
Improving the transition and modularity of the virtual commissioning

workflow with AutomationML

Dr.-Ing. Anton Strahilov, EKS InTec GmbH, Weingarten, Germany
M.Sc. Ender Yemenicioglu, tarakos GmbH, Magdeburg, Germany
Dipl.-Ing. Mario Thron, IFAK, Magdeburg, Germany
Dipl.-Ing. Holger Zipper, IFAK, Magdeburg, Germany
Dr.-Ing. Matthias Riedl, IFAK, Magdeburg, Germany
Dipl.-Inf. Ulf Zimmermann, TWT GmbH, Stuttgart, Germany

Dipl.-Ing. Ireneus Wior, TWT GmbH, Stuttgart, Germany

M.Sc. Sebastian Süß, Daimler AG, Ulm, Germany

Abstract
In Virtual Commissioning, the real plant is replaced by a virtual model, which is connected to a real or

simulated plant controller. Virtual commissioning allows engineers from various fields to work

together on a common virtual model. Out of this, the challenge arises to combine several

engineering tools in a heterogeneous landscape into a single engineering workflow efficiently. In the

AVANTI project, existing issues and bottlenecks of the virtual commissioning workflow were

investigated, and new software components were developed to improve the data exchange between

different tools and communication between modules. The aim was to enhance the level of maturity

in virtual commissioning through newly introduced data exchange solutions. The AutomationML

format lies at the core of these efforts, as it can include many different aspects of the mechatronical

engineering process.

1. Motivation
The design process of manufacturing systems is challenged by the demands of today’s continuously
changing and competitive global market. The need to produce high-quality products at low costs, to
adapt to shortened product life cycles, and to provide customization options for end users can only
be handled with more agility, digitalization, and standardization. Virtual commissioning (VC) is an
effective method to test the functionality of an automation system by running simulations on a
realistic virtual model of the system and evaluate “what-if” scenarios. Engineering information used
in this simulation process consists of several components including geometry, kinematics, further
physical attributes, automation-relevant aspects like pneumatic and electric plans, and other
information types. The engineering process workflow is characterized with highly specialized tools
and data formats for each of these information types, which are often incompatible with each other.
The fact that these software components should work together brings out the need for data
exchange and standardization.

The primary goal of the project AVANTI was to enhance the level of maturity in VC through physical
based simulation, improved behavior models, automatic derivation of tests and improved data
exchange solutions. Existing issues and bottlenecks of the engineering workflow were investigated,
and some solutions to improve transition and modularity of the VC workflow were introduced.
Thereby, improved transition means implementation of new date exchange components to enhance
the interoperability. Also, the improved modularity represents the better distribution of the tasks
with the possibility of more software tools/systems joining the VC toolchain.

Concerning these aspects, AutomationML (AML), which combines different engineering standards for
topology, geometry, kinematic, logic and other XML-based standards, was selected for the
description of production systems due to its capacity to cover a broad range of engineering fields.

The exploitable results of the AVANTI project are new AML export/import interfaces for existing
engineering tools like NX-MCD and the tarakos software kit, the combination of FMU(standardized
behavior models) and AML for behavior model exchange, a co-simulation implementation, and an
automated test generation. Additionally, a prototype implementation of a Communication Platform
(CoP) was realized to ease the exchange of engineering data between project partners.

One of the benefits of using AML is the optimized data exchange within the workflow (transition),
which reduces the loss of information. Additionally, introducing a vendor/tool-independent format
like AML liberates the engineering service providers from the dependence of the IT-tools used in the
workflow of their customers. The vendor-independence improves the attractiveness for new
potential customers because new clients are not forced to adapt their proprietary workflows and IT-
Tools to the service provider and vice versa.

2. Toolchain of Virtual Commissioning
The typical procedure in production planning demands to make use of a multitude of engineering and

planning tools, which are combined by data exchange components into a toolchain. A project-wide

view and control, independent of individual engineering tools, is required for VC. An essential basis for

VC are data models of all relevant components of a production system; covering structure, geometry,

kinematics, behavior, and relations/dependencies [1]. The extracted data can be used for testing and

validating the PLC programs and visualizing the simulation process. The testing of the PLC can also be

automated with the help of behavior models and test descriptions.

