs.  

Keywords— AutomationML; Device Description; EDD; 
FDCML; FDT; GSD; GSDML; IODD; IO-Link; CSP+; CC-Link 
XML 

I.  INTRODUCTION 
Modern field devices for process and factory automation 

have a number of identification and configuration options and 
are customizeable to their individual use case. For this 
purpose they are usually equipped with a digital 
communication interface, such as IO-Link, HART, 
PROFIBUS, Fieldbus Foundation, Ethernet/IP, PROFINET, 
CC-Link, CC-Link IE Field, etc.. Each of these communi-
cation standards has developed its own dedicated software 
tool ecosystem to control and configure the devices, usually 
based on a Device Description Language (DDL) approach, 
where a generic software can configure and control different 
devices through the interpretation of a Device Description 
(DD) associated to the individual device type. The economic 
benefit lies in the fact that the creation of a DD with the DDL 
requires much less effort than writing a dedicated software 
tool. 

The newer XML-based formats such as GSDML, FDCML, 
ESI, CSP+ and IODD offer advantages compared to the 
traditional text-based formats GSD, EDDL and EDS, because 
they can rely on data model schematics (XSDs) and the 
related XML parser features for consistency checking of both 
syntax and semantics. 

Whenever a field device is required, the DD file is loaded 
and interpreted by the engineering tool, providing user 
dialogs and functionality to enter property parameters in 
order to configure the individual device instance.  

All devices of the same type have the same DD file, but the 
individual parameters of individual devices may have 
different parameter values dependent on the use case of a 
device. This illustrates general limitations of DDLs:  

• In many cases there is a strict split between type information 
and individual device information implies that type specific 
information is stored in the neutral DD file while the 
individual parameters are stored in the proprietary 
engineering tool. No tool independent storage of individual 
device configuration across the devices life cycle is 
established.  

• Once multiple field devices are interconnected into a 
communication network, the topology configuration is stored 
in the proprietary engineering tool. There is no tool 
independent archiving, distribution, re-use or further re-use 
of topology configurations available.  

This paper presents a method to overcome both issues by 
utilizing AutomationML and provides examples for IO-Link 
components in an automation systems (see devices of type 
Master and Device in Fig. 1) and CC-Link IE Field. Clause II 
mentions related work and existing fieldbus standards, clause 
III defines requirements for fieldbus topology modelling, 
clause IV provides an example for IO-Link topologies, 
whereas  clause V does the same for a CC-LINK IE Field 
topology with IO-Link components. Finally, clause VI 
discusses potential use cases and clause VII summarizes the 
findings and gives an outlook into next steps of this research. 

 

 
Fig. 1. Basic structure of an automation system with fieldbus and IO-Link 

[1] 



 

 

II. RELATED WORK 

A. Fieldbus technologies  
An overview of the integration issues for fieldbus 

technologies is presented in [2-3], additionally the horizontal, 
vertical and lifecycle integration problem is outlined in [3].  

Regarding horizontal integration, IEC 61158 lists 79 
existing communication technologies and describes an 
approach how all fieldbus technologies could be brought to 
an unified foundation, whereas IEC 62390 attempts to unify 
device profiles. Device controller programming is 
standardised in IEC 61131. The overall integration is covered 
by ISO 15745, providing a sophisticated data model for 
device descriptions (see Fig. 2). An early adoption of ISO 
15745 for a system neutral DDL was the Field Device 
Configuration Markup Language (FDCML) [4], which could 
not gain widespread acceptance.  

 

 
Fig. 2. Ontology of ISO15745-1 

B. Existing DDL Standards 
In this chapter, some existing DDL standards are shortly 

presented, see also [2-3]. The main weakness of these 
existing fieldbus standards are their incompatibility and 
insufficient suitability for horizontal and lifecycle 
integration. 

1) EDDL 
The Profibus Nutzerorganisation (PNO), Fieldbus Foun-

dation, HART Communication Foundation, OPC Foundation 
and FDT Group have created the the EDDL Cooperation 
Team (ECT) and merged their individual dialects of the DDL. 
The result was the Electronic Device Description Language 
(EDDL), which does not make use of XML and was 
published as IEC 61804. It is mainly used in the proces 
automation industry. 

