Implementing reference APIs for AutomationML -
A Java based walkthrough

I** Ronald Rosendahl
Otto-v-Guericke University
Magdeburg, Deutschland
ronald.rosendahl @ovgu.de

Abstract—The exchange of information about and within
production systems at engineering- as well as runtime of the
system is a major task within recent industrial applications.
Information and communication models or architectures are key
enablers for this purpose. One powerful data format in this
field is AutomationML. It is an XML based exchange format
with meta-modeling capabilities for semantical richness. Due to
its expressiveness and broad range of applications the imple-
mentation of software solutions with support for AutomationML
raise high demands on system design. To help developers to get
started general requirements as well as suitable architectures for
the implementation of AutomationML applications are collected
and discussed in this paper. Based on the collected arguments a
reasonable implementation strategy for reference APIs in object-
oriented programming languages fitting the specifications of
AutomationML is given.

Index Terms—AutomationML, API

1. MOTIVATION

Industrial Internet of Things, Smart Manufacturing Compo-
nent, Engineering Cloud or Value Networks are just a few
keywords visualizing the opportunities in a new branch of
trade of the digitization of industrial production. The ambition
of the actors in this field is the integration and application of
specialized methodologies of different professions to optimize
the value added. Common to all of them is the necessity to
structurally aggregate or compute, process and apply data to
business processes. When AutomationML was started the first
hype of computer integration was bygone and what was left
was a heavily vertical integrated technology landscape. The
necessity of the horizontal integration of the plant planning
process drove the mills of the AutomationML community
for about 12 years now. It is remarkable that the issues and
ideas raised in the AutomationML development may easily be
superposed to the requirements of the emerging digitization
trends in manufacturing industry. The major difference to
denote is the focus on different phases of life-cycle involving a
lot of new different trades with their specific requirements. To
really make AutomationML yours in this current pork cycle
of computer integration is to change the perspective from
the initially intended file-based sink to a globally interlinked
marketplace of engineering or planning data in a generalized
structure. Therefor it is indispensable to have an abstraction of
the underlying XML data to a suitable model for the runtime
of intended application cases.

2" Konstantin Kirchheim
Otto-v-Guericke University
Magdeburg, Deutschland

konstantin.kirchheim@ovgu.de

3" Josef Prinz
inpro
Berlin, Deutschland
josef.prinz@inpro.de

The associates of AutomationML society were aware of this
demand and the first steps in this direction were taken under
the phrase Abstract API. It was chosen as the name of an
activity of the working group Application Scenarios in the
AutomationML society started to provide a general pattern
of objects conceptualized in the standard documents. This
pattern would be a foundation for the automatic generation
and evaluation of software modules capable of the format.
Although the working group failed to provide a language-
independent formal specification an important result was the
semi-formal description of the business objects with a detailed
description of their behavior. From software systems developer
point of view the provided business object model does not
serve automatic code generation but constitutes a recipe and
evaluation pattern to create a die-cut software interface to an
AutomationML model instance.

Within this paper we will present an implementation of
the defined set of objects with their interfaces as a language
specific reference API of the current results of the Abstract
API. Tt will be provided along with a file-based back end
called reference implementation here which will be transparent
to an API user. The main effort of this work is the proof-
of-concept of an object-oriented reference API, the gain of
experience with the implementation to provide feedback to the
activity to evolve the specification of the Abstract API. This
paper will not present a general introduction or exploration
of AutomationML but will give developers who are familiar
with the data model a sound foundation for design decisions.
Therefor in the following the paper is structured in four major
sections followed by a conclusion. In section 2 available solu-
tions in the software ecosystem are introduced. Section 3 pro-
vides a discussion of system architectures and programming
paradigms related to possible applications. Within section 4
the implementation strategy for a Java based reference engine
is being presented along with some conclusions drawn in its
development. Section 5 presents the specification tiers and
sections of the API developed in accordance and extension
of those specified by the Abstract API. The content of the
paper is being concluded in section 6.