2.1. Modeling concept
Nowadays VC has established as an important part of the engineering process of production systems.

There are different phases in the mechatronical engineering process beginning with the product

design, continuing with layout planning, functional engineering and ending with commissioning and

production (see Figure 1) [2]. VC starts during the functional engineering and proceeds into

commissioning. A virtual model of the whole production system is prepared based on data generated

in these phases of the engineering process.

Figure 1 Phases of the mechatronical engineering process for production systems

The virtual model reproduces the correct operation of all parts of the real production system which

influence or which are influenced by the control software and hence which are essential for testing

this control software. In the test setup, the tested control software (PLC program) is not simulated but

runs on the real PLC hardware. From a practical point of view, a virtual model can be divided into a

behavior model and a 3D geometry model [3].

A behavior model describes the logical behavior of a component and maps its reaction to an input

signal on its output signal [4]. The behavior model of the whole production plants is built up based on

the individual component behavior models. The component manufacturer doesn’t always provide

behavior models of components (MBM - Manufacturer Behavior Model). Therefore, each

company/user develops its component behavior models independently (UBM – User Behavior Model)

following their particular standard.

A 3D geometry model represents the mechanics of the production plant [5] [6]. It visualizes the

movement of each component depending on the control signals of the PLC program. Thereby, the

component’s movement is calculated by a corresponding behavior model. Additionally, the material

flow is integrated into the production system and visualized in the same model [7]. In practice, 3D

geometry simulations and behavior simulations most often are executed not on one but different

specialized simulation tools [4].

Furthermore, because of its complex movement the simulation of an industrial robot has to be

performed separately from the simulations of the other components and then visualized in the 3D

geometry model. For this purpose, the robot controller is emulated [8]. It is responsible for the

execution of the native real robot program without considering changes performed during the VC.

Similar to the behavior and 3D geometry simulations, an additional tool is used to simulate the robot’s

movement following the commands received from the emulated or real robot program.

2.2. Enhancements on the virtual commissioning toolchain
AutomationML is a neutral data exchange format, which includes the different facets of plant

engineering. It has been stepwise adopted as a standard data exchange format for engineering-related

data in AVANTI project. In Figure 2, the current toolchain of VC by EKS InTec and DAIMLER is presented

together with different tools from project partners. The red highlighted connections were developed

within the AVANTI project.

Figure 2: Toolchain of VC of productions systems for the automotive industry before and after the AVANTI project. The
AVANTI project extended the toolchain with the parts highlighted by red boxes.

An Excel-based assistance tool is utilized to prepare a behavior model of the whole production system

based on the user behavior models (UBM). On the one hand, these UBMs are created and stored as

macros with WinMOD. On the other hand, the behavior model of the whole production system is

executed in WinMOD. Finally, WinMOD exchanges in real time signals with the PLC and transfers

calculated position signals to RF::SGView. Within the presented toolchain, the software tool

RF::SGView is responsible for the visualization of the system movement during the VC. The tool

RF::RobSim interprets the native robot programs and calculates the axis positions for each simulation

step to realizing the robot movements. RF::HMI is additionally used to visualize and modify simulation

results during VC independent from the other tools. A shared memory technology (the so-called Y200)

is exploited for the Interprocess Communication (IPC) between all mentioned tools.

Before the AVANTI project, the usage of AutomationML was limited with the transfer of 3D geometry

models to RF::SGView. These 3D geometry models are the ones that are prepared and used for the

virtual engineering of the system. In practice, only two virtual engineering tools can export simulation

models in an AutomationML format, namely DELMIA V5 and Process Simulate. Although these tools

can export the system’s kinematics and 3D geometry, no connection to the system’s behavior models

is made.

In the frame of the AVANTI project, the toolchain of VC is enhanced by three significant changes:

1. Different tools are extended by AutomationML import and/or export functionalities. An export

feature is introduced into the CAD tool NX-MCD (NX Mechatronic Concept Designer) and the

simulation tool taraVRBuilder (Figure 2-1) to export 3D geometry and kinematic models of

production systems as AutomationML files (AML and Collada). Additionally, the simulation tool

taraVRControl, as well as NX-MCD (Figure 2-2), are extended to import 3D geometry and

kinematic models from AutomationML files.

2. The toolchain is extended to include improved behavior models of components. Thus the

modeling of the whole manufacturing system is improved by a physically more reliable and

more detailed reproduction of the component behavior. The included behavior models (i.e.

