

' : Part 4: AutomationML Logic

© AutomationML consortium
Version 1.5.0 January 2017

Contact: www.automationml.org

<AutomationML/> Part 4: AutomationML Logic

Table of content

LIz o] (=0 oo o1 =1 o | ST SPI 3
Iy o) T [0TSR 9
I o N 1= 1 o] PP PRERT 11
1 [0o [N T3 1o] o PO RSP RR 14
R R Yo o1 PSP PPPTTPP 15
1.2 NOIrMALIVE FEIEIENCES. ... oottt e e e e e e s ettt e e e e e e e snbrreeeeaaeaeaaan 15

2 Terms, definitions and abbreviationsoioiiiiiiiii e 17
2.1 Terms and defiNitiONS.ooii it e e e e s st e e e e e e s s bnareeeaaeeeaaan 17
2% I A (Yo T o3 1) {0 4 14 -1 {0 o SRR 17

2,12 10QIC MOUEI ... e 17

O T | T 3 I 3 L | PSPPSR 17

2.1.4 sequencing iNfOrMAtiONcoiiiiiiiiiir e e e e e e s 17

2.1.5 sSequeNCING MOTEIccoiuiiiiiiiiie e e 17

2.1.6 behaviour INfOrMEatION...........uuiiiiie et 17

% T A o 1= Fo T T [4 o T [PR 17

2.1.8 interlocking INFOMMALIONoouiiiiiiiiie e 17

2.1.9 interlocKing MOUEIooovviviiiiiieeee e 17

P2 00 O B (o To [ol o] o] [=Tox (= F O PP UP PP OTPPP 17

2.1.11 mathematical EXPreSSIONccevviiiiiiiiiii ettt 17

B I S - 1 (o - U PR 17

2.2 ADDBIEVIALIONS ...ttt e e e s ettt e e e e e e e b r e e e e e e e e b b rnreeeeaeaaan 18

B2 T o1 1 (0] 1 1 1112 18

3 (O] 0 1YY o1 1T o 1S PR 19
O R =T 01T - | PP OO TPT PR UPPPPUPPTP 19
3.2 Conventions for the definition of the Intermediate Modelling Layercccccovieieiniieeennen 19
3.3 Mapping between logic models and the Intermediate Modelling Layer..........ccccccvvvvvivnnnnnnns 19
3.4 Mapping rules between the Intermediate Modelling Layer and IEC 61131-XML 19

4 Part 4 related extensions of AMLIIDIariesccuvviiiiie e 20
o R C1=T =T - | TSP TP 20
4.2 AutomatioNMLBaSEROIECIASSLIDcccviiiiiiieieee e 20
G R C1=T 1T - TP UPP TP PP 20
4.3.1 RoleClass INterlockingTargetGrOUPueeeeiiiiieeiiiiee ettt iaeee e 21

4.3.2 RoleClass INterloCKiNgSOUIrCEGIOUPuvvtiiiiieieeiiteee ettt et e et e et e e snireee e 21

0 T0C T w0 =Y @d P TS o T [Tl @ o= o 21

4.4 AutomationMLINterfaceClasSLibooii i 22
N C =T 01T - | TP TP PPUPTPP 22

4.4.2 InterfaceClass LOGICINIEITACE.coiuiiiiiiiiie e 23

4.4.3 InterfaceClass SequencingLogiCINterfaceceeveieiiiiiiiiiiiie e 23

4.4.4 InterfaceClass BehaviourLogiCINterface ... 24

4.45 InterfaceClass SequencingBehaviourLogicInterfacecccooeeeiiiiieiiiiiieniiiieeeens 24

4.4.6 InterfaceClass InterlockingLogiCINterfaceccuueeeiieiiiiiiiiiiiee e 25

4.4.7 InterfaceClass LOQICODJECINIEITACEeeiiiiiiiiiiiiiie e 25

4.4.8 InterfaceClass VariablelNterfacec..ueeviiiiiiiiii e 26

4.4.9 InterfaceClass INterloCKiNGCONNECIONccciiiiiiiiiiiiiee et 26

<AutomationML/> Part 4: AutomationML Logic

4.4.10 InterfaceClass InterlockingVariableInterfaceccccccccviiiiiiieeie e 27

5 Meta informationabout the IEC 61131-XML SOUICE t00]......ccuueiiiiiiiieiiiiie e 28
6 Referencing IEC 61131-XML dOCUMENLSoviiiiiiiieiiiiiie ettt ettt 29
LS 1= 0T = | PSR SR 29
6.2 Referencing 10giC INFOrMALIONcooiiiiiiiiii e 29
7 Intermediate MOAEIING LAYETccoiiiiieeieeee et e e e e e e s s e e e e e e s e s bra e e e e e e e s e nnnneees 31
A% T €1 =T 01T | PRSPPI 31
7.2 1ML SYSTEIM OVEIVIEW ...eiiiiiiiiieiiittee ettt ettt et e e e st e e e e bt e e e et et e e e anbe e e e e anbee e e e anbreeeennee 31
7.3 Definition of IML SYStemM €IEMENTS..........oviiiiiee e e e e e e e e st rrr e e e e e e e aaans 31
A B A o 1= Vo [PR 31

S T S - | (= PSPPSR 32
7.3.3 “State transitioN”ooo oo 32
T34 FACHVIEY .eeeee et e e e e anees 33
7.3.5 “Selection diVEIgENCE”uiiiiiii e 34
7.3.6 “SIMUltaneous diVEIgENCE”coiiiiiiiiiiii et 34
7.3.7 “SeleCtion CONVEIGENCE”cveiieiiiiie ettt ettt e et e e et e e s sntae e e e sntae e e e eneee 34
7.3.8 “SIMUtANEOUS CONVEIGENCE”ccuuiiiiiiiiie ettt 34
T.3.9 EVENE e e e e e e e e e 35

7.3. 10 “VArADIE ...t a e e 35
4 5 5 A @7 o 4 1= o | PR 35
7.3.12 “Additional data”oooiiiiiii e 35

8 Mapping Of IML t0 IEC BLL31-XML....ciiuuiiiiiiiiiieiiiiie ettt e e 37
S R C =T 01T - | PP PPT P RUPPPPUPPTPN 37
8.2 AML addData schema for additional data within logic informationc.cccveeieiiiienenen 37
8.2.1 Declaration and usage of AML addDataschema in IEC 61131-XML.............cccuvuueee. 37
8.2.2 XML schema description ofAMLspecific dataccccccevevvviviiiiiiiiieeeeee 38

8.2.3 XML schema description of timing datacccovcueeeeiriiieeiiie e 39
8.2.4 XML schema description ofdurations regarding timing data..............cccccceevvvevevenennn. 40
8.2.5 XML schema description of earliest starts regarding timing datac..ccceeenee 41
8.2.6 XML schema description of latest starts regarding timing dataccccccceeveveee. 42