II. AUTOMATIONML SOFTWARE ECOSYSTEM

Within the industrial application as well as in academic
research several software tools capable of AutomationML

MELSOFT ABB o

i Robot
Works \ /Sludio

Tarakos

Siemens

Application
Development

108 EKS AutomationML

OPCUA InTec
Export RF::Suite Ecosystem

logi.cals
AML
Hub

AML
Editor

/

Integrate
Platform

OvGU
MAS

inte- Testing,
. Sorvice. = gration Debugging
Networking Oriented a
Analysis

™~ iose””

Checker

AutomationML

server baseX-

AAS

Fig. 1. AutomationML tool landscape

were developed in the past. This section shall give a brief
overview on the technologies, architectures and use cases they
were applied to. The tools may roughly be categorized in
4 groups. The first one is constituted by tools that import
or export AutomationML files or even both. These tools are
usually built around their own business object model and
define transformation logic from the internal data to the
AutomationML file format or the other way around. Very often
these implementations are focused on a single use case of
transmitting a small set of artifact types from one application
to another in a very narrow scope. Therefore they don’t
need to implement a full fledged AutomationML interface in
the most cases. For example software used in simulation or
virtual commissioning is built on data structures perfected for
computation, feature optimization and visualization like the
products of tarakos [1] or EKS InTec [2]]. The standardized
exchange of ”Automation Project Configurations (AR-APC)”
[3]] is another example where AutomationML is used as an
exchange format between applications with heterogeneous
specific internal models realized with im-/export logic like in
Siemens TIA Portal, EPlan P8, MELSOFT iQ Works or ABB
Robot Studio [4].

A second group of application is utilized for festing, de-
bugging and analysis of data exchange on file level. They
support work-flows and operations closely related to the real
content of the file. In many cases they reflect the structure of
the XML file in the user interface and enable direct editing
to solve or intentionally create errors in the file. These tools
usually don’t support the higher semantical layers of the

format. Beneath the generic tooling of powerful text and
XML editors that have shaped up to swiss army knifes of
web- and software development there is the AutomationML
Editor [3]]. It has been started as a debugging tool and test
case modeler but has emerged a universal modeling tool for
AutomationML file content. Due to its increasing support of
the object model and higher semantical layers of the standard
it may also be mentioned within the next class of applications.
Also to be mentioned in this class is a tool for conformance
testing of AutomationML files that was developed by the IOSB
presented in [6].

A third evident class is made up of tools built around
an AutomationML business object model. Here many tools
are created straight forward with the help of an XML-object
binding library. A formal description like an XML-Schema
(e.G. CAEX*.xsd) is compiled to an implementation-specific
data model. The used library assists the transfer of the data
from XML to the application and back. In such tools the
application logic is implemented very closely to the ideas of
the AutomationML models. Their output show a high degree
of compliance to the standard. But as a consequence the
business logic is complex and not perfected for the intended
application. For example the C# based AutomationML Editor
is built on the official AutomationML Engine [7]] but there
is also support for Java as introduced in this paper. Another
implementation of this type with strong support for model
driven applications is the EMF (eclipse modeling framework)
back end created for several applications at the university in
Vienna. [8] and [9]]. A similar approach was used for model
driven consistency preservation of engineering data at FZI
Karlsruhe [10]. Beyond model driven approaches there are
also tools implemented applying semantic web technologies
to AutomationML [11]], [6].

The fourth group is characterized by tools that try to
overcome the limit of a directional file-based exchange of data
between just a few peers. Such tools consider a high count of
sometimes very heterogeneous partners in the data access or
exchange. They care for huge sets of artifacts scattered across
several files or AutomationML snippets often transmitted using
web technologies. Such tools sometimes manage versions and
variants as well as the consistency of contained artifacts as
already presented in the previous tool class. Such tools support
the integration of the engineering process as suggested with
applications like AutomationML server [12], the AML.hub
[13]] or the INTEGRATE platform [4]. In the application
of AutomationML within the runtime of Industrie 4.0 use
cases there are several proposals to use the data model in the
asset administration shell. The export of an AutomationML
model to an OPC UA model was proposed in [14]. This idea
was enhanced to built a CPPS knowledge base implemented
as an OPC UA server running a dynamic AutomationML
model presented in [15]. A similar approach to implement
a centralized asset administration shell for 14.0 but based on
an XML database is presented in [[16].

As we have seen AutomationML shows a broad range of
application and the assignment of tools to a taxonomy is

not unambiguous. Several tools have to be assigned to more
than one class. Furthermore additional criteria and classifica-
tion schemes may be used for example by applicability to
the hardware in the different levels of industrial facilities,
hardware requirements and performance measures, semantical
complexity of the use cases or involved engineering disciplines
and phases. Therefore the classification presented in figure
may neither be absolute nor complete but gives an overview
on the tool landscape at the time of writing.