 
2) EDS 
The ODVA maintains the Ethernet/IP fieldbus standard, 

where the Electronic Data Sheets (EDS) describe how a 
device can be used on an EtherNet/IP network. It describes 
the objects, attributes and services available in the device, not 
making use of XML. They contain an ASCII representation 

of a device’s parameter objects and some additional 
information required for object addressing. There are 
discussions within ODVA to generate an XML based EDS 
format in the future [5]. 

3) ESI 
For the EtherCAT fieldbus, Every EtherCAT device must 

be delivered with an EtherCAT Slave Information file (ESI), 
a device description document in XML format [6]. The 
structure of an ESI file is defined in the EtherCATInfo.xsd 
XML schema document (Fig. 3.) EtherCAT is also part of 
ISO 15745-4. 

 
Fig. 3. Structure of EtherCATInfo.xsd 

Information about device functionality and settings is pro-
vided by the ESI, whereas the EtherCAT Network 
Information File (ENI) describes the network topology, the 
initialization commands for each device and the commands 
which have to be sent cyclically [7]. The ENI file is provided 
to the master, which sends commands according to this file.  

4) GSDML 
The characteristics of a PROFINET IO Device are 

described by the manufacturer in a General Station Descrip-
tion (GSD) file, providing the engineering and supervision 
software with a basis for configuring and monitoring the de-
vices of a PROFINET IO system. The language used for this 
purpose is the GSDML (GSD Markup Language) - an XML 
based language that structurally complies to ISO 15745-1.  

5) POWERLINK XDD 
The Ethernet Powerlink XML Device Description [8] 

complies to ISO 15745-1 and defines the following file types: 
• The profile definition file (XPD) is an XML 

representation of a POWERLINK framework, device 
profile or application profile.  

• The device description file (XDD) models the device 
type of a POWERLINK device, to be used as a 
blueprint for instantiation of devices in an actual 
network configuration. An XDD file contains the 
default values of the device but no commissioning 
values and no actual values. 

• The device configuration file (XDC) describes a 
configured POWERLINK device and stores the 
information for a specific instantiation of a device in a 
specific network environment. All information from 
the XDD file plus actual values and/or device 
commissioning values can be stored in an XDC file. 



 

 

6) CSP+ 
The CC-Link Partner Association (CLPA) maintains the 

CC-Link family network standards, where the Control & 
Communication Profile (CSP+) describes how a device can 
be used in a CC-Link family network [16][17][18]. CSP+ 
files are written in XML.  

In the CSP+ model, the modules are separated into virtual 
field devices which represent the communication function 
related information and into virtual control devices which 
represent the module-specific information and functionality.  

A CSP+ file consists of four sections. A FILE section 
which describes management information of the CSP+ file 
itself, a DEVICE section which describes information about 
the module such as name, identification and specifications, a 
BLOCK section which describes the virtual control devices 
and a COMM_IF section which describes the virtual field 
devices. For each module function a BLOCK section and for 
each supported communication protocol a COMM_IF section 
exists in the CSP+ file. 

In this way different communication protocols, e.g. CC-
Link and CC-Link IE Field, can be integrated in the same 
format. 

 
7) IODD 
IO-Link was developed by the IO-Link consortium and has 

first been published in 2006 [1]. In 2010 it was integrated into 
IEC 61131-9 as “Single-drop digital communication 
interface for small sensors and actuators” (SDCI). IO-Link is 
not a fieldbus, but a non-TCP/IP serial point-to-point 
communication protocol designed to communicate with both 
analogue and digital sensors and actuators on the last meters 
in the field level (see Fig. 4).  

 
Fig. 4. Ethernet/IO-Link Device Topology 

 
Every IO-Link device must be delivered with an IO-Link 

Device Description File (IODD), a device description docu-
ment in XML format. The IODD complies to ISO 15745-1. 
A dedicated DD format of IO-Link Masters is not defined by 
the  IO-Link consortium, instead they are usually covered 
within the fieldbus DDs, which has often shown to be a 
weakness of the IO-Link ecosystem in terms of horizontal 
and lifecycle integration. 

C. AutomationML 
AutomationML is a neutral data format based on XML. It 

has been initiated by Daimler in 2006, its architecture is 
specified in the IEC 62714 part 1 [9]. Its lean and distributed 
architecture interconnects existing established file formats 
for different domains [10]. With CAEX (IEC62424, [11]) it 
allows to store object models following the object oriented 
paradigm, covering class libraries, interfaces, attributes, 
links, and instances modelled in instance hierarchies. 
Furthermore it has the functionality to reference external 
formats. AutomationML covers the modeling of geometry via 
the file format COLLADA and discrete logics via PLCopen 
XML.  