UBM and MBM) are defined as Functional Mockup Units (FMU) (Figure 2-3) based on the

Functional Mockup Interface standard (FMI), which is a commonly used tool-independent

standard for the exchange and coupling of simulation models [9]. The utilized behavior models

are prepared and provided by the component manufacturer with the corresponding expertise.

Finally, a real-time co-simulation tool, which interacts with the other tools by the same shared

memory technology, is developed to include the FMU behavior models to the toolchain,

3. The software system RF::EOC is developed to provide the co-simulation with a behavior model

of the whole production system. RF::EOC constructs and configures the entire system’s

behavior model based on existing component behavior models provided as FMUs by an MBM-

library (Figure 2-4 and 5).

The resulting data is also used for creating a virtual scene with a physics engine for a realistic

visualization. With the help of co-simulation, other engineering solvers can be added to the simulation,

too. As a result, a physics-based visualization excluding scripting can be produced. In physics-based

animation, kinematic rigid bodies affect the motion of other rigid bodies through collisions or joints,

which improves the reality of the simulation. It is also possible to model effects of sensors, actors and

other production related elements. Simulation results can be visualized at real-time (runtime

visualization), or a post-run visualization could be necessary because of performance issues and to

provide high fidelity of the outcome.

The simulation results like the sensor signals or collision reports can be used by a test system to

improve the validity of the VC. An automatic test generation tool is also another system component,

which is generated in the AVANTI project (see the following section 2.3).

2.3. Automated test generation for virtual commissioning
Figure 3 depicts the structure of an automated test bed as used within the AVANTI project for testing

of industrial control programs.

Controlled
System

(virtualized)

Control System
(SUT)

Evaluation

Measurement
ValuesControl Signals

Stimuli

Observations

Test System

Stimuli

Observations

Report

Test
Cases

Testing
Engineer

Figure 3 Structure of an automated test bed for the VC

A test engineer makes use of a test system for automated testing of a control program. The resulting

report provides hints of possible malfunctions in the tested control program. The test cases have to

be described formally for the purpose of automated testing. They contain descriptions of the test

stimuli, the expected behavior of the control program and optional templates for human readable

descriptions of test results.

With the test system developed in the AVANTI project, the test engineer can perform multiple tests

executed as a batch. During a test, the test system stimulates and observes the control system, as

well as the simulated mechatronic component models. Additionally, the test system can reset the

control programs and simulation models. Finally, it creates a test report.

The test cases have to take into account not only the correct behavior of mechatronic components

but also their malfunctions. For example, in the case of a malfunction, the control programs have to

save the health of operators and machine parts, and additionally they have to signal the malfunction.

Therefore, the behavior descriptions of the mechatronic components have to provide variants for

normal and faulty behavior, to be addressed within different test cases.

3. Implemented functionalities

To tackle the identified bottlenecks on the workflow in the AVANTI project new software

components for data exchange were developed. Some of these software components are add-ons

for existing software tools, and some of them are entirely new systems. These software components

will be explained in details in the following sections.

3.1. Y200-FMI Connector

The FMI standard for VC is applied as an extension of the current toolchain shown in Figure 2. Using

the FMI standard, the modeling of component behavior models is omitted partially, because users only

have to adapt prepared component behavior models (MBM) regarding their proprietary standards

(UBM), if required, e.g. Signal names, additional signals, particular signal’s dependencies, etc.

Furthermore, a tool-independent simulation of behavior models via FMI as FMUs is feasible. A co-

simulation environment is utilized to fulfill soft real-time requirements and to include FMU behavior

models. The FMU behavior models are configured and bundled as a co-simulation setup and executed

by the co-simulation software system. The Y200-FMI Connector provides an interface between

WinMOD’s Y200 shared memory interface and the FMI used in co-simulation. Y200 supports different

exchange data formats and allows for multiple concurrent interprocess communications. Furthermore,

applications like the robot simulation (via RF::RobSim) and the HMI (via RF::HMI) also communicate

with WinMOD and co-simulation via the shared memory component.

In AVANTI, linking FMUs with AutomationML was analyzed and the possibility to link signals of behavior

models to kinematic axes of 3D geometry models was the particular focus (Figure 4). Currently, linking

between these models is not enabled by CAD/simulation tools, which can export AutomationML data.

Therefore, using an additional configuration/assistance tool of behavior models for production

systems is required.