III. IMPLEMENTATION ARCHITECTURES

In this section it will be discussed which considerations
have to be taken into account when implementing applications
above the model of AutomationML. For this purpose a shallow
overview on system architectures and programming paradigms
is given. Here some key findings of theoretical computer
science will be applied to the topic but it is far out of scope of
this paper to provide and apply the full formal background of
application programming to this field. It rather shall provide a
software-technical classification scheme and a foundation for a
sound reasoning on design decisions within the development of
AutomationML applications. Further it gives the background
for the object-oriented reference implementation presented
in section as well as arguments for the definition of
intersections in tiers and segments of the API specification
presented in section

For the exploration of this topic first an analogy is drawn.
Looking on the textual representation of AutomationML as
if it was the physical memory of a computer the discussion
becomes amenable to the lines of reasoning of the different
data access patterns and abstractions of programming language
architectures. Based on this idea the following subsections will
discus the different concepts on hypothetical AutomationML
implementations. As depicted in figure [there are four ma-
jor types of data abstractions to be mentioned which were
conceptualized within the evolution of system architectures in
parallell with the different generations of programming lan-
guages [17]]. They were developed to manage the complexity
of growing amounts of data and logic. While this evolutionary
classification implies that each step overrules the former ones
other schemes assume the coexistence of solutions optimized
on different requirements. One very relevant classification is
given in [18]] that states classes of information structures ori-
ented on the storage, processing or networking of information.
This scheme is used to organize the following subsections.

A. Storage-Orientation - "Machine Languages”

The least degree of abstraction can be found in the early
days of programming within assembly and the upcoming
Ist and 2nd generation languages. These languages are also
referred to as machine languages due to their close relation to
the hardware. Transformed to our text based representation of
information a change of a register value in memory may be
compared to a change of a letter in the text file containing an
AutomationML model. Implementations of low level functions
have a small codebase and are straight and powerful by the

Data
+
Logic

Module 1] [Module 2] [Module 3

Storage-Orientation Processing-Orientation

Resource 2

Resource 1 Resource 3

Object-Orientation Networking-Orientation

Fig. 2. Data Abstractions

immediate access to the data. But the functional entirety
of an application is very hard to manage and with rising
complexity of data and functions on that data it quickly
gets unmanageable. The smallest change has the potential to
destroy the consistency of the whole file. On higher semantical
layers it gets even worse. For example renaming an attribute is
a simple search and replace function but may require adjust-
ments of references in an AttributeNameMapping. This
may be achieved applying the change to each occurrence of the
Attribute. But as a consequence this may unintentionally
change another instance or even the InterfaceClass
specification breaking the model contract of the toolchain.
Anyway it is the most rapid solution but it has to be applied
very carefully.

B. Processing-Orientation - "Abstract Data Types”

A very important step in the development of programming
languages was to relate data to its use. Distinct chunks of
the data are provided with a certain behavior. This is accom-
plished by assigning types with a defined extent of values
and operations available on that type. In theoretical computer
science those types are called abstract data types and form a
mathematical model of the expressiveness of the programming
environment they are part of. By the combination of types to
aggregate data types a structural description of the information
representation in the data model is explicitly given.

Carried over to statically structured file formats one may
identify a certain part of code as a structure of distinct type.
By this it is possible to consistently change the content at an
offset position predefined by the type in a predefined way and
scope. This strategy is used by XML parsers (DOM/SAX)
which convert the textual representation into a processable
application-specific shape. The benefits are the generic access
and manipulation of partial information as well as the preser-
vation of consistency of the types contained in the file. A
major drawback of this approach is that the structural patterns
are static and have to be defined in advance. Furthermore
the semantics of the structure is flat. Interrelations between

different segments is entirely represented in the business logic.
Hence the business logic is partially modularized by the
functional approach of processing a type but still has to be
designed and managed as a monolithic artifact to implement
a complex application.

Applied to AutomationML this shows up for example in
the process of assigning an Attribute change for all
performers of a specific RoleAssignment would require
the traversal of each entity to evaluate the type pattern. Then
the change is eventually deployed to the structure. Sequel
changes like necessary adjustments to dependent relations
(e.G. AttributeNameMapping) have to be integrated in
the same code. This renders the operation single purpose.
An adjustment of the code becomes necessary not only if
the semantic of the operation changes but also if the data
it operates on has changed. Consequently if there are many
operations defined on a certain data structure this may require
a huge refactoring spread across the whole codebase.