D. AutomationML communication modeling 
A working group within the AutomationML community 

has developed a generic and technology independent 
proposal how to model communication networks with 
AutomationML [12]. An application example for Ethernet/IP 
was presented in [13]. Key elements of this modeling is a 
strict separation of the physical network that models the 
physical wiring of the network infrastructure, and the logical 
network that models the logical interconnections in the 
communication network. Consequently, the AutomationML 
communication white paper comprises a set of role classes 
for physical and logical network items and a set of technology 
independent interface classes. Furthermore, it describes how 
to apply these technology independent roles and interfaces in 
order to model technology specific communication networks. 
However, the embedding of DDLs is not covered.  

III. REQUIREMENTS FOR MODELING FIELDBUS 
TOPOLOGIES 

A. General concept 
The key question is: how can configurations and 

topologies be modeled based on the limited classical DDs? 
The most obvious approach is be to extend the classical DD 
standards, but this requires long term standardization cycles 
and would reduce acceptance in industry. The approach 
presented in this paper intends to keep the existing standards 
and allows immediate applicability by using AutomationML 
in the way it has been designed for: AutomationML becomes 
the glue.  

The idea of the presented concept is to add an Automa-
tionML model on top of DD models. The classical Device 
Descriptions deliver the type information of devices, while 
AutomationML provides classes and also instances with 
individual configurations, and the modelling of hierarchies 
and links between object instances.  



 

 

The following basic requirements must be fulfilled by the 
AutomationML-based engineering solution approach for mo-
delling fieldbus configurations and topologies.  

B. Requirements related to Device Descriptions  
/1/ As in the existing fieldbus solutions, the AML-based 

solution must provide one AML file per DD file for each 
device type, called DD.AML. All DD information of one 
device type are modelled in one SystemUnitClass within 
one DD.AML file.  

/2/ For a single device instance, the same DD.AML shall be 
used, but with individual parameter values and identi-
fiable via a dedicated ID. Thus the user shall be able to 
clearly assign one DD.AML file to one specific 
individual device in his network. 

/3/ The AML-based solution must be able to reference 
within the DD.AML to an exisiting classical DD file. The 
mapping of the parameters of that classical file to the 
AML representation must be defined by the respective 
fieldbus organisation that wants to support the AML 
approach. 

/4/ It must be possible to manage libraries of DD.AML 
models in DD.AMLX containers [14]. 

/5/ Self-explainable naming conventions for DD.AML and 
DD.AMLX files must be defined. 

/6/ DD.AML files should only model needed data. When an 
existing classical DD or an DD.AML library is referen-
ced, only the required instance parameter values shall be 
modelled, all data that is not required or unchanged is not 
explicitly modelled. This results in slim DD.AML files.  

C. Requirements related to connections 
/1/ The AML-based solution must provide the ability to 

model connections.  
/2/ The AML-based solution must support connection types 

in a similar way as device types thus describing cable and 
connectors as products. This can be achieved in separate 
connection description files, called CD.AML or 
containers thereof (CD.AMLX). For instances of 
connections, the same CD.AML files can be used, but 
with differing parameter values (i.e. cable length and 
connection name) and individually identifiable via a 
dedicated ID. 

/3/ Thus the user shall be able to clearly assign individual 
connections in his network to CD.AML files. 

D. Requirements related to fieldbus topology descriptions  
/1/ A topology graph basically consists of nodes (devices 

with interfaces) and edges (connecting interfaces). 
/2/ The AML-based solution models device types as CAEX 

SystemUnitClass, device instances as CAEX Internal-
Elements and Interfaces as CAEX ExternalInterfaces.  

/3/ Edges should be modelled as CAEX InternalElements 
with individual interfaces. The modelling of Edges as 
individual objects allows modellling of e.g. physical cab-
les. Even logical connections could be objects. The inter-
faces of an Edge can be connected to Interfaces of the 
devices via CAEX InternalLinks.  

/4/ The AML-based solution must be able to model arbitrary 
topologies of automation devices in one (TD.AML) or 

more filess (TD.AMLX). A clear distinction between 
e.g. hierarchical, logical, and physical topology must be 
modelled in the same AML topology file.  