Figure 4: Linking of signals between 3D geometry and behavior models via AutomationML

It is conceivable to extend RF::EOC with functionalities, which enable the linking of behavior model

with kinematic and stored this information directly in AutomationML. Of course, an automated linking

of both models can also be achieved, provided that an explicit identification between kinematic and

behavior model is taken. For this purpose, each user has to define own standards and workflows.

3.2. NX-MCD Export for AutomationML
Regarding the integrated export functionalities for the CAD tool NX-MCD, each user can export his 3D

geometry model as AutomationML data and perform if required, the VC of a production system.

Thereby, two significant benefits are identified. The first one is the data exchange between

CAD/simulation tools and VC tools without loss of data. In similar cases, other data formats can storage

only partial data, e.g. 3D geometry, colors, topology, kinematic, links to behavior models, etc. As a

consequence, additional modeling has to be done for the purpose of VC, e. g. Modeling of kinematic

of production system provided as STEP file. Furthermore, users are not obligated to use the VC tools,

which are only compatible with a particular CAD/simulation tool. For a VC tool provider, their tools are

independent of other CAD/simulation tools, which are used by their current/further customers.

Concrete in AVANTI project, one CAD tool (NX-MCD) and simulation tool (taraVRBuilder) was added to

the toolchain without any necessity to modify the other VC tools (RF::Suite).

3.3. tarakos Export and Import for AutomationML
tarakos software tools join the VC workflow at the beginning with taraVRBuilder and at the end, as a

visualization tool for physics simulation results with taraVRControl. In Figure 5, the positioning of

tarakos tools in VC toolchain is presented.

Figure 5 Positioning of tarakos software tools in VC toolchain

The first step in the toolchain of tarakos is the importing of 2D/3D layout and component files to

create a 3D scene in taraVRBuilder. This step is not always essential because it is also possible to

build a scene with standard library components of the tool. The position of the manufacturing

objects and the logical structure of the material transfer like which element is connected to which

one can be described in taraVRBuilder. This information together with the 3D geometry can be

exported with the implemented AML export function. After exporting, the content of the data can be

enriched by other tools in the work chain. The kinematics and physics of the object models can be

included in the AML or COLLADA file. As the next step, the physics scene should be created with the

entire information and connected with co-simulation. taraVRControl can connect directly with

physics engine as a visualization component or can connect indirectly through the co-simulation

environment.

The second demonstrator is a material handling system, which is also present as hardware. This use

case demonstrates the project results for physics simulation, co-simulation connection and testing

system with automated test execution for PLC. The goals for the use case are:

 Realistic simulation of the virtual material handling system

 Systematic testing of the system

 Comparison of the results with the real system

A real material handling system from the partner company FESTO has been established to compare

the simulation results of the virtual system with the actual behavior. The geometry of the system has

been imported into taraVRControl software, which provides the visualization for the physics

simulation as seen in Figure 6. The behavior of the individual logical elements is defined in FMUs. The

test system for automated testing uses the sensor signals from simulation environment and signals

from the logical components to execute the tests. Software components participating the simulation

are exchanging signals with each other through the co-simulation framework.

Figure 6 Material handling system use-case visualized in taraVRControl

3.4. Automated test generation tool
An automated test generation tool has been produced during the AVANTI project. The material

handling demonstrator, which is mentioned above (Figure 6), is the also utilized for showing the

implemented functionalities of the test tool.

Three approaches for the integration of healthy and faulty behavior of mechatronic components into

FMUs for the purpose of automated testing were developed [10]:

1. Polymorphic behavior description: different variants of normal and faulty behavior are
embedded into the same FMU. The test system addresses the corresponding behavior
variant to evaluate a particular test case.

2. Dynamically changeable behavior description: the healthy behavior is provided by an inner
FMU. The faulty behavior (which can be caused by events or elements of the process
context) is modeled by a scripting language within a wrapper FMU including the inner FMU.

3. External description of faulty behavior: the test system may trigger events within a 3D
Visualization FMU, which represents the shape and physical behavior of mechatronic
components as well as sensors and actors. The sensor and actor signals are exchanged with
the control system by using the FMI technology. In opposite to the other approaches,
disturbances triggered by the test system become visible for the test engineer by using this
method.

These approaches have different degrees of reusability and flexibility and result in the different effort

for component manufacturers (which commonly are editors of the component behavior descriptions)

and test engineers. Furthermore, these three approaches can be combined.