C. Object-Orientation - "Model Driven”

The next major step in data abstraction was done within the
refinement of 3rd generation languages (3GL). To maintain
code more efficiently the idea was raised to tightly integrate
the data with its behavior. This way the code that depends on a
data structure may easily be identified and adjusted. Guided by
this idea a complete new programming paradigm emerged un-
der the term object-orientation. Since AutomationML states to
be object-oriented the means of object-oriented programming
(OOP) should perfectly fit the demands of the format. For
this reason the discussion of this paradigm will be elaborated
here in more detail. Due to the high degree of abstraction this
architecture is very independent of the underlying physical
representation of the data. This is one of the main intended
benefits but as a consequence there is a broad variety of
implementation options. Some of them will be discussed in
section but to stay focused here the discussion will be
organized along the four basic concepts of object-oriented
programming.

1) Encapsulation: Certainly the most fundamental con-
cept of object-oriented programming is object encapsulation.
The internal structure of an object is hidden to the outside
system. The functionality of an object is controlled interac-
tively. Therefor an object exposes a so called client interface.
Through this client interface the behavior of the object is
triggered. This means that any business logic doesn’t have
direct access to manipulate certain data structures but knows
the object and its available behavior to execute an operation on
the data. Since operations of an object are processed only by
the object itself there may not be any unmanaged interference
of two logical operations. Further model state and behavior
of the data are kept together. Dependencies between those
characteristics are obvious and in case of any changes the
extent of necessary refactoring may easily be estimated and
managed.

Adopting our use case to the principles of object-oriented
programming it has first to be clarified that AutomationML

does not specify any dynamics of data. The behavior of
each object has to be defined with the help of the standard
definition by identifying any consistency constraints given in
the normative documents affected by the intended change of
each operation. The constraints are then interpreted as pre- and
postconditions as well as invariants of the behavior. In several
cases it is even possible to derive operational semantics for
the operation.

For example adding an AutomationML object to another
one would require the operation to ensure that the new object
caries a UUID to be uniquely recognized in this system and
preserving the consistency of the whole model. How this is
achieved is part of the logic of the object and encapsulated
from the superordinate implementation. Due to the complexity
of interrelations of structural components within the Automa-
tionML model there are several layers of operations with
several degrees of consistency to distinguish. Their definition
is one of the most challenging tasks in the specification of the
reference API presented in [[V] and

2) Abstraction: The second basic concept is abstraction.
As already discussed with abstract data types abstraction
hides the internal structure and details of data and logic
to transparently enable access to the true business logic of
the system. Along with the concept of encapsulated objects
abstraction renders the business model of the application a
system of entities defined very closely to the structure humans
intuitively conceptualize complex systems. The model is built
up out of entities with certain characteristics and (sometimes
interactive) relations between them.

To build a business object model for an application it is
suitable to translate the domain knowledge represented in
functional specifications into object definitions. A best practice
of agile development for this purpose is the definition of user
stories. These stories are broke down in an activity called
story decomposition (which basically is an application of the
divide and conquer concept). Thereby the story is split up
into subordinate partial stories the superordinate story may
be composed of. This is repeated until it reaches a specific
level least abstract to be reasonable implemented as a single
module. This strategy helps to identify necessary subroutines
in the business logic. In case of OOP it identifies the different
objects to be developed on common levels of abstraction.

Applied to AutomationML for example implementing an
application for part 5 of the standard one would pre-
fer to work with objects called network node and net-
work connection instead of struggling with all the de-
tails behind (InternalElements, AssignedRoles, re-
lated ExternalInterfaces and InternalLinks in be-
tween). Section[IV]will present the example and the conceptual
layers that have been identified thereby in more detail.

3) Inheritance: As the third concept of object-orientation
inheritance enables the modeling of commonalities between
objects. Therefor an object type declares to inherit behavior
of another object type. This strategy enables a high level of
code reuse. Mission proven code segments may be exploited
by objects of several object types. There are different strategies

of how to implement inheritance. Since AutomationML is
based on CAEX it is defined in the realms of prototypic
inheritance. Here an object has a backreference to it’s proto-
type. A popular form of prototypic implementation is by only
declaring behavior deviation from base type on an inheriting
object. If no deviation is specified the inheriting object defaults
its behavior to the prototype. This way equivalence classes
of object behavior are established. For AutomationML there
are several limitations defined to this concept. First of all
the deviations are limited to be supplementary. This will be
explained in detail in subsection Second the type-
instance relation is defined in the standard not to be a class
inheritance. Further it is interfered by the mirror concept as
well as the changed object identification strategy.