8.2.7 XML schema description of earliest ends regarding timing datac......... 43
8.2.8 XML schema description of latest ends regarding timing dataccccceevvieeenee. 44
8.2.9 XML schema description of delays regarding timing datacccccvevvvvveveiiienennnn. 45
8.2.10 XML schema description of Chart tyPesceeeeiiiiieiiiiiiee e 46
8.2.11 XML schema description of change definitions of resource states...........ccccccceoe..... 47
8.2.12 XML schema description of interruptible actionscccccccvvvvviiiiiiiieeee, 47
8.2.13 XML schema description of sub chartsin state charts...........ccccccceviiiiiine i, 48
8.2.14 XML schema description of state types of state charts.........ccccccccvvvvviviiiiiiin, 49
8.2.15 XML schema description of actions types of state charts..........cccccceiviieinieeenn, 50
8.2.16 XML schema description of resource groups of timing diagrams............cc.ccceeeuunee 51
8.2.17 XML schema description of PLC variables of timing diagrams.............cccccovviieeennee 52
8.2.18 XML schema description oOf State StatUSceoiviiiieiiiiiee e 53
8.2.19 XML schema description of action Statuseeeiiieiiiiiiiiiiiiee e 54
8.2.20 XML schema description of units of measurement...........cccccccceveeeiicciieeee e 55
8.2.21 XML schema description of addDataBaseObjectcccuvveeieieiiiiiiiiiiiieee e 55

8.3 Mapping of IML t0 IEC B1131-XML SFCcoiiiiiiieiiiiee ettt 56

<AutomationML/> Part 4: AutomationML Logic

8.3.1 COMIMON FUIBS ettt ettt sttt e e et e e e st e e s snbb e e e e snbee e e e neee 56
ESTRCIZ2 |V F=To] o] 1 o o) il U= To [T 6 SR 58
8.3.3 MaPPING Of STALESeeeiiiiiee ittt et 59
8.3.4 Mapping Of State tranSItiONScoiicuiiiiiiee e e e e e 60
8.3.5 MappPiNg Of ACHVILIESveieiiiiieee it 66
8.3.6 Mapping Of Selection diVEIgENCES.........uuuiiieeiiiiiieie e e e 70
8.3.7 Mapping of SIMultanNeous diVEIgENCES.........ccuuiiiiiiiieeiiee e 71
8.3.8 Mapping of Selection CONVEIGENCES.........ccciiiiiieiiiiie ettt 72
8.3.9 Mapping of SIMUItaNE0OUS CONVEIGENCES.........cccuurreiieeeeeiiinieeee e e e e e s e st e e e e e e e e nnnneees 73
8.3.10 MaPPING Of BVENTSceeiiiiiieiiiiie ettt et e st e e anbr e e e aneee 74
8.3.11 Mapping of Variablesuviiiiie i 75
8.3.12 Mapping Of COMMENTSccoiiiiiieiiiiie ettt e s e e e e 77
8.3.13 Mapping of additional data............ccueeeiiiiiieiiiiie e 78
9 Usage of mathematical expressions in logic informationccccoccvviereeee e 80
LS 0 R =T o1 | PP PRRRRR 80
o I 1 a1 = T (= To] = A [o oo o3 =T o | S 80
9.3 Mapping between MathML variables and IEC 61131-XMLelements “variable” 81
1S R B A 1T o 1= = | PP PP PP PPPPTT PP 81

9.3.2 Declaration and usage of the XML schema for variable mappings for MathML
N TEC BLLBL-XIML . iiiiie ettt ettt e ettt e e e sttt e e e st e e e abbe e e e sbbeeeeabbeeeeans 82
9.3.3 XML schema description of formula data..............ccceeeiiiiiiiiiiiee e 83
9.3.4 XML schema description of variable datacccccccvvvviviiiiiiee 83
9.4 Assignment of MathML expressions to IEC 61131-XML elementsccccceveeeviiiviiiineeeeennnne 84
9.5 Assignment of results of a MathML expression to IEC 61131-XMLelements “variable” 84
10 Linking AML objects withinterlocking infOrmMationuuuueiiieiiieieii . 86
00 R =T o T | PR PRSRRR 86
10.2 Referencing interlocking informationccccccviiiii 86
Annex A Logic iNfOrmation iN AMLcooi i 88
A.1 Logic information in production system engineering..........ccccccvveveiiiiiiiiiiiiieeeeeeeeeeeeeeee e 88
A.2 Logic models in production SyStem eNgINEEIINGcccoiuuiieiiiiiee ettt 89
A3 Storing 10gic MOAEISINAML........ciiiiiiiie et anbre e e 20
A.4 Storing additional information to logic models in AML ... 92
1.1.1 Additional logic model specific INfOrmationcccoocueiiiiiiie e 92
1.1.2 Meta information on file leVeleeiiiiii e 92
1.1.3 MathematiCal EXPreSSIONS.ccciiuiiieiiiiiee ittt e e e e neee 92
A5 Referencinglogic iNformation iN AMLoooiiiiiiiii e 92
Annex B Logicmodels iN AML ... 93
2 30 1= o =T - 1 SRR 93
B.2 GANIE CRAITS ...t e e e e e b e e e e e e e e e e e e e e e e e e nnene e 93
[2 R 1= = - | S 93
B.2.2 MOEl BIEMENTS ...t e e e e e e e as 93
B.2.3 Chart SEIUCLUIINGcoi ittt e e e e e e et e e e e e e e e e anbaereeeaens 93
B.2.4 Amount of iNfOrMatioNcouviiiiiiiiiii e 94
B.2.5 MaAPPING FUIESeeiiiie ittt e e e ettt e e e e e e et e e e e e e e e e e e ennbbneeeeaens 94
B.3 ACLIVItY-0N-NOUE NEIWOTKScoiiiiiiiiiiiiie ettt e ettt e et e e e anbbeeeeans 94
S A 1= 1= - | TP UT PP 94
[2 Y o Yo = =1 =T =T oSS 94