/5/ It must be possible to model different physical topologies 
in the same AML topology file(s), such as power wiring, 
communication wiring, or even installations of  different 
technologies, such as pneumatic pipes between devices. 

/6/ An overall topology model file must be able to make use 
of multiple underlying topology files. A topology model 
file basically consists of the following sections: List of 
underlying topology files (if any), Hierarchical list of 
nodes with their associated interfaces (can point to 
underlying DD.AML files), List of connections between 
nodes in this and the underlying files. 

IV. PROPOSAL FOR MODELING IO-LINK TOPOLOGIES 

A. General concept 
This chapter illustrates the previously described basic 

concept ideas of modelling fieldbus topologies exemplarily 
by means of IO-Link. IODDs deliver the type information of 
IO Link devices, while AutomationML provides classes and 
also instances with individual configurations, and the 
modelling of links between object instances. For IO-Link 
masters, an AML-based device description schema has to be 
developed. 

In the first step, following the recommendations of the 
AutomationML communication working group, the authors 
developed technology specific AutomationML classes. In the 
second step, IO Link master and device type libraries are 
modelled within AutomationML class libaries, referencing 
the original DDs. From here, the device types can be in-
stantiated and parameterized individually enabling the neu-
tral storage of IO Link master and device configurations. 
Third, the full IO Link example topology is modelled.   

B. Example  
Fig. 5 illustrates an example IO-Link topology comprising 
two IO-Link masters and three IO-Link devices connected via 
IO-Link cables.  

 
Fig. 5. Example IO-Link topology 

Fig. 6 illustrates the IO-Link topology in more detail with 
physical and logical connections. In addition, both IO-Link 
masters are connected with each other via an Ethernet 



 

 

connection. Furthermore, both IO-Link masters are 
connected via a power supply daisy-chain, not shown in the 
figure. Hence, this example combines three different physical 
networks.  

 

 
Fig. 6. Schematics of the logical and physical networks of the IO-Link 

topology example  

C. Step 1: Developing technology specific role classes 
The first step for modelling the topology example is the 

development of specific role class libraries for each used 
technology IO-Link, Ethernet and PowerPort, as shown in 
Fig. 7.:  
• ExampleIOLinkRoleClassLib,  
• ExampleEthernetRoleClassLib and  
• ExamplePowerPortRoleClassLib  
These classes only illustrate the method, all role classes 

currently have no further attributes, those may be added later.  
 

 
Fig. 7. Derivation of the IO-Link specific role class library out of the 

extended role class library 

These libraries comprise 21 role classes and form the basis 
for the AutomationML modelling of IO-Link topologies. All 
role classes are derived from the AutomationML communi-
cation white paper [12], except the role IOLinkDevice-
DescriptionFile which is derived from the role class 
ExternalData [15]. This role is of importance for the 
presented concept: it activates the ability of AutomationML 
to model and to reference documents in the AutomationML 
object model. 

Based on the recommendations of the AutomationML 
communication working group [12], the authors derived 
technology dependent interface classes for the IO-Link-, 
Ethernet- and PowerPort-wiring. These classes model 
literally the interfaces: the plugs and sockets and a related 
logical end point of each of the mentioned technologies, see 
Fig. 8.  

 
Fig. 8. Derivation of tecchnology specific interface classes 

Finally, we need models for the physical wires of all three 
required technologies. Those are modelled in a user defined 
CAEX system unit class library containing the classes 
IOLinkWire, EthernetWire and PowerSupplyWire. Fig. 9 
shows the classes with each individual end points: the IO-
Link wires have a plug and a socket, while Ethernet wires 
have two plugs. PowerPort has multiple configurations, the 
present example models a wire with two plugs.  

 

 
Fig. 9. SystemUnit class library for the cables of IO-Link, Ethernet and 

power supply 

IO Link Master BNI EIP-502-105-R015

IO Link Device BSP0086V1.1

Logical 
Node

1

1

Logical 
Node

IO Link Master BNI EIP-502-105-Z015

Logical 
Node

21

1

Logical 
Node

1

Logical 
Node

IO Link Device BES M12MI-PSIC20C-S04G

Physical
IO Link 
Wire Logical 

IO Link 
Connection

Physical
IO Link 
Wire

Physical
IO Link 
Wire

LogicalPort1
LogicalPort1

LogicalPort1 LogicalPort1LogicalPort1

E E

Physical Ethernet 
Wire

IO Link Device BNI IOL-750-V08-K007



 

 

All mentioned classes form the basis for the modelling of 
IO-Link device configuration as well as IO-Link topologies. 
They can be re-used across multiple IO-Link use cases: for 
the modelling of the configuration of a single and individual 
IO-Link device configuration up to complex networks of 
multiple master and device topologies including the 
PowerPort daisy chain and the Ethernet network connecting 
the IO-Link masters.  