Practically spoken an InternalElement (IE) serves
an instance while a SystemUnitClass (SUCL) (in case
of CAEX another IE) serves the type. An IE must provide the
property RefBaseClassPath which may provide a value.
Here the path to the prototype for the instance may be given.
But in AutomationML the object identification strategy was
changed from location to identity key using UUID while the
uniqueness of element names was dropped at the same time.
Therefore paths lost the potential of identifying an instance
uniquely. The reference to the unique identifier instead was
chosen to mark the instance to be a mirror of the element given
by the UUID. In consequence an IE may not inherit another
IE anymore loosing the mechanism of prototypic inheritance.
Remains the possibility to inherit a SUCL but this is explicitly
defined to be a class instance relation for informative purpose
and not an inheritance relation. This was tailored to the
initially intended use cases of AutomationML. Tool vendors
that define exchange between tools should negotiate on side
contracts for type preservation. But the changed demands with
the advent of Industrie 4.0 rendered it an issue. Distributed
applications depending on a reliable type system have to
reintroduce an explicit type instance relation within the data.
Strategies to solve this issue should be subject to further
discussions. In the case of a SUCL the inheritance is still up
but limited. If a SUCL refers to a another SUCL it implicitly
inherits all behaviors of the base class. Those have to be
explicitly specified in (copied to) an IE that is created from
a SUCL.

4) Polymorphism: The fourth basic concept of object-
oriented programming is polymorphism. In this scope it would
mean that an object could redefine a behavior of an inherited
base object. It would behave different to the behavior of the
equivalence class. But as mentioned in section [[IlI-C3| behavior
deviation may only be defined supplementary. The structure of
the inherited class is always implicitly derived and shall not
be modified.

D. Networking-Orientation - ”Cloud”

Networking-oriented information structures are applied in
different architectures from simple statically spread network
clusters up to cloud computing architectures. For this purpose
they raise high demands on abstraction of data and processes

on the data. This way they enable a distributed, asynchronous
and redundant information retrieval, processing and storage.
According to NIST under the term cloud computing a model
is described for ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources.
These resources may rapidly be provisioned or released with
minimal effort. [[19]. This definition describes a model closely
related to the vision of the information architecture of the
factory of the future.

In the context of AutomationML such an information ar-
chitecture may be described as a service-oriented processing
of object-oriented distributed information models. Objects are
clearly identifiable and linked via literals and URIs across the
network. A communication technology exists that enables the
exchange of objects and processing information between the
network components. Architecture examples are Client-Server
Architectures, Publish-Subscribe Networks, Cloud Architec-
tures and IOT Platforms.

Data centric network-oriented communication technologies
with an object-oriented modeling approach are for example
OPC-UA (Open Platform Communications Unified Architec-
ture) and DDS (Data Distribution Service), for communication
in the field of industrial automation and machine to machine
(M2M) communication.

Examples that have already been implemented were in-
troduced in section There are applications of distributed
engineering where engineering artifacts in form of Automa-
tionML are synchronized within a repository on a network
server. Different views on that integrated data are provided
by server applications. In other use cases AutomationML is
used as a telegram type to transmit partial model data like
device configurations. Also the use of AutomationML models
at the runtime of a system as a distributed online data structure
hosting an asset administration shell in the context of 14.0
has been proposed. The concepts of AutomationML fit these
demands but details on the dynamics of the model have to be
elaborated. An open question is how changes in the model are
logically expressed or how versions and variants are explicitly
specified in AutomationML using for example the built-in
ChangeMode elements. Another open issue is how time-
critical communication based on AutomationML information
models may be enabled.

IV. IMPLEMENTATION STRATEGY

In this section a reference API and a file back end for Au-
tomationML developed at the Otto-von-Guericke University
will be presented. It was created as a proof of concept to
evaluate the Abstract API and provide feedback to evolve the
specifications. Additionally it should introduce support of a
new implementation language to the pool of AutomationML
backends. Further it should fit the requirements raised in
the academic context (platform independent, open and free
libraries and IDEs). It should be small, modular and built on
standard approaches.

A. AutomationML engine for Java applications

Java was chosen as the implementation language of the
planned reference engine and API as it addresses all the
mentioned requirements. In order to build a Java based API
from the specifications of the abstract API working group,
interfaces were created according to the list of identified
business objects. To create the file-based back end a very
popular approach was selected. AutomationML is entirely
expressed in the syntax of CAEX which is provided with a
formal specification in form of an XML-Schema file. Due to
the popularity of XML there are free XML support libraries
available for most programming languages.

According to Vinosky [20] its preferable to exploit the
power of binding libraries over low-level access like (DOM
or SAX) parsers to minimize impedance mismatch. Therefor
Java classes are annotated to instruct the binding support to
properly execute the transformation between XML and Java
objects called (un-)marshalling. Given an XML-schema it is
very easy to use a compiler shipped with the binding library to
automatically generate such an annotated object model. This
model implements all core functions for the manipulation of
CAEX files right away. To fit the demands of AutomationML
this model just needs to be extended by additional business
logic and objects conceptualized in the standard, as elaborated
in the Abstract API.