The demonstrator mentioned uses architecture as depicted in Figure 7:

Component
FMU 1

3D Visuali-
zation FMU

Component
FMU n

Control Sys.
Gateway

FMU

FMI Co-Simulations-Master

…

Control
System
(SUT)

Embedded Test System

Figure 7 Architecture of the test bed for the AVANTI transportation system demonstrator

An FMU of the demonstrator is a DLL-file within a ZIP-container and includes executable simulation

models, which are operating system-dependent, as well as an interface description. These simulation

models can be generated by modern simulation tools (see https://fmi-standard.org/tools) or are

compiled using portable C or C++ code. Interface descriptions (modelDescription.xml) of FMUs are

based on XML [11] and include, for example, descriptions of the inputs and outputs of the FMU

considered.

The control program is executed on a real industrial control system (PLC) and communicates via a

Control System Gateway FMU with other FMUs of the test bed. A 3D simulation tool is integrated in a

similar manner. Furthermore, behavior models of the component FMUs are constructed according to

one of the three approaches mentioned previously. The test system is integrated into the FMI Co-

Simulation Master since it requires information of nearly all FMUs. An example of a test report

prepared by the test system is presented in Figure 8. Failed tests are marked with a red cross in the

test report because the observations do not fit the expected behavior. They indicate a possible error

in the control program.

Figure 8 User interface for the test system, which is running on the material handling system demonstrator of the AVANTI
project

https://fmi-standard.org/tools

The engineering process to prepare the VC set-up is complicated because each control system

interface has to be connected with the corresponding simulation models of the mechatronic

components correctly. Future engineering tools (CAD, ECAD, PLC programming IDE, etc.) will provide

an engineering process based on AutomationML with pre-connected data models. For the reduction

of efforts within the configuration process of simulated test environments, it must be possible to

reference a behavior model of a mechatronic component within AutomationML files. Within the

AVANTI project, an approach for referencing FMI based behavior models within AutomationML files

was used (see Figure 9) in according to results of the research project inITial [12]. That approach is

described in the following.

Figure 9 Interconnection of behavior simulations to PLC programs within AutomationML [8]

AutomationML provides features to describe the structure of a production system regarding a

hierarchy of mechatronic components, which are represented by individual data objects called

InternalElements (IE). These IEs can be linked to each other using InternalLinks (IL).

An IL connects two information endpoints, the so-called partner sides, of the link. The information

endpoints are addressed using CAEX ExternalInterfaces (EI), which are derivatives of AML standard

interfaces. Information endpoints for the exchange of geometry and kinematics data are addressed

using a COLLADAInterface, while endpoints for the transfer of control program parts are addressed

using a PLCopenXMLInterface.

In the AVANTI project, an abstract FMUInterface has been utilized with the parent class

AutomationMLInterfaceClassLib/AutomationMLBaseInterface/ExternalDataConnector. It identifies

child interfaces as being related to the FMI technology.

Additionally, a generic VariableInterface was derived directly from that FMUInterface. It inherits an

attribute called refURI, which denotes a Unified Resource Identifier (URI) and is of type xs:anyURI. A

URI contains the following syntax elements: scheme, authority, path, query, and fragment [RFC3986].

The fragment of a VariableInterface refURI attribute value must contain the name of a scalar variable

model (ScalarVariable) of an FMU interface description (modelDescription.xml). All other syntax

elements of the URI must refer to a file or an internet-based resource that addresses an FMU.

Furthermore, a fragment of a URI follows directly after the delimiter '#' according to [13]. Thus, the

example refURI value is shown in Figure 9 (bordered with red) refers to an FMU (st_behavior.fmu)

located within a local file system. It addresses the model variable 'varX' of that behavior model.

This approach enables control program variables to be associated with behavior model variables

using AutomationML. It is the key to the efficient integration of FMI-based behavior models into

automated testing of control programs. Finally, it can be used for a partial configuration of FMI co-

simulation masters.

4. Communication Platform
The CoP is a web-based software system to allow shared access to model data. The essential

functionality of the COP is the data exchange of project information regardless of the location. It also

provides some necessary services like version management, data security, role management, etc.

4.1. Architecture of the Communication Platform
Regarding current considerations of the AVANTI project and the knowledge about existing exchange

platforms which are used in various industrial fields, e.g. in software development or in mechanical

component development, the specification of the CoP was evolved for the AVANTI project and the

respected partners. The developed architecture is visualized in Figure 10. It presents a simplified

overview of the architecture of CoP.