<AutomationML/> Part 4: AutomationML Logic

B.3.3 NEetWOIrK STTUCLUIINGceeveieeiiee e e s e e e e s e e e e s s et e e e e e e s e s nnnraneeeeees 95
B.3.4 Amount Of iINfOrMELIONcoiuiiiiiiiii e 95
B.3.5 MAAPPING TUIES ..ottt ettt e e et e e e nb e e 96
2 30 T o1 1g Vo [1=V = g SRR 96
[O A 1= o 1= - | PSPPI 96
1230 N |V oo [=] (=T o o= o] £ PRSPPI 96
B.4.3 Diagram SIUCTUIINGuueeieiitieeeiiteie ettt e e e enb et e e s st e e e e nbre e e e nneee 97
B.4.4 Amount of iNfOrMAatioNoooiiiiiiii e 97
[ST IV =T o] o g o TN U] [SRRSO 97
S - (< o o= T 3PP PRERT 98
123870 R 1= =T - | PSPPI 98
B.5.2 MOEl BIEMENTS ...coiiiiiiieiii e e e et e e e e e eaaeas 98
B.5.3 Sequential fUNCLION CRAITScoiiiiiiiii e 99
B.5.4 Function BIOCK diagramscccoiiiiiiiiie et e e s e e e e e ae e e e 99
Annex C Mapping Of [0gIC MOGEIS........ccoiiiiiiiiiiiee ettt e e srreee e 100
(O3 R C1=T o (=T - | T TP P TP PPPPPPPPPPPR 100
C.2 Mapping of Gantt Charts t0 IML........coouiiiiiiiii e e 100
C.2.1 COMMON FUIBS ...ttt ettt e et e e e s e et b e e e e e e e e s anbbeeee e e e e e e nnnnneees 100
C.2.2 Mapping of the Startooovviviiiie 101
C.2.3 MappPinNg Of DAIS.......eeiiiiiii e 102
C.2.4 Mapping of bar start POINtS..........cccoevviiiiiiiiii 102
C.2.5 Mapping of bar @nd POINES........ccooiiiiiiiiiiie e 103
C.2.6 Mapping of SUCCESSOr DArSccvvvvviiiiiiii e 103
C.2.7 Mapping Of PredeCeSSOr DAIS......cccuviiiiiiiiee ettt e 104
C.2.8 Mapping Of the @Ndouviiiiie e 106
C.3 Mapping of activity-on-node NetWOrks 10 IMLuuuiuiuiuimiiiiiiiiiiiiieieierernne. 107
C.3.1 COMMON FUIBSeeiiiiiee e e ettt e e sttt e e e e e et e e e e e e s s s st eaeeeaeesessnnteaeeeeeeeaennnnnees 107
C.3.2 Mapping of the start of an activity-on-node networkcccccccveviviiiiiiiiiennen, 108
C.3.3 MapPiNg Of NOUEScceiiiiiiii ittt ettt e et e e sbbeee e 109
C.3.4 Mapping of Node Start POINES..........cccevviiiiiiiiiiie e 110
C.3.5 Mapping of Node end POINES.........cccevviiiiiiiiiiicce e 110
C.3.6 Mapping Of SUCCESSOr NOUESccoitriiiiiiiiie ittt et ee e et e e sbaeee e 110
C.3.7 Mapping of predecessor NOAES............ccvvviiiiiiiiiiiiieeeeeeee e 111
C.3.8 Mapping of the end of an activity-on-node networkcccccceeevivciiee e, 113
C.4 Mapping of timing diagrams tO IIMLuuuuuuiuiiieiiiiieieieieieiereiererereee .. 114
C.4. 1 COMMON FUIBS ...ttt e et e e e s e b e e e e e e e e e s aab b e e e e e e e e e e nnaneees 114
C.4.2 Mapping of the start of a timing diagram...........cccocueeiiiiiiii i 115
C.4.3 Mapping of the timelineooovvireiiii e 116
C.4.4 MapPING Of FESOUICES......eeiiiiiiiee ittt e ettt e e st e e e s abb e e e s nbbe e e e sabbeeaeans 116
C.4.5 Mapping Of rESOUICE STAES.....ciiiiiiiiiiiiieii e 117
C.4.6 Mapping Of SIGNAISccoiiiiiiiiiiie et e et e e breee e 119
C.4.7 Mapping of the end of a timing diagramccooiieiiiiiiiee e 121
C.4.8 Mapping of timing diagram detailS ... 121
C.5 Mapping Of StAtE CRAISeiiieiiii et e e e nbe e e neee 123
C.5.1 COMMON FUIBS ...ttt ettt et e e e e e ettt e e e e e e s e anb b e e e e e e e e e e nnnneees 123
C.5.2 MappPiNg Of FEOIONS ...ccci ittt ettt e et e e et e e e e nbbe e e e sbbeeaeaas 124

<AutomationML/> Part 4: AutomationML Logic

(O STC T |V F=To] o] aTe [0 S = 1 (=1 SRR 125
C.5.4 Mapping Of SUCCESSOrS Of StAtES........uuiiiiieeeiiiiiiie e 125
C.5.5 Mapping Of PredeCeSSOr STALESuviiiiiiiee ittt e s 126
OB ST TN |V F=To] o] aTe [0 =T o] £ 1= RS 126
C.5.7 MapPiNg Of EVENTSceiiiiiiiii ittt ettt e et e e e s bb e e e s sbb e e e e anbneeeeaas 128
C.5.8 Mapping Of SIGNAISccoi i 128
C.5.9 Mapping Of State tranSItIONScocuiiiiiiiiie ittt sbreee e 128
C.5.10 Mapping Of NiStOrY CONNECLOISuvviieiiiiie ettt e et 135
C.5.11 Mapping of condition CONNECIOISuuiiiiiiiiiiiiiii e 135
Annex D Referencing methods for 10gic iNfOrmation ..o 136
[0 =T o 1T - | PP P PP PUR PRSPPI 136
D.2 Referencing logic information expressed as [0gic MOUEIS...........cccouiiieiiiiiieiiiiee e 136
D.2.1 Referencing logic information stored in one POU..........cccoocviiiiiiiie e 136
D.2.2 Referencing logic information distributed throughout several POUs 137

D.2.3 Referencing interlockinginformation distributed throughout several IEC 61131-
DoAY 1o (o o 0= o £ TP 137
D.3 Referencing logic information as a part of logic modelsccccccvvviviiiii 140
D.3.1 Referencing a variablecoooiiiiiiiiiii e 141
D.3.2 Referencing an interlocking variablecccoociiiii 142
D.3.3 Referencing alogiC ObJeCt ..., 143
D.4 Referencing logic information as a part of already referenced logic models.............ccccceevneee. 145
Annex E Using mathematical expressions in logic information.............cccccccceviiiiieeee, 148
A CT= o =T - 1 PR 148
N €= 0 4] 0] (=3 (=TT o o o] o PP 148
E.3 Mathematical functions expressed in MathML for logic informationccccccvvvvvevvviveinnennn. 148

E.4 Integration positions in IEC 61131-XML for “addData” elements including MathML

L] (1S T0] L PSP PP UPUPPROPP 152
Annex F Referencing interlocking informationccccccc 153
Nt 1= g =T - 1 PSR 153
A €= 10 4] 0] (=3 (=TT ox o] o] o PP 153
F.3 Interlocking infOrMationooviviiiiiiiiicc e 154
F.4 Referencing interlocking information without interlocking conditionccccocciiniiinninnn. 154
F.5 Referencing interlocking information with interlocking conditionccccccvvvvviviiiiiiiiiinenen, 156
Annex G Example for the mapping of 10gic MOdels t0 IMLcooiiiiiiiiiiiii e 161
G.1 Mapping Examples of Gantt CharS............uuuiuiuiiiiiiiiiiiiiiiiiei e 161
G.1.1 Mapping of activities without predecessor and successor relation 161
G.1.2 Mapping of an actiVity SEQUENCEcciiuuiiiiiiiiee ettt 161
G.1.3 Mapping of an activity sequence with divergences...........cccccccvvvveiiiiiiiiiiiiiiienenene, 162
G.1.4 Mapping of an activity sequence with CONVErgenCes........cccccvveeeveecevieieeeeeeseeceeeeen 163
G.2 Mapping examples of activity-0n-nN0de NEIWOIKSccooiiiiiiiiiiiie e 163
G.2.1 Mapping of an actiVity SEQUENCEccoiuuiiiiiiiiee ettt e e sraeee e 163
G.2.2 Mapping of an activity sequence with divergences and convergences 164
G.2.3 Mapping of a complex activity sequence with divergences and convergences...... 166
G.3 Mapping examples of timING diAgramSeiiiiiiiie i 167
G.3.1 Example transformation internal Signal............ccceeeiiiiiiiiiiiii e 168
G.3.2 Example EXternal SIgNAISoooiiiiiiiiiiiee ettt 169
G.3.3 Example Signal Between two Resource States FIOWScccoeviiiiiiiiiinieiiiniiine, 170