At this stage of development all core concepts identi-
fied within Abstract APl (e.G. RoleClassAssignment,
MirrorObject, ..) are represented as interface specifica-
tions with methods to read and write the values of their
features. However, the object signatures were incomplete and
did not yet cover all use cases (obviously given by the
standard). Following the agile software development approach
user stories were gathered and recursively decomposed down
to technical stories that can be addressed on the API level
created in prior steps. Assuming that each of this user stories
corresponds to a concept it should be represented as an object.
All of these objects are serious nominees to provide additional
signatures to the API.

B. Engine Realization

In table [I] the results of the decomposition of the story
“modeling an ethernet conection” is sketched. It shows that
the behavior is disintegrated to a hierarchy of several reusable
partial behaviors. For example the sub-stories for modeling a
graph fit the concept presented in [21] and may be applied to
several other stories (e.G the modeling dependencies, logistic
networks or processing orders). This behaviors may be imple-
mented in particular logical blocks. But to make use of the
effort spent in other stories the hierarchical dependencies may
directly be translated to inheritance relations. In case of Java
language there is the concept of derivation or the application of
the delegation pattern that fit this purpose best. The delegation
was favored for the reference engine because it implements a
loose coupling to maximize modularity. Also it helps to model
and implent types and there inheritance that are not known at

[ID | Story | Dependencies |

User Story

1 [modeling an ethernet conection | 234
Consistent Edits

2 Create a network container 5,6

3 Create a node 5,6

4 Create an edge 7,11

5 Add InternalElement to InstanceHierarchy 8,13

6 Instantiate a SystemUnitClass 8,12,14, ...
7 Link two Externallnterfaces 9,14
Utilities

8 Check if an ID is already assigned

9 Get highest common parent of two Ele- 10

ments

10 | Get parent of an Element

11 | Get Externallnterfaces of a specific type
from InternalElement

12 | Get ID of an Element

Object Model Modifications

13 | Add InternalElement to an InstanceHierar- —
chy
14 | Add InternalLink to InternalElement —

TABLE I
STORY DECOMPOSITION EXAMPLE

compile-time but at load-time or run-time of the system [22].
Therefor the adapter pattern was used.

Adapter types are offered to the application at run-time
by dynamically linked factories. Each object is wrapped by
suitable adapter to perform its behavior depending on the
context it is used in. Especially the application of roles
may be implemented in a semi-static way (type safe but
post compile-time). The drawback of this architecture is the
necessity of complex management code. For example the self
pointer (this) does not implicitly refer to the business
object and has to be forwarded from adapter to the adapted
object. This effects a lot of functions part of the standard
libraries that base their implementation on object identity (e.G.
compare (..) or equals(..) method).

Another issue in the implementation was the freedom to
leave out subtrees (containments) of AutomationML elements.
This does not imply that the containment has been deleted.
But the type system of Java presumes the existence of con-
tainments in an instance that are declared by a type. Therefore
the absence of an entity has to be asserted. The Java concept
of exceptions was chosen to represent the unexpected absence
of a containment. This way absence and removal of an entity
may be distinguished.

It also works out that three different types of functionalities
emerge within an engine:

o Consistent Edits modifying the content in the model
through the objects in a consistent way,

« Utilities that process complex queries on the model to
support the behaviors of the objects, and

¢ Object Model Modifications that allow direct access to
the object model without any further consistency checks.

Within the implementation process it was found that the

Complex Edits merely extend the Object Model Modifi-
cations, as they wrap all functions enforcing consistency
constraints. Therefore, method signatures in these pack-
ages are identical but show different semantics. For ex-
ample, the edit for adding an InternalElement to an
InstanceHierarchy (story 5) wraps the Object Model
Modification with the same functionality (story 13) and en-
forces the unique-ID constraint (story 8). The Consistent Edits
also introduce higher level functionality like creating an in-
stance from a SystemUnitClass. To represent the different
semantics preserving the same signatures different namespaces
for the Java package where used. An alternative solution would
be the definition of some kind of consistency level indicator.
Setting the value of this indicator would orthogonally integrate
the consistency preservation logic into the behavior of an
object. Since this is one of the key concepts targeted by aspect-
oriented architectures it was voted out of the object-oriented
reference implementation but should definitely be discussed as
a new implementation strategy for AutomationML.