Figure 10: Overview of the Communication Platform architecture

This structure is divided into two sub-architectures. The first sub-architecture focuses on the structure

of the server of the CoP, namely whatever is required to save, manage and exchange files from one

user to another. The server architecture also includes the user rights management relating to the use

of the platform and the processed data. One of the important tasks of the architecture is to define the

structure of the underlying database. This structure contains the information about user accounts,

files, and modifications. MySQL database, which offers all required functionalities to store and

exchange the data needed by the server, has been chosen for this purpose. MySQL also provides an

Application Programming Interface (API), which can be used to connect web applications with the

database [14].

The second sub-architecture involves the structure of the User Interface (UI) which is available to each

user. With the UI each user can transfer files or complete models to the server and from the server.

The UI will be dependent on the dedicated user rights that are stored in the database. They influence

the appearance of the UI and limit or unblock functionality of each user suitable to its rights.

To implement the data exchange between both subsystems, they communicate with each other via

the standard Internet communication protocols. So, one important requirement concerning the data

security to the CoP was, to use secure data transfer between both involved systems (i.e. server and

database). Regarding this condition, the chosen communication protocol must provide data

encryption, e.g. https, or if the data is transferred through an unencrypted protocol like HTTP, the data

must be encrypted before it will be transferred between client and server and it has to be decrypted

on the destination end of the connection. This transfer can be for instance achieved by using VPN

(Virtual Private Network) connection between client and server which is encrypted, and then data

transferred inside this tunnel connection can be transferred in an unencrypted format.

Data encryption should be conducted automatically by the software without explicit handling from the

user. For the prototypical implementation of the CoP the communication protocol https was used,

because an implementation of an encryption application is complex and would be above development

time and budget in AVANTI for the CoP. Encryption is a standard technology, and the usage of already

existing implementations is preferred instead of a reinvention. Despite that, a further step could be to

integrate an encryption system to increase the security of the file transfers between users and server.

Another important point of the communication is the additional transmitted CoP-List which contains

information about the files that a user will send to or receive from the server. Based on the information

included in this file, the CoP deduces the state of the files. Thereby, the CoP application determines if

a file is modified or not as well as whether that file version is older than the current file version on the

server or not. Regarding the various states of the files, the application decides how to process each file

and gives feedback to the user via the web interface. In specific cases, the user should take the decision

about what the CoP has to do with the file.

The web interface is also part of the CoP architecture because it is the tool the user interacts with and

where file exchanges with the server are realized. Based on the defined requirements of the CoP, the

web interface must be easy and intuitive to operate. Another requirement to the UI respectively the

web interface is that it could be used with common web browsers that support the latest HTML5

standard [15]. The advantage of the choice of the web-based solution instead of standalone client

architecture is that for the users of the CoP no additional software needs to be installed, and the

solution is independent of the client’s operating system. Another advantage of the web-based solution

is that no maintenance to additional software and no additional updates must be done on the client’s

side. Current development of the web standards allows generating simple, responsive, and easy to use

user interfaces with a moderate amount of development work mostly due to no need for operating

system or client’s side system configuration to be concerned.

https://dict.leo.org/#/search=reinvention&searchLoc=0&resultOrder=basic&multiwordShowSingle=on

From this point of view, the development in AVANTI was focused mainly on the internet browsers

following the current web HTML5 standard, because of their widespread use in the industry and

academia. The server side processing will generate web codes compatible with the current client

browsers limiting client side requirements. Javascript and AJAX (see [16] for more information) on the

client side will, in turn, allow for creating reach user experience with asynchronous communication to

the server alleviating the need for full page refreshing to update client’s view.

4.2. Implementation of the Communication Platform
As previously said, a web-based user interface enables an easy usage of the CoP across different

locations (see Figure 11). A user logging is required for CoP similar to most websites. For this purpose,

CoP’s administrator has to create an account for each user and define a username and a password.

During first logging, each user is requested to change his password provided by the administrator.

Figure 11 The web-based graphical user interface of the Communication Platform

After the successful logging, the user gains rights to all projects, which are associated with his account.

For example, if the user is the project manager, he has the right to edit the project. If required, a project

manager can change all attributes of a project, e. g. Name, description, roles, add or remove users

from the projects, and change rights of users.