<AutomationML/> Part 4: AutomationML Logic

G.4 Mapping examples oOf State ChartSccvviiiiie e e e 171
G.4.1 Mapping of a simple cyclic state Chartccccveveie e 171

G.4.2 Mapping of a state chart with states with different predecessors and
SUCCESSONS ...eeeiieeiiiae e e et eeetete e e e e et eea b e e e e e et eee b ab et e e et eee e n b e e e e e e eee s b e e e e e e eeesban e eeas 172
G.4.3 Mapping of a state chart With aCtioNS.............cccciieiie e 173
G.4.4 Mapping of a state chart with a condition CONNECLOr.............covveiiiiiiiiiiiiiieeeiiie 174
G.4.5 Mapping of a state chart with simple hierarchy............ccoccovieiee i, 175
G.4.6 Mapping of a state chart with a complex hierarchy and connectors....................... 176
Annex H XML representation of AML [IDFarEsccuvieiiiiiiiiiiiie et 179
H.1 AutomationMLBaSEROIECIASSLIDccoiiiiiiiiiiiiie e 179
H.2 AutomationMLINterfaceClasSLibueiiiiiiiii e 180
Annex | XML representation 0f SCheMata.........ccceoiiiiiiiiiiiiie e 182
0 R 1 Y/ | = To (o | 7 - PSR 182
1.2 MathMLINIECBLL3L-XML ..uuiiiiiiiiieeiiiiie ittt e et e e st e e s e e e st e e e s ssta e e e s sssaaeessnssaeessnssaeesannnees 186

<AutomationML/> Part 4: AutomationML Logic

List of Figures

Figure 1: Overview of the engineering data exchange format AMLccccooiiiiiiiiii e 14
Figure 2: AutomationMLBasSeROIECIASSLIDccceiiiiiiiiiiiiice e 20
Figure 3: AutomationMLINterfaceClasSLIb...........ueiiiiiiiiii e 22
Figure 4: IML system entities and itS relationS...........ccccuviieiiiee e e e 31
Figure 5: XML text of declaration of AML schema for storing additional logic information
Within [EC 61131-XML AOCUMENESeeiiiiiiiiiie et 37
Figure 6. Used parts of the IEC 61131-XML schema to represent a IML systemccceeeenee 57
Figure 7: Mapping concept for MathML variables and IEC 61131-XML elements “variable”......... 81
Figure 8: XML text of the mapping of MathML variables and IEC 61131-XMLelements
B2 L E= 1 o) L= PR PPRRPR 82
Figure 9: XML text of the declaration of the XML schema for variable mappings for MathML
N TEC BLLBL-XML.. ittt ettt ettt ettt e et e e et b e e smb e e e ebb e e smbe e e abbeesnbeeaneaans 82
Figure 10: XML text of the IEC 61131-XML element “data” for the MathML expression 84
Figure 11: Decision tree for the assignment of results of MathML expressions to IEC 61131-
XMLeEIEMENLS “VariablE”ooiiiiiiiiiiiiii e e e st e e e e e s 85
Figure A.1: Types of logic information in AMLccooiiiiiiiiiie e 88
Figure A.2: LOgIC MOEIS IN AML ..coiiiiiiieiii ettt 20
Figure A.3. Transformation to IEC 61131-XMLcccovvviiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e 90
Figure A.4: Scope of IEC 62714-4 regarding Mapping FUIESccooiiiieiiiiieeniee e 91
Figure B.1: Model elements of Gantt ChartScoouuiiiiiiiie e 93
Figure B.2: Information provided by Gantt charts............cccccvvviviiie 94
Figure B.3. Model elements of activity-on-node Networks...........cccccevvvvveviieeeeeeee, 95
Figure B.4. Information provided by activity-on-node NEtWOrKS............ccovriiieriiiiie e 96
Figure B.5: Model elements of timing diagramscccoovvviiiiiiiiee e 96
Figure B.6: Information provided by timing diagramsSoueiiiiiiiniiiie e 98
Figure B.7: Model elements of state chartsccccccovevei 99
Figure C.1: Actions of IML for Gantt bar representationccccoveeeeiriieee i 101
Figure D.1: Referencing logic information (as SFC) stored in one POUcccccoviiieeiniiieeenen 136
Figure D.2: XML text of the CAEX file for referencing logic information stored in one POU......... 136
Figure D.3: Referencing logic information distributed throughout several POUSccccc....... 137
Figure D.4: Referencing interlockinginformation distributed throughout several IEC 61131-
XML GOCUMENTS ...ttt ettt s et e e bt e s bt e sttt e s s e e e e s nsnn e e e e nnnneeas 138
Figure D.5: XML text of the CAEX file for referencing interlocking information distributed
throughout several IEC 61131-XML dOCUMENLS.......uuuuiuruiuiuiririeiuininininineninrnrnrnrnnnrnn.. 138
Figure D.6: Referencing interlockinginformation distributed throughout several IEC 61131-
XML documents USING CAEX MEANS......cuuiieiiiiiiiiiiiieeeeeiaeieieeeeeaessssnteteeeeeeesssansnreneeeeeasaanns 139
Figure D.7: XML text of the CAEX file for referencing interlocking information distributed
throughout several IEC 61131-XML documents using CAEX Meansccccvvvvvvvennnennnnns 140
Figure D.8: Referencing @ Variableooouuuiiiiiii it 141
Figure D.9: XML text of the CAEX file for referencing a variablecccccooviiiinii i 142
Figure D.10: Referencing an interlocking variable.............ccccoii e 142
Figure D.11: XML text of the CAEX file for referencing an interlocking variable 143
Figure D.12: Referencing @ logiC ODJECT...........ooiiiiiiii e 144
Figure D.13: XML text of the CAEX file for referencing a logic object..........cccocoveiiiiiiiniieenen 144
Figure D.14: Referencing a variable of an already referenced logic modelccccceeviirennn 146

<AutomationML/> Part 4: AutomationML Logic

Figure D.15: XML text of the CAEX file for referencing a variable of an already referenced
[oTo Tol 1 T o (=] LA TP UUP PP

Figure E.1: Diagram of an one-way flow control valve with exhaust-air flow control....................
Figure E.2: FIOW rate Of VAIVESccooiiiiiiiie e

Figure E.3: “data” element for describing the MathML expression of the flow rate of a control
L= 1L PSSR

Figure E.4: “data” element for describing the mapping of MathML variables for calculating
the flow rate of a control valve to IEC 61131-XML variables...........cccccvviiiiiiiieniecieene

Figure E.5. “addData” element including the MathML expression for the flow rate of a control
valve and the mapping of MathML variables to IEC 61131-XML variables.........................

Figure E.6: Integration of the “addData” element including a MathML expression about the
flow rate of a control valve in @ POUcooiiiiiiiiiiicc e

Figure F.1: Example manufacturing SYSIEMccooiiiiiiiiiiee e ccciiieee e e st e e e e s snrnrre e e e e e e e
Figure F.2: Example interlocking source group and interlocking target groupcccoecvveeeennee
Figure F.3: Referencing interlocking information without interlocking condition...........................

Figure F.4: XML text of the CAEX file for referencing interlocking information without
INEEIOCKING CONILION ..ottt et rbe e e e

Figure F.5 — Referencing interlocking information with interlocking condition...............cccccc.........