D. Step 2: Modelling of IO-Link devices and masters in 
AutomationML  

Utilizing these new roles, the IO-Link device and master 
types must be modelled each as AutomationML class. In 
order to model the example, the authors developed a vendor 
specific system unit class library with all required example 
IO-Link devices that directly reference the related IODD 
files. Fig. 10 shows this by means of the IO-Link device 
BSP0086. This class contains an internal element IOLink-
DescriptionDocument that references its related IODD file 
with an attached external interface named DocumentLink. 
The interface models the binding of the AML device class to 
the IODD file. The CAEX attribute refURI of this interface 
references the physical IODD file. The CAEX attribute 
MIMEType of this interface is set to “application/xml” in 
order to indicate that this IODD file is an XML file. 

Furthermore, the class models the logical node of the 
device, and one physical IO-Link plug.  

 

 
Fig. 10. IO-Link device model referencing an external IODD file 

Fig. 11 and Fig. 12 show the system unit classes for the 
devices BES M12MI-PSIC20C-S04G and BNI_IOL-750-
V08-K007. The architecture of the models are identical to the 
previous IO-Link device.  

 

 
Fig. 11. IO-Link device model referencing an external IODD file 

 

 
Fig. 12. IO-Link device model referencing an external IODD file 

Parameters of the device types from the IODD files are re-
modeled in the AutomationML classes in order to mirror 
them in the AutomationML space. This means, that the IODD 
parameters are now available in the AutomationML class 
model and can be utilized on instance level.  

Fig. 13 and Fig. 14 illustrate the AutomatioML classes for 
two IO-Link master examples: BNI-EIP-502-105-R015 and 
BNI-EIP-502-T015-105-Z015. The mechanism to reference 
the related device description is identical. The masters have, 
in difference to the IO-Link devices, multiple ports, and each 
physical port has a logical counterpart. Furthermore, each 
master has two Ethernet ports and two power ports. Further 
ports could be added, the focus in this example was not in the 
completeness, but in the general modelling principles.  

Not part of this research but a useful next step is to auto-
matically generate those libraries by reading and converting 
libraries of IODD and Master-DD-files (IOLM) into Auto-
mationML system unit classes. A unified IOLM-DD standard 
does yet not exist and is recommended to be created entirely 
out of AutomationML in the continuation of this work. 

 

 

IO-Link device class

Reference to the
IODD File

Logical port list containing
one logical port

Physical port list with
one physical port

IO-Link device class

Reference to the
IODD File

Logical port list containing
one logical port

Physical port list with
one physical port

IO-Link device class

Reference to the
IODD File

Logical port list containing
one logical port

Physical port list with
one physical port



 

 

Fig. 13. IO-Link Master library referencing an external IOLM file 

 
Fig. 14. Figure 1 - SystemUnitClass modelling an IO Link Master BNI EIP-

502-105-Z015 

E. Step 3: modelling the IO-Link topology 
Since the object modelling in AutomationML bases on 

CAEX, all classes can be instantiated in a CAEX Instance-
Hierarchy. The instance hierarchy represents a concrete 
project or configuration. Here, according to the modelling 
recommendations [12], in the first level below the root object, 
the authors model the logical network, the physical IO-Link 
network, the physical Ethernet network, the physical Power-
Port network, and the master instances.   

 
Fig. 15. IO-Link device model referencing an external IODD file 

The master object contains nested objects which are pre-

defined in the related classes. Additionally, the belonging IO-
Link devices are modeled.  

 
Fig. 16 illustrates the interlinking between ports 

connecting the end points of physical or logical wires to the 
related ports. 

  

 
Fig. 16. IO-Link device model referencing an external IODD file 

The resulting AutomationML file now contains all 
required standard AutomationML libraries, all IO-Link 
device and master classes and the individual configuration.  