The project editing section is divided into the three fields “Project,” “Sections,” and “User/Group.” In

the field “Project,” project based information are stored, e. g. Title, description, etc. Field “Sections”

contain all defined sections for the project. These sections represent an additional project division,

e. g. Mechanic, electric, pneumatic, PLC software, etc. On the one side, this section serves to create

an overview of the several project contents and, on the other side, provides the distribution of access

rights to users. A fixed section structure is not provided by CoP directly and has to be defined by the

project manager. As next field, “User/Groups” enabled distribution of user accesses rights to the

sections and editing/removing of users to the project. During the adding of a user to the project, the

current user receives rights for a minimum of one group and with this, rights to one section. As an

example, a user with the permission for the group „mechanic construction“ receives automatically

rights to the section “mechanic design.”

Under the section “Rolelist,” all roles and groups defined into CoP can be edited, added or removed. A

clear distinction between roles/groups, which are provided by CoP, and roles/groups, which are

defined project specific, was made in AVANTI. Thereby, CoP also enables to derive project specific

roles/groups from already existing CoP’s roles/groups. Additionally, to the project management, the

new user as well as groups can be added to CoP project independently via the functions provided in

section “Admin ElementsUser/Groups.”

In each section, users can add files to the section. For this purpose, the user has to choose a local

folder, which contains the target files. As the following step, a list of all files contained in the current

folder provided via the user interface. In this list, additional information is also given about the status

of each file, e. g. New file, removed file, changed file, etc. Furthermore, each/all files into a section

can be downloaded.

4.3. Integration of Communication Platform to the toolchain
The CoP could be used to exchange several files between the tools into the toolchain. As an example,

a 3D geometry model is changed via a CAD/simulation tool. The modified model has to be exported

via an AML exporter and provided as AutomationML files for the purpose of VC via CoP. At the same

time, a robot program was also changed by robot programmer and uploaded to CoP. Consequently,

the user, who is responsible for the preparation of models for VC, receives information about both

updates, and can regard these changes. As a further option, CoP can be extended by functionalities to

read and interpreted AutomationML files directly and identify changes based on file contents.

5. Business opportunities with the improved toolchain
AML provides a standardized data format for the exchange of behavior models between various

applications. Enabled by AML, the component manufacturer has a standardized, easy to use, and

reliable distribution channel for his component behavior models. The component manufacturer has

the opportunity to provide and sell behavior models together with support as an additional service.

With an AML improved toolchain, the OEM can utilize behavior models more accurately, easier and

faster. With those, the OEM can specify its requirements more precisely and with more details.

Based on a more precise requirement specification the OEM can request from the production line

manufacturer a better fulfillment of his requirements. Additionally, the OEM’s ability increases to

evaluate if its demands are fulfilled (after the delivery of the product but also partly during the

product’s production process).

Reusable physical component models and existing data exchange interfaces reduce the engineering

effort to build up simulation models. If physical component models are provided and a physics

engine is available, the need to prepare a separate animation of the components is eliminated. This

reduces the development effort when introducing new component models into the software tool.

Based on improved VC models and more precise requirement specifications the tester can guarantee

and sell higher test safeguarding and test coverage. With more reliable models of the plant and the

requirements, an automatic test execution becomes possible allowing for better test coverage in less

time and with less manual adaptations.

It is still a common practice in the industry to exchange data by email and often changes are not

communicated with the person who prepares the simulation models for the VC. As a consequence,

simulation models used for the evaluation of PLC programs are not up to date, and the evaluation

becomes insufficient. In most cases, such data changes and outdated models are identified only

when the real system is already constructed. Consequently, the PLC programs are modified and

corrected under high time pressure. To prevent those problems, the CoP provides an environment to

exchange data during the development process of production systems. The primary role of CoP is to

provide various project partners with different backgrounds, e. g. Mechanical engineers, electrical

engineers, software engineers, etc., with a tool for a reliable data exchange. Thereby, changes or

updates are communicated to all project partners and logged into a management system.

Regarding CoP, two different business opportunities can be identified. First, CoP can be developed

and provided to the users as an independent tool. In this case, one company is responsible for

developing CoP and supporting its customers. Second, a company develops CoP and is in charge of its

support and update. In both cases, CoP’s users can use CoP to exchange data internally as well as

externally with project partners.