Figure F.6 — XML text of the CAEX file for referencing interlocking information with
INterloCKing CONAILIONccooe e

Figure F.7 — Linking logical interface with physical interface (extension to Figure F.5)

Figure F.8 — XML text of the CAEX file for linking logical interface with physical interface
(eXLENSION 10 FIQUIE F.B) ...

Figure G.9: Example of an activity-on-node NEtWOrK.............ooviiiiiiiiiii e
Figure G.10. Timing behaviour of the SFC derived from an activity-on-node network.................

<AutomationML/> Part 4: AutomationML Logic

List of Tables

Table 1: ADDIeVIatioNSuviiiiiie e e e e et e e e e e e e e aaaens 18
Table 2: RoleClass INterlockingTargetGrOUP.........uuurieeeeiiiiiiiieeieeeeesseiirrr e e e e e s s s e e ee e e e e s nnreneeeeees 21
Table 3: RoleClass INterloCKiNgSOUINCEGIOUP.........uuiii i iireeeesttee e et e e e sbree e e st e e e s sbbeeeesneneeeeans 21
Table 4: ROIECIASS LOGICODJECT. ...ttt e e e e e e e e e s nnraaareeae s 21
Table 5: InterfaceClass LOGICINIEITACEccoiiiuiiiiieie e e e aee e e 23
Table 6: InterfaceClass SequencingLOGICINIEITACEccoiiiiiiiiiiiii e 23
Table 7: InterfaceClass BehaviourLOgIiCINtEIfaCecoociviiiiiie e 24
Table 8: InterfaceClass SequencingBehaviourLogiCINterface............ooovveeiiiiieiiiiiieee e 24
Table 9: InterfaceClass InterlockingLogiCINtErfaCecoccviviiiie e 25
Table 10: InterfaceClass LogiCODJECINtEITACEccoiiiiiiiiiiii e 25
Table 11: InterfaceClass VariablelNterface.............ueeviiiiiiii e 26
Table 12: InterfaceClass INterloCKINGCONNECIONcciiiiiiiiiiiiie e 26
Table 13: InterfaceClass InterlockingVariablelINterfacecccvveei i 27
Table 14: Meta information about the IEC 61131-XML SOUICE tO0L.......c.eeeeiirieeiiiiiieeiiiieee e 28
Table 15: Overview of all possible combinations of execution conditions............cccccccveevvviciiieeennn. 33
Table 16. AML schema element “AMLooo e e e 38
Table 17. AML schema element “TImMe”.......cooi i 39
Table 18: AML schema element “Duration” (within the AML schema element “Time”)................. 40
Table 19: AML schema element “EarliestStart” (within the AML schema element “Time”)............ 41
Table 20: AML schema element “LatestStart” (within the AML schema element “Time”).............. 42
Table 21: AML schema element “EarliestEnd” (within the AML schema element “Time”)............. 43
Table 22: AML schema element “LatestEnd” (within the AML schema element “Time”) 44
Table 23: AML schema element “Delay” (within the AML schema element “Time”)ccc........ 45
Table 24: AML schema element “ChartType” ... e 46
Table 25: AML schema element “ResourceStateChangeDefinition”.............ccccoviiiiie 47
Table 26: AML schema element “Interruptible ACtion”uuiviiiiiiiiiiiiiiiies 47
Table 27: AML schema element “StateChartSubCharts” ... 48
Table 28: AML schema element “StateChartStateType” ... 49
Table 29: AML schema element “StateChartActionType” ... 50
Table 30: AML schema element “TimingDiagramResourceGroup”..........cccouuveeeiiiieeeiiieeeeinieeeens 51
Table 31: AML schema element “TimingDiagramPLCVariable”.............ccccccoiiiiiiinniieeee, 52
Table 32: AML schema element “StateStatus” ... 53
Table 33: AML schema element “ActionStatus”ocueiiiiiiiiiiiii e 54
Table 34: AML schema element “UNit” ... 55
Table 35: AML schema element “addDataBaseObject”cccocuieiiiiiii i 55
Table 36: Mapping of the IML system element “header” to IEC 61131-XMLcccccceeiiiiiiiinnnnnenn. 58
Table 37: Example transformation IML system element “header” to IEC 61131-XML................... 58
Table 38: Mapping of the IML system element “state” to IEC 61131-XML........ccooveeveeiiniiiiiiiennnnn. 59
Table 39: Example transformation IML system element “state” to IEC 61131-XMLccceeee.. 60
Table 40: Mapping of the IML system element “state transition” to IEC 61131-XML..................... 64
Table 41: Example transformation IML system element “state transition” to IEC 61131-XML....... 65
Table 42: Mapping of the IML system element “activity” to IEC 61131-XMLccccccvveevviicnvinnnnnnnn. 69
Table 43: Example transformation IML system element “activity” to IEC 61131-XML 70
Table 44. Mapping of the IML system element “selection divergence” to IEC 61131-XML 70

<AutomafionML/> Part 4: AutomationML Logic

Table 45: Example transformation IML system element “selection divergence” to IEC 61131-

Table 46: Mapping of the IML system element “simultaneous divergence” to IEC 61131-XML 71
Table 47: Example transformation IML system element “simultaneous divergence” to IEC

o3 1 Y | PSPPSR 72
Table 48: Mapping of the IML system element “selection convergence” to IEC 61131-XML 72
Table 49: Example transformation IML system element “selection convergence” to IEC

L3 1 I Y | PSRRI 73
Table 50: Mapping of the IML system element “simultaneous convergence” to IEC 61131-

D SR SUPRPORPRPN 73
Table 51: Example transformation IML system element “simultaneous convergence” to IEC

L3 1 I Y | PSPPSR 74
Table 52: Mapping of the IML system element “event” to IEC 61131-XML........cccccceveeeviiicvrnnnnnnnn. 74
Table 53: Example transformation IML system element “event” to IEC 61131-XMLcceeeee. 74
Table 54: Mapping of the IML system element “variable” to IEC 61131-XML........cccccevvvivvnnnnnnnn. 76
Table 55: Example transformation IML system element “variable” to IEC 61131-XML.................. 76
Table 56: Mapping of the IML system element “comment” to IEC 61131-XML............cceevuvvvnennnn. 77
Table 57: Example transformation IML system element “comment” to IEC 61131-XML 77
Table 58: Mapping of the IML system element “additional data” to IEC 61131-XML..................... 78
Table 59: Example transformation IML system element “additional data” to IEC 61131-XML....... 79
Table 60: Structure of the IEC 61131-XML element "addData"ccccceeeiiiiiiiiieeeeee e 80
Table 61: MathML schema element “formula”..............ccceeiiiiiiiiiiiiie e 83
Table 62: MathML schema element “variable” ..o 83
Table B.1: Mapping of model elements of state charts to model elements of state machines 99
Table C.1: Mapping of the start of a Gantt chart to IML system elementsccccccvvvvvvininnnnnnns 102
Table C.2: Mapping of Gantt chart bars to IML system elementsccccccovviciiieeieeevnicciiiieeennn 102
Table C.3: Mapping of a Gantt chart bar start point to IML system elementscccccccvvvvnnnnnns 103
Table C.4: Mapping of a Gantt chart bar end point to IML system elementscccccccvvveeenn... 103
Table C.5: Mapping of Gantt chart successor bars to IML system elements..............cccccvvvvvnnnnns 104
Table C.6: Mapping of Gantt chart predecessor bars to IML system elementsccccvveeene... 106
Table C.7: Mapping of the end of a Gantt chart to IML system elementscccccceeevviicivvinnnnnn. 107
Table C.8: Mapping of the start of an activity-on-node network to IML system elements............ 109
Table C.9: Mapping of activity-on-node network nodes to IML system elementsc........ 109