V. SPECIFICATION TIERS

The following section will dive deeper into the nature of
the Abstract API specification and its implementation in the
Java reference APIL.

A. Packaging

Table [[M] lists all components of the AutomationML standard
currently available to the public [23]. The AutomationML
standard follows a layered architecture, where different tiers
of the specification depend on previous parts. For example, the
Communication whitepaper utilizes AutomationMLs capabili-
ties to model graphs [21] in order to represent communication
networks. Graph modeling for its part utilizes the Whitepaper
Part 1 to represent graph structures.

Developers implementing an AutomationML engine based
on the Abstract API should not be forced to implement every
single aspect, but should rather be able to implement only
a specific subset of the specification in order to optimize
the code for the intended use case and avoid unnecessary
overhead. Additionally, developers should be able to use
existing (tested and possibly certified) code to build additional
tiers of the specification on top of it. To take these design
requirements into account, the Abstract API groups different
interrelated parts of the standard into packages that can be
built on top of each other. As elaborated through the story
decomposition described in the previous chapter, at least three
distinct types of functions can be identified. For each tier, these
functions are grouped into separate sub-packages, namely:

o the Core-package, which provides basic access to all
AutomationML business objects of a specification tier,

« the Edit-package which allows modifications of the ob-
ject model consistent with the AutomationML standard,
and

« the Utilities-package that contains query-like and miscel-
laneous functions that are out of scope of the individual
business objects.

Document Identifier
Whitepaper (WP)
Arch N v’ v’
Lib v’
Geo

Logic
OPCUAAML
Comm
eClassAML

Best Practise Recommendation (BPR)
RefDes
Container
DatVar
RefVersion
MlingExp
MLA
EDRef
CstrRegExp

[Core | Edit | Utils |

Application Recommendation (AR)
APC
MES ERP

TABLE I
AUTOMATIONML SPECIFICATION TIERS

The current status of the Java engine is depicted in table

B. Additional Requirements

It can be stated that Java is incapable of expressing all
requirements of the specification directly on language level.
These inexpressible characteristics of the Abstract API col-
lected as “‘soft constraints” have to be annotated in natural
language to the code. Such constraints include for example
the computational complexity, which can vary among differ-
ent implementations, but must not exceed a certain limit in
order to fulfill certain timing requirements. For example, a
function providing a role-based service discovery mechanism
for AutomationML on a project level can be implemented
very efficiently using caching. However, when working with
distributed models, the operation can not be guaranteed to
terminate at all, as it might be unknown how many resources
exist at runtime that have to be discovered and involved.

VI. CONCLUSION

In this paper the current state of developments with Au-
tomation ML were outlined. In the following programming
paradigms and architectures were discussed to show the di-
versity of possible implementations. This makes up a good
starting point for the design of an applications architecture.
On the example of a Java implementation it is shown how
a general implementation for AutomationML might look like
and how it relates to the specifications of the Abstract API.
Beneath feedback to the Abstract API a major effort of this
paper is the identification of new challenges with emerging
scenarios of usage. Especially for the distributed web-based
operation of a ’living model” it has to be worked out how time
critical information exchange may be realized or how division
of labor and release processes in engineering and operation of
systems may be implemented on AutomationML. This issues
will be part of future work of the authors.

[1]
[2]
[3]

[4

=

[5]

[6

=

[7

—

[8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]

[21]

REFERENCES

E. Yemenicioglu and A. Liider, “Implementation of an automationml-
interface in the digital factory simulation,” October 2014.

H. Hémmerle, A. Strahilov, and R. Drath, “Automationml im praxisein-
satz,” atp magazin, vol. 58, no. 05, pp. 52-64, 2016.

A. Liider, N. Schmidt, and M. John, “Lossless exchange of automation
project configuration data,” in 2016 IEEE 21st International Conference
on Emerging Technologies and Factory Automation (ETFA), pp. 1-8,
Sept 2016.

K. Stark, T. Goldschmidt, J. Doppelhamer, P. Bihani, and D. Goltz,
“Cloud-based integration of robot engineering data using automationml,”
in 2018 14th IEEE International Conference on Automation Science and
Engineering (CASE), 2018.

J. Prinz, A. Liider, N. Suchold, and R. Drath, “Design &
engineering—automationml—integriertes engineering durch die stan-
dardisierte beschreibung mechatronischer objekte durch merkmale,”
VDI/VDE: Automation, vol. 12, 2011.