6. Summary
In this paper, improvements of the communication in the VC toolchain are presented, which were

developed in the AVANTI project. Four main enhancements are introduced: 1) different tools like NX-

MCD and the tarakos software kit are extended by AutomationML import and/or export

functionalities, 2) behavior models of components are defined as FMU models and combined in a co-

simulation, 3) a tool for automated test generation for PLCs is developed, which utilizes behavior

models and test descriptions, and 4) a communication platform is created for the data exchange

between project partners.

The AutomationML format is a core part of these efforts as it includes different information aspects

of the production planning. It is a standardized, easy to use, and reliable distribution channel for

virtual models. As the maturity of VC models is improved and requirement specifications are defined

more precisely, it becomes possible to guarantee and sell higher test safeguarding and test coverage.

Based on that, an automatic test execution becomes possible, that allows for better test coverage in

less time and with less manual adaptations. With the help of the CoP various project partners of

different backgrounds have a solution for reliable data exchange.

References

[1] M. Bergert, S. Höme and L. Hundt, "Verhaltensmodellierung für die Virtuelle Inbetriebnahme,"

in VDI Wissensforum GmbH (Hg.): Tagungsband Automation, 2010.

[2] A. Lüder, L. Hundt and S. Biffl, "On the suitability of modeling approaches for engineering

distributed control systems," in 7th IEEE International Conference on Industrial Informatics,

2009.

[3] F. Damrath, A. Strahilov, T. Bär and M. Vielhaber, "Establishing Energy Efficiency as Criterion for

Virtual Commissioning of Automated Assembly Systems," in Procedia CIRP 23, 2014.

[4] S. Süß, A. Strahilov and C. Diedrich, "Behaviour Simulation for Virtual Commissioning using Co-

Simulation," in 20th IEEE International Conference on Emerging Technologies and Factory

Automation, Luxemburg, 2015.

[5] A. Strahilov, M. Mrkonjić und J. Kiefer, Development of 3D CAD simulation models for virtual

commissioning, Karlsruhe: Proceedings of TMCE 2012, 2012.

[6] J. Kiefer, M. Bergert und L. Ollinger, „Virtuelle Inbetriebnahme – Standardisierte

Verhaltensmodellierung mechatronischer Betriebsmittel im automobilen Karosserierohbau,“

ATP-Edition, pp. 40-46, Juli 2009.

[7] F.-F. Lacour, Modelbildung für die physikbasierte Virtuelle Inbetriebnahme

materialflussintensiver Produktionsanlagen, München: Herbert Utz Verlag GmbH, 2011.

[8] S. Süß, S. Magnus, M. Thron, H. Zipper, U. Odefey, V. Fäßler, A. Strahilov, A. Klodowski, T. Bär

and C. Diedrich, “Test methodology for virtual commissioning based,” in 21th IEEE International

Conference on Emerging Technologies and Factory Automation, Berlin, Germany, 2016.

[9] MODELISAR Consortium, "Functional Mock-up Interface for Co-Simulation.," 2010.

[10] M. Thron, H. Zipper, S. Magnus, S. Süß, C. Göbeler, Z. Liu und C. Diedrich, „Beschreibung des

normalen und gestörten Verhaltens mechatronischer Komponenten für den automatisierten

virtuellen Anlagentest,“ in AUTOMATION 2016, 07.-08.06.2016, VDI Wissensforum GmbH,

Baden-Baden, 2016.

[11] F. Yergeau, T. Bray, J. Paoli, C. M. Sperberg-McQueen und E. Maler, „Extensible markup

language (XML) 1.0. W3C Recommendation,“ 2008.

[12] O. Niggemann, N. Moriz, S. Faltinski, O. Graeser, M. Barth und A. Fay, „Integration und

Anwendung von objektorientieren Simulationsmodellen in AutomationML,“ in VDI

Wissensforum GmbH (Hg.): Tagungsband Automation., 2011.

[13] L. Masinter, T. Berners-Lee und R. T. Fielding, „RFC 3986 Uniform resource identifier (URI):

Generic syntax.,“ 2005.

[14] Oracle Corporation, "MySQL Editions," 2016. [Online]. Available:

http://www.mysql.de/products/. [Accessed 16 September 2016].

[15] W3C HTML Working Group, "HTML5. A vocabulary and associated APIs for HTML and XHTML.,"

28 October 2014. [Online]. Available: https://www.w3.org/TR/html5/. [Accessed 16 September

2016].

[16] W3Schools, "AJAX Tutorial," Refsnes Data, [Online]. Available:

http://www.w3schools.com/ajax/. [Accessed 16 September 2016].