V. PROPOSAL FOR MODELLING CC-LINK IE FIELD 
TOPOLOGIES 

A. General Concept 
This chapter illustrates the previously described basic 

concept ideas of modelling fieldbus topologies exemplarily 
by means of the Ethernet based CC-Link IE Field network. 
CSP+ files deliver the type information of CC-Link IE Field  
devices, while AutomationML provides classes to assign 
commonly understandable semantics and also instances 
which contain the individual configuration information. 
Additionally AutomationML enables the modelling of links 
between object instances. In case of CC-Link IE Field, both 
Master and Slave devices are described by CSP+ device 
description files.  

In the first step, following the recommendations of the 
AutomationML communication working group and in 
alignment with the previous chapter, the authors developed 
technology specific AutomationML Role and Interface 
Classes. In the second step, CC-Link IE Field device type 
libraries are modelled within AutomationML System Unit 
Class Libaries, referencing the original DDs and adding 
additional engineering information (e.g. physcial/logical 
ports) to model the topology in AutomationML. From here, 
the device types can be instantiated and parameterized indivi-
dually enabling the neutral storage of CC-Link IE Field 
device configurations. Third, the full CC-Link IE Field 
network  topology is modelled exemplary.   

 
 
 

Logical Network

Physical Network 
IOLink

IOLink Master 
R015

Physical Network 
Ethernet

Physical Network 
Powerport

IOLink Master 
Z015

IOLink Devices

IOLink Device



 

 

B. Example 
Fig. 17 illustrates an example CC-Link IE Field topology 
comprising of one CC-Link IE Field master and three CC-
Link IE Field slave devices connected via compatible 
Ethernet cables. The following modules are used: 

• RJ71GF11-T2  (CC-Link IE Field Master) 
• MR-J4-10GF-RJ (Servo Amplifier) 
• NZ2GF2B1-16D (16 points DC Input module) 
• BNI CIE-104-105-Z015 (CC-Link IE Field IO-Link 

gateway) 
The CC-Link IE Field IO-Link gateway module can be seen 
as an IO-Link master. Hence, in later steps, this example 
could be extended with the modelling of an IO-Link 
configuration below this master module. 
 

 
Fig. 17. Example CC-Link IE Field toplogy 

Fig. 18 illustrates the CC-Link IE Field topology in more 
detail with physical and logical connections.  
 

 

 
Fig. 18. Schematics of the logical and physical networks of the CC-Link IE 

Field topology example  

C. Step 1: Developing technology specific role classes 
The first step for modelling the example is the 

development of specific role class libraries for the 
additionally used technology CC-Link IE Field as shown in 
Fig. 19. The role class libraries for IO-Link, Ethernet and 
PowerPort, as shown in Fig. 8 will be reused in this example. 
These classes only illustrate the method, all role classes 
currently have no further attributes, which may be added 
later.  

 

 
Fig. 19. CC-Link IE Field technology specific Role Class Library 

This library comprises 8 role classes and forms the basis 
for the AutomationML modelling of CC-Link IE Field 
topologies. All role classes are derived from the 
AutomationML communication white paper [12], except the 
role CCLinkIEFieldDeviceDescriptionFile which is derived 
from the role class ExternalData [15]. This role is of 
importance for the presented concept: it activates the ability 
of AutomationML to model and to reference documents in 
the AutomationML object model. 
Based on the recommendations of the AutomationML com-
munication working group [12], the authors derived a techno-
logy dependent interface class for the CC-Link IE Field 
logical connections. For the physical connections the 
previously defined EthernetWiring Interface Class Library is 
reused. 

 

 
Fig. 20. CC-Link IE Field technology specific Interface Class Library 

Classes for modeling the actual wiring as shown in Fig. 17 of 
the example above are reused. 

All mentioned classes form the basis for the modeling of 
CC-Link IE Field device configurations as well as network 
topologies in a vendor neutral way so that the configurations 
and topologies can be seamlessly exchanged between various 
tools in the engineering process. 