Table C.10: Mapping of activity-on-node network node start points to IML system elements 110
Table C.11: Mapping of activity-on-node network node end points to IML system elements 110
Table C.12: Mapping of activity-on-node network successor nodes to IML system elements..... 110
Table C.13: Mapping of activity-on-node network predecessor nodes to IML system

<1 1=T0 0= o) T PP TSP PPPUPTRR PP 113
Table C.14: Mapping of the end of an activity-on-node network to IML system elements........... 114
Table C.15: Mapping of the start of a timing diagram to IML system elementscccccvvvenns 115
Table C.16: Mapping of the timeline to IML system elementS...........cccoovveieiiiiiieiniieee e, 116
Table C.17: Mapping of timing diagram resources to IML system elements.........cccccccoeecvvvveennnn. 117
Table C.18: Mapping of timing diagram resource states to IML system elements...................... 118
Table C.19: Mapping of timing diagram signals to IML system elementsccccccceevevicvvvennnnnn. 120
Table C.20: Mapping of the end of a timing diagram to IML system elementscccvveeeeenn. 121
Table C.21: Mapping of timing diagram details to IML system elements...........ccccccceevviicvinnnnnnnn. 123
Table C.22: Definition of state chart headers ... 124
Table C.23: Mapping of state chart states to IML system elements...........cccoociiieeiieiiniiiiiieennn. 125

<AutomationML/> Part 4: AutomationML Logic

Table C.24: Mapping of state chart state successors to IML system elementsccccvvveen.n. 126
Table C.25: Mapping of state chart predecessor states to IML system elements..............cccee..... 126
Table C.26: Mapping of state chart actions to IML system elementsS............occcvvieeeeeeiniiiiiieennn. 127
Table C.27: Mapping of state chart events to IML system elements.............ccccvvveeeeeeeeiicivineennn. 128
Table C.28: Mapping of state chart signals to IML system elementsccooccviieeeieenniiiiiiieennn. 128
Table C.29: Mapping of state chart state transitions to IML system elements...............cccvvvveeee... 134
Table C.30: Mapping of history connectors of state charts to IML system elements 135
Table C.31: Mapping of state chart condition connectors to IML system elements 135
Table G.1: Mapping of the Gantt chart example “activities without predecessor and
SUCCESSON MEIAtIONS” ...t e e e et e e e e e e 161
Table G.2: Mapping of the Gantt chart example “activity sequence”.............ccccvieeiieiiiiiiiiiieennn. 162
Table G.3: Mapping of the Gantt chart example “activity sequence with divergence” 162
Table G.4: Mapping of the Gantt chart example “activity sequence with convergences’............. 163
Table G.5: Mapping of the activity-on-node network example “activity sequence” 164
Table G.6: Mapping of the activity-on-node network example “activity sequence with
divergences and CONVEIGEINCESuuuiieiiie ettt e e e e e ettt e e e e e aabebr e e e e e e e e s abbbreeeeaeeeaann 165
Table G.7: Mapping of the timing diagram example “transition from a state change to the
SUDSEQUENT STATE” ... 168
Table G.8: Mapping of the timing diagram example “two external signals fired with delay of
TNFEE SECONAS” ...t e e e e s et e e e e e se st be e e e e e e e e ssnbnraeeeaeeeeaanns 169
Table G.9: Mapping of the timing diagram example “signal fired by one resource state and
consumed by @nOther”o e 170
Table G.10: Mapping of the state chart example “simple cyclic state chart”cccocccceiie. 171
Table G.11: Mapping of the state chart example “states with different predecessors and
L8[o7 =TT o] PR SPPRRRR 172
Table G.12: Mapping of the state chart example “state chart with actions”cccocoeeerinen. 173
Table G.13: Mapping of the state chart example “simple cyclic state chart”ccccccceiie. 174
Table G.14: Mapping of the state chart example “simple hierarchy”............cccccvviiiiiiniieiinen, 175
Table G.15: Mapping of the state chart example “complex hierarchy and connectors” 177

<AutomationML/> Part 4: AutomationML Logic

1 Introduction

The data exchange format defined in IEC 62714 (Automation Markup Language (AML)) is an XML
schema based data format and has been developed in order to support the data exchange between
engineering tools in a heterogeneous engineering tool landscape. IEC 62714-1 gives an overview
about the format.

The goal of AML is to interconnect engineering tools from the existing heterogeneous tool landscape
in their different disciplines, e.g. mechanical plant engineering, electrical design, process engineering,
process control engineering, HMI development, PLC programming, robot programming, etc.

AML stores engineering information following the object oriented paradigm and allows modelling of
physical and logical plant components as data objects encapsulating different aspects. An object may
consist of other sub-objects and may itself be part of a larger composition or aggregation. Typical
objects in plant automation comprise information on topology, geometry, kinematics, and logic,
whereas logic comprises sequencing, behaviour, and control.

AML combines existing industry data formats that are designed for the storage and exchange of
different aspects of engineering information. These data formats are used on “as-is” basis within their
own specifications and are not branched for AML needs.

The core of AML is the top-level data format CAEX that connects the different data formats. Therefore,
AML has an inherent distributed document architecture.

Figure 1 illustrates the basic AML architecture and the distribution of topology, geometry, kinematic,
and logic information.

AutomationML
Engineering data

COLLADA

CAEXIEC 62424
Top level format ! Eli(;?]ngttzs

ObjectA
Planttopology
information —>| Object A,
PLCopen XML

*Plants
«Cells | Behaviour

«Components : Sequencing

*Attributes Object A,

Interfaces

-Relations Further XML Standard format
*References >

Further aspects of
engineering information

Figure 1: Overview of the engineering data exchange format AML

Due to the different aspects of AML, IEC 62714 consists of different parts focussing on different
aspects.

IEC 62714-1: Architecture and general requirements

This part specifies the general AML architecture, the modelling of engineering data,
classes, instances, relations, references, hierarchies, basic AML libraries and
extended AML concepts.

IEC 62714-2: Role class libraries

This part specifies additional AML libraries.

<AutomationML/> Part 4: AutomationML Logic

IEC 62714-3: Geometry and kinematics

This part specifies the modelling of geometry and kinematics information.
IEC 62714-4: Logic

This part specifies the modelling and referencing of logic information.

Further parts may be added in the future in order to interconnect further data standards to AML.
Clause 3 specifies the normative provisions for modelling, transforming, and storing of logic models.
Clause 4 describes the logic related extensions of the role class library and interface class library.

Clause 5 defines how to store meta information about the source tool directly into the IEC 61131-XML
document.

Clause 6 gives a normative description regarding referencing logic information in IEC 61131-XML
documents.

Clause 7 gives a normative description of the Intermediate Modelling Layer (IML), which is used to
decouple logic models from the target format, in which they are stored.