M. Schleipen, “A concept for conformance testing of automationml mod-
els by means of formal proof using ocl,” in 2010 IEEE 15th Conference
on Emerging Technologies Factory Automation (ETFA 2010), pp. 1-5,
Sept 2010.

R. Drath, Datenaustausch in der Anlagenplanung mit AutomationML:
Integration von CAEX, PLCopen XML und COLLADA. Springer-Verlag,
2009.

L. Berardinelli, S. Biffl, E. Maetzler, T. Mayerhofer, and M. Wimmer,
“Model-based co-evolution of production systems and their libraries
with automationml,” in 2015 IEEE 20th Conference on Emerging
Technologies Factory Automation (ETFA), pp. 1-8, Sept 2015.

T. Mayerhofer, M. Wimmer, L. Berardinelli, and R. Drath, “A model-
driven engineering workbench for caex supporting language customiza-
tion and evolution,” IEEE Transactions on Industrial Informatics,
vol. 14, pp. 2770-2779, June 2018.

S. Ananieva, E. Burger, and C. Stier, “Model-driven consistency preser-
vation in automationml,” in [4th IEEE International Conference on
Automation Science and Engineering, August 2018. accepted, to appear.
M. Sabou, F. Ekaputra, O. Kovalenko, and S. Biffl, “Supporting the
engineering of cyber-physical production systems with the automationml
analyzer,” in 2016 Ist International Workshop on Cyber-Physical Pro-
duction Systems (CPPS), vol. 00, pp. 1-8, April 2016.

S. Makris and K. Alexopoulos, “Automationml server - a prototype data
management system for multi disciplinary production engineering,” Pro-
cedia CIRP, vol. 2, pp. 22 — 27, 2012. 1st CIRP Global Web Conference:
Interdisciplinary Research in Production Engineering (CIRPE2012).

D. Winkler, S. Biffl, and H. Steininger, “Integration von heterogenen
engineering daten mit automationml und dem aml. hub: Konsistente
daten iiber fachbereichsgrenzen hinweg,” develop3 systems engineering,
3, pp. 62-64, 2015.

A. Liider, M. Schleipen, N. Schmidt, J. Pfrommer, and R. HenBen, “One
step towards an industry 4.0 component,” in 2017 13th IEEE Conference
on Automation Science and Engineering (CASE), pp. 1268-1273, Aug
2017.

R. Rosendahl, A. Cald, K. Kirchheim, A. Liider, and N. D’Agostino,
“Towards Smart Factory: Multi-Agent Integration on Industrial Stan-
dards for Service-oriented Communication and Semantic Data Ex-
change,” in Proceedings of the 19th Workshop “From Objects to Agents”,
pp. 124-132, Jun 2018.

M. Wenger, A. Zoitl, and T. Miiller, “Connecting plcs with their
asset administration shell for automatic device configuration,” in 2018
IEEE 16th International Conference on Industrial Informatics (INDIN),
pp. 7479, July 2018.

M. Mezini, Incremental Variations in Object-Oriented Programming,
pp. 1-41. Boston, MA: Springer US, 1998.

J. Ameling, Gestaltung der Wissensbasis von Unternehmen, pp. 121—
189. Wiesbaden: Deutscher Universititsverlag, 2004.

P. Mell, T. Grance, et al., “The nist definition of cloud computing,”
2011.

S. Vinoski, “The more things change,” IEEE Internet Computing, vol. 8,
pp- 87-89, Jan 2004.

A. Liider, N. Schmidt, and S. Helgermann, “Lossless exchange of graph
based structure information of production systems by automationml,”
in 2013 IEEE 18th Conference on Emerging Technologies Factory
Automation (ETFA), pp. 1-4, Sept 2013.

[22]

[23]

K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-
oriented domain analysis (foda) feasibility study,” Tech. Rep. CMU/SEI-
90-TR-021, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, 1990.

AutomationML e.V., “Publications of the automationml associa-
tion.” available at https://www.automationml.org/o.red.c/publications.
html (16.10.2018).

https://www.automationml.org/o.red.c/publications.html
https://www.automationml.org/o.red.c/publications.html

	Motivation
	AutomationML Software ecosystem
	Implementation Architectures
	Storage-Orientation - "Machine Languages"
	Processing-Orientation - "Abstract Data Types"
	Object-Orientation - "Model Driven"
	Encapsulation
	Abstraction
	Inheritance
	Polymorphism

	Networking-Orientation - "Cloud"

	implementation strategy
	AutomationML engine for Java applications
	Engine Realization

	Specification Tiers
	Packaging
	Additional Requirements

	Conclusion
	References