D. Step 2: Modelling of CC-Link IE Field devices and 
masters in AutomationML 

Utilizing these new roles, the CC-Link IE Field device 
types can be modelled each as an AutomationML System 
Unit Class. The authors developed a sample System Unit 
Class Library for each device shown in Fig. 21, Fig. 22, Fig. 
23 and Fig. 24. that directly reference their related CSP+ files. 
Therefore each System Unit Class contains an internal 
element CCLinkIEFieldDescriptionFile that references its 
related CSP+ file with an attached external interface named 
DocumentLink. The CAEX attribute refURI of this interface 
references the physical CSP+ file. The CAEX attribute 
MIMEType of this interface is set to “application/xml” in 
order to indicate that this CSP+ file is an XML file. 
Furthermore, each class models the physical and logical ports 
of the device. 

 



 

 

 
Fig. 21. CC-Link IE Field device model referencing an external CSP+ file 

 
Fig. 22. CC-Link IE Field device model referencing an external CSP+ file 

 
Fig. 23. CC-Link IE Field device model referencing an external CSP+ file 

 
Fig. 24. CC-Link IE Field device model referencing an external CSP+ file 

E. Step 3: Modelling the CC-Link IE Field topology 
Since the object modelling in AutomationML bases on 

CAEX, all classes can be instantiated in a CAEX Instance-
Hierarchy. The instance hierarchy represents a concrete 
project or configuration. Here, according to the modelling 
recommendations [12], in the first level below the root object, 
the authors model the logical network, the physical CC-Link 
IE Field network as well as the device instances.   
The resulting AutomationML file (see Fig. 25) now contains 
all required standard and technology specific AutomationML 

Role Class and Interface Class Libraries, all CC-Link IE Field 
device types as System Unit Classes and the individual 
configuration and topology in the Instance Hierarchy. 

 

Fig. 25. CC-Link IE Field topology 

VI. DISCUSSION AND USE CASES    
The proposed approach combines the benefits of the clas-

sical DD concept (in this example case IODD and CSP+) 
related to type information and AutomationML capability to 
model one or multiple instances and their relations. This 
keeps the well-defined and established IODD and CSP+ 
standards and tool ecosystems unchanged and provides 
investment protection for related stakeholders and tool 
vendors. But it opens the door to overcome the unsatisfactory 
usability across tool chains for other lifecycle phases. Well-
engineered configurations of devices can now be stored as 
AutomationML files and even further enriched with addi-
tional information, such as CAD and other model data. The 
following basic use cases can be satisfied with the new 
approach: 
/1/ Export and archiving of device configurations or 

network topologies such as IO-Link or CC-Link IE Field 
in a neutral format, out of the proprietary engineering 
tool. This makes the data independent of the tool and 
leads to more independence on tools. It provides 
investment protection for the data and promises future 
readability of data that are usually encapsulated in 
proprietary engineering tools.  

/2/ Transfer of those configurations between engineering 
tools. This is useful when suppliers perform the configu-
ration with their own best-of-class tool and need to trans-
fer the results into the customer engineering tools, or if 
one engineering tool is going to be replaced by another 
engineering tool.  

/3/ Distribution of device configurations on a server or cloud 
for later re-use in other projects, to share them with cus-
tomers, and to enable new services and business options 
in a future engineering market place. For instance, when 
devices are exchanged by newer generations of devices, 
a future cloud-based configuration service may auto-
matically find suited parameter sets to automatically 
configure the new devices and may actively ask for open 
questions. 

/4/ Configuration of Digital Twins (e.g. an OPC-UA server) 
by the upload of device configurations of a future IO-Link 
device or master into the digital twin. This typical 
Industry 4.0 use case would enable data access to up-
coming software services like consistency checks, main-
tenance services or and data mining.  

There are more possibilities, the mentioned use cases are only 
a first initial collection. 



 

 

VII. SUMMARY AND OUTLOOK 
The proposed approach overcomes the issue that DD files 

are neither able to store individual device configurations but 
type information only and are not easily extendable, nor they 
are suited to model fieldbus topologies in a vendor indepen-
dent way. A generic approach with AutomationML has been 
proposed, which allows to include classic DDs into an Auto-
mationML wrapper that can contain the glue and all further 
missing specification items, such as mechanical, electrical 
and configuration information or even fully replace the 
classic DD.  

The generic problem has been exemplarily investigated by 
means of the IO Link and CC-Link IE Field standards, but the 
proposed solution can be applied to all other fieldbus 
standards. The ability of AutomationML to remove 
unchanged data in comparison to the class definition allows 
to easily shrink the XML code to the essence of modified 
data. This keeps the AutomationML DD files short and 
readable and increases the industrial acceptance rate. 