Clause 8 specifies the normative provisions and describes the additional information necessary to
map the IML to IEC 61131-XML documents.

Clause 9 gives a normative description regarding integrating mathematical expressions in logic
information.

Clause 10 gives a normative description regarding referencing interlocking information in IEC 61131-
XML documents.

Annex A gives an informative overview of this part of the standard.

Annex B gives a normative description of the considered logic models.

Annex C specifies the normative provisions to map the logic models to IML.

Annex D describes the referencing methods for logic information.

Annex E describes the integration of mathematical expressions in logic information.

Annex F describes the referencing methods for interlocking information.

Annex G provides examples for the representation of logic models in IML.

Annex H gives an informative XML representation of the libraries defined in this part of IEC 62714.

Annex | gives a normative XML representation of the schemata defined in this part of IEC 62714.

1.1 Scope

This part of IEC 62714 specifies the integration of logic information as part of an AML model for the
exchange between engineering tools in the plant automation area by means of AML.

This part does not define details of the data exchange procedure or implementation requirements for
the import/export tools.
1.2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

IEC 62714-1, Engineering data exchange format for use in industrial automation systems engineering:
Automation markup language: Part 1: Architecture and general requirements

IEC 62424:2008, Representation of process control engineering - Requests in P&l diagrams and data
exchange between P&ID tools and PCE-CAE tools

Extensible Markup Language (XML) 1.0 (Third Edition), W3C Recommendation 04 February 2004
(available at <http://www.w3.0rg/TR/2004/REC-xml|-20040204/>) [viewed on 2016-07-28]

<AutomationML/> Part 4: AutomationML Logic

IEC 61131-3, Programmable controllers - Part 3: Programming languages

Mathematical Markup Language (MathML) Version 2.0 (Second Edition), W3C Recommendation 21
October 2003 (available at <https://www.w3.org/TR/MathML2/> [viewed on 2016-07-28]

IEC 61131-10 (under work in SC 65B), PLCopen XML Exchange Format according to IEC 61131-3

ISO/IEC 19505, Information technology - Object Management Group Unified Modeling Language
(OMG UML)

Unified Modeling Language (UML) Version 2.4.1, OMG (available at
<http://www.omg.org/spec/UML/2.4.1>) [viewed on 2017-01-27]

<AutomationML/> Part 4: AutomationML Logic

2 Terms, definitions and abbreviations

2.1 Terms and definitions

For the purpose of this document, the terms and definitions of IEC 62714-1 apply and in addition the
following terms and definitions.

2.1.1 logic information

comprises sequencing information, behaviour information, or interlocking information and its
integration into the overall CAEX file.

2.1.2 logic model

represents the information about the controlled and uncontrolled behaviour of the considered system
and is a part of the logic information.

2.1.3 |EC 61131-XML

represents an XML based exchange format for IEC61131-3 as defined in IEC 61131-10 (under work in
SC 65B).

2.1.4 sequencing information

is logic information that describes the controlled behaviour of the system to external interactions and
its integration into the overall CAEX file.

2.1.5 sequencing model

is logic model that describes the uncontrolled behaviour of the system to external interactions.

2.1.6 behaviour information

is logic information that describes the uncontrolled behaviour of the system to external interactions
and its integration into the overall CAEX file.

2.1.7 behaviour model

is logic model that describes the uncontrolled behaviour of the system to external interactions.

2.1.8 interlocking information

is logic information that describes the controlled behaviour of the system to avoid unstable state of the
system possibly causing harmful effects on humans and environment and its integration into the
overall CAEX file.

2.1.9 interlocking model

is logic model that describes the controlled behaviour of the system to avoid unstable state of the
system possibly causing harmful effects on humans and environment.

2.1.10 logic objects
tbd
2.1.11 mathematical expression

tbd

2.1.12 state chart

represents a state machine, as specified in ISO/IEC 19505, but only considering those model
elements which are necessary to cover the scope of this part of IEC 62714.

Note: The considered model elements are given in B.5.

<AutomationML/> Part 4: AutomationML Logic

2.2 Abbreviations

For the purpose of this document, the abbreviations of IEC 62714-1 apply and in addition the
abbreviations listed inTable 1.

SFC Sequential function chart
FBD Function block diagram

IML Intermediate modelling layer
POU Program organisation unit

Table 1: Abbreviations

2.3 Conformity

To claim conformity to the present document with respect to the support of AML, the requirements of
clause 3, 4, 5, 6, 7, 8, 9, and 10 shall be fulfilled. In the scope of AML, an IEC 61131-XML document
shall conform to the specification of PLCopen® XML 2.0 or 2.0.1,0r to the specification of IEC 61131-
10 (under work in SC 65B).

This standard does not define details of the data exchange procedure or implementation requirements
for the import/export tools.

<AutomationML/> Part 4: AutomationML Logic

3 Conventions

3.1 General

This clause describes the conventions for the definition of the Intermediate Modelling Layer (IML): see
clause 7 - and defines the mapping between the logic models according to Annex B and the IML (see
Annex C) as well as the mapping rules between IML and IEC 61131-XML (see 8.3). An informative
overview of the mapping concept is provided in Annex A.

3.2 Conventions for the definition of the Intermediate Modelling Layer

Each IML system consists of different IML system elements. The use of each IML element is defined
in7.3.

For each IML system element the following conventions apply:

IML system elementsare characterised by a name, an abbreviation, properties, and relations
to other IML system elements according to 7.3.

Each property and each relation has a name according to 7.3.

The unambiguous designator of a property or a relation follows the syntax below:
‘IML system element abbreviation’.’IML system element property name’
‘IML system element abbreviation’.’IML system element relation name’

Note: Example: “s.ID”, “s.Pre”

3.3 Mapping between logic models and the Intermediate Modelling Layer

According to this standard sequentialinformationmay be represented by directed logic models as Gantt
charts, activity-on-node networks, timingdiagram, and state charts, see Annex C. Regarding the logic
models, the following provisions apply:

A logic model shall be represented by an IML system following the mapping rulesdescribed in
Annex C.

Each logic model shall have an initial state.

Each element of the logic model shall have one or more predecessors and successors(except
initial and final states).

3.4 Mapping rules between the Intermediate Modelling Layer and IEC 61131-XML

Due to the equivalence of IML and SFC according to IEC 61131-3 and the capability of IEC 61131-
XML to model SFCsthe following provision apply:

Each IML system element with its properties and relations shall be mapped to one or
moreSFC elements according the mapping rules in 8.3.

Note: AnlEC 61131-XML document can contain several IML systems.

Information, which isneither given in IML nor is within the scope of this standard, but is necessary to
make the document IEC 61131-XML conform, shall be generated.

<AutomationML/> Part 4: AutomationML Logic

4 Part 4 related extensions of AMLIlibraries

41 General

This clause defines extensions of the AML role classes and standard AML interface classes. These
classes are part of the AML standard library and specific extension for this part of IEC 62714. All
described attributes are part of the standard library and may be removed in the InstanceHierarchy if
not needed.

4.2 AutomationMLBaseRoleClassLib
4.3 General

Note: The version of this AML base role class library is 2.2.2 and based on version x.y.z of IEC 62714-1.

Figure 2 present the normative AutomationMLBaseRoleClassLib as object tree. Details to each role
class are given in 4.3.1 and 4.3.2. The XML text of AutomationMLBaseRoleClassLib is given in H.1.