The next step in this investigation will be the modelling of 
complex hierarchical topologies across multiple topology 
files. This will be developed in future according to the Auto-
mationML communication white paper.  

The AutomationML Application Recommendation AR 
APC [19] describes the exchange of Hardware 
Configurations, IO-Labels and Network Configurations 
between ECAD and PLC engneering tools. The described 
approach will be aligned with the AR APC [19] document in 
the future as well. 

A further recommendation is to automatically generate the 
AutomationML system unit classes by scanning the DD files 
and converting them into AutomationML classes. Finally, the 
authors aim for bringing this research results into the IO-Link 
community and other fieldbus organizations in order to 
develop a method for the establishment of AutomationML-
based device description files.  

REFERENCES 
[1] IO-Link-consortium: “IO-Link Interface and System Specification”, 

Version 1.1.2 July 2013, available at http://www.io-link.org 
[2] N.Siltala, "Formal Digital Description of Production Equipment 

Modules for supporting System Design and Deployment", Doctoral 

Thesis, Tampere University of Technology, 2016.  Accessible via 
https://tutcris.tut.fi/portal/files/6578644/Siltala_1402.pdf 

[3] A.Gössling, "DEVICE INFORMATION MODELING IN AUTOMA-
TION - A COMPUTER-SCIENTIFIC APPROACH", Doctoral Thesis, 
Technical University Dresden, February 2014. Accessible via        
https://www.researchgate.net. 

[4] IDA GROUP. "FDCML 2.0 Specification Version 1.0", fdcml.org  
website. 2017. 

[5] R. Blair, "A Modern Approach to CIP Device Descriptions", ODVA 
2015 Industry Conference, Frisco, Texas, USA.  
https://www.odva.org/Portals/0/Library/Conference/2015_ODVA_Co
nference_Blair_A-Modern-Approach-to-CIP-Device-
Descriptions.pdf. 

[6] ETG.2000 EtherCAT Slave Information (ESI) specification 
[7] ETG.2100 EtherCAT Network Information (ENI) specification 
[8] EPSG Draft Standard 301 (EPSG DS 301), Ethernet POWERLINK, 

Communication Profile Specification, Version 1.3.0 
[9] IEC 62714: Engineering data exchange format for use in industrial 

automation systems engineering (AutomationML) (2012). 
[10] R. Drath, Data exchange in plant design with AutomationML. Inte-

gration with CAEX, PLCopen XML and COLLADA. Springer (VDI-
Buch), Heidelberg (2010). 

[11] IEC 62424: Representation of process control engineering - Request in 
P&I diagrams and data exchange between P&ID tools and PCE-CAE 
tools. August 2009. 

[12] AML Best Practice Recommendations: Communication. https://www. 
automationml.org/o.red/uploads/dateien/1494834508-WP_Communi 
cation_V1.0.0.zip, checked at 11.02.2018 

[13] F. Bendik, A.Lüder, N. Schmidt, "Exchange of engineering data for 
communication systems based on AutomationML using an EtherNet/IP 
example", ODVA 2015 Industry Conference, Frisco, Texas, USA.  
https://www.odva.org/Portals/0/Library/Conference/2015_ODVA_Co
nference_Bendik_Exchange-of-design-data-using-AutomationML-
for-EtherNetIP.pdf. 

[14] AML Best Practice Recommendations: AutomationML Container 
Document Identifier: BPR Container, V 1.0.0, State: October 2017 

[15] AML Best Practice Recommendations: ExternalDataReference. 
https://www.automationml.org/o.red/uploads/dateien/1485865157-
BPR%20005E_ExternalDataReference_V1.0.0.zip 

[16] Control & Communication System Profile Specification, BAP-
C2008ENG-001-C published June 2017 by CLPA availble at 
https://www.cc-link.org 

[17] CSP+ Creation Guidelines  - Outline, BAP-C3001ENG-001-C 
published October 2017 by CLPA availble at https://www.cc-link.org 

[18] CSP+ Creation Guidelines - CC-Link IE Field Network detail version, 
BAP-C3001ENG-003 published September 2016 by CLPA availble at 
https://www.cc-link.org 

[19] AML Application Recommendation: Automation Project 
Configuration 

[20] https://www.automationml.org/o.red/uploads/dateien/1494835012-
AR_001E_Automation_Project_Configuration_V1.0.0.zip 
 

 