~) [AutomationMLBaseRoleClassLib
A AutomationMLBaseRole { Class }

A Group { Class AutomationMLBaseRole }
InterlockingSourceGroup { Class Group }
InterlockingTargetGroup { Class Group }

Facet { Class AutomationMLBaseRole }

Vv Port { Class AutomationMLBaseRole }
Resource { Class AutomationMLBaseRole }
Product { Class AutomationMLBaseRole }
Process { Class AutomationMLBaseRole }

v Structure { Class AutomationMLBaseRole }
PropertySet { Class AutomationMLBaseRole }
Frame { Class AutomationMLBaseRole }
LogicObject { Class AutomationMLBaseRole }

Figure 2: AutomationMLBaseRoleClassLib

<AutomationML/> Part 4: AutomationML Logic

4.3.1

RoleClass InterlockingTargetGroup

The role class “InterlockingTargetGroup” shall be used as specified in Table 2.

Class name | InterlockingTargetGroup
The role class “InterlockingTargetGroup” shall be used for objects that group objects
Description | belonging to the sameinterlocking target group. AML interlocking target group objects

shall reference this role. Details and examples are specified in 10 and Annex F.

Parent class

AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Group

Zlaetrrrlui(r)l; AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Group/InterlockingTarget
reference Group
Attributes none

Table 2: RoleClass InterlockingTargetGroup

4.3.2

RoleClass InterlockingSourceGroup

The role class “InterlockingSourceGroup” shall be used as specified in Table 3.

Class name | InterlockingSourceGroup
The role class “InterlockingSourceGroup” shall be used for objects that group objects
Description belonging to the sameinterlocking source group. AML interlocking source

groupobjects shall reference this role. Details and examples are specified in 10 and
Annex F.

Parent class

AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Group

:Iaetr?\ent o5 AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Group/InterlockingSource
Group

reference

Attributes none

Table 3: RoleClass InterlockingSourceGroup

4.3.3

RoleClass LogicObject

The role class “LogicObject” shall be used as specified in Table 4.

Class name

LogicObject

Description

The role class “LogicObject” shall denote a logic object. Examples are given in
Annex F.

Parent class

AutomationMLBaseRoleClassLib/AutomationMLBaseRole

Path for

element AutomationMLBaseRoleClassLib/AutomationMLBaseRole/LogicObject
reference

Attributes none

Table 4: RoleClass LogicObject

Note: These objects can be enriched and further referenced in CAEX.

<AutomationML/> Part 4: AutomationML Logic

4.4 AutomationMLInterfaceClassLib

441 General

Note: The version of this AML interface class library is 2.2.2.

Figure 3present the normative AutomationMLInterfaceClassLib as object tree. Details to each
i:t;rface class are given in 4.4.2 to 4.4.10. The XML text of AutomationMLInterfaceClassLib is given in
A ﬁ AutomationMLUnterfaceClassLib
» | =0 AutomationMLBaselnterface { Class }
«0 Order { Class AutomationMLBaselnterface }
«0 PortConnector { Class AutomationMLBaselnterface }
«o [nterlockingConnector { Class AutomationMLBaselnterface }
«0 PPRConnector { Class AutomationMLBaselnterface }
~ | »0 ExternalDataConnector { Class AutomationMLBaselnterface }
«0 COLLADAInterface { Class ExternalDataConnector }
~) =0 PLCopenXMLinterface { Class ExternalDataConnector }
~) =0 Logicnterface { Class PLCopenXMLInterface }
«0 Sequencinglogicinterface { Class LogicInterface }
«o BehaviourLogicinterface { Class Logicinterface }
«0 SequencingBehaviourLogicInterface { Class LogicInterface }
«o Interlockinglogiclnterface { Class LogicInterface }
«0o LogicObjectinterface { Class PLCopenXMLInterface }
~) »g Variablelnterface { Class PLCopenXMLInterface }
«o InterlockingVariablelnterface { Class Variablelnterface }
~) =0 Communication { Class AutomationMLBaselnterface }
«o Signallnterface { Class Communication }

«0 Attachmentinterface { Class AutomationMLBaselnterface }

Figure 3: AutomationMLInterfaceClassLib

<AutomationML/> Part 4: AutomationML Logic

4.4.2

InterfaceClass Logiclnterface

The interface class “Logiclnterface” shall be used as specified inTable 5.

Class name | Logiclnterface
The interface class “Logicinterface” shall be used in order to reference
Description logicinformation stored in a POU within an external IEC 61131-XML document. AML

logic interface objects shall reference this interface class. Details and examples are
specified in6 andAnnex D.

Parent class

AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConnecto
r/
PLCopenXMLInterface

AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConnecto

Path for

element r/

reference PLCopenXMLInterface/LogicInterface
Attributes none

Table 5: InterfaceClass Logiclnterface

4.4.3

InterfaceClass SequencingLogiclinterface

The interface class “SequencinglLogiclnterface” shall be used as specified in Table 6.

Class name | SequencingLogiclnterface
The interface class “SequencinglLogiclnterface” shall be used in order to reference
Description sequencing information stored in a POU within an external IEC 61131-XML

document. AML sequencing interface objects shall reference this interface class.
Details and examples are specified in 6 and Annex D.

Parent class

AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConnecto
r/
PLCopenXMLInterface/Logiclnterface

AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConnecto

Path for

element r/

reference PLCopenXMLInterface/Logiclnterface/SequencingLogicinterface
Attributes none

Table 6: InterfaceClass SequencingLogiclnterface

<AutomationML/> Part 4: AutomationML Logic

4.4.4

InterfaceClass BehaviourLogiclnterface

The interface class “BehaviourLogiclnterface” shall be used as specified in Table 7.

Class name | BehaviourLogiclnterface
The interface class “BehaviourLogiclnterface” shall be wused in order to
Description referencebehaviourinformation stored in a POU within an external IEC 61131-XML

document. AML behaviour interface objects shall reference this interface class.
Details and examples are specified in 6 and Annex D.

Parent class

AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConnecto
r/
PLCopenXMLInterface/Logiclnterface

Path for AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConnecto
element r/

reference PLCopenXMLInterface/LogicInterface/BehaviourLogiclnterface

Attributes none

Table 7: InterfaceClass BehaviourLogiclnterface

4.4.5

InterfaceClass SequencingBehaviourLogiclnterface

The interface class “SequencingBehaviourLogiclnterface” shall be used as specified in Table 8.

Class name | SequencingBehaviourLogiclnterface
The interface class “SequencingBehaviourLogiclnterface” shall be used in order to
Description referencesequencing and behaviourinformation stored in a POU within an external

IEC 61131-XML document. AML sequencing behaviour interface objects shall
reference this interface class. Details and examples are specified in 6 and Annex D.

Parent class

AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConnecto
r/
PLCopenXMLInterface/Logiclnterface

AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConnecto

Path for

element r/

reference PLCopenXMLInterface/Logiclnterface/SequencingBehaviourLogiclnterface
Attributes none

Table 8: InterfaceClass SequencingBehaviourLogiclnterface

<AutomationML/> Part 4: AutomationML Logic

4.4.6

InterfaceClass InterlockingLogiclnterface

The interface class “InterlockinglLogiclnterface” shall be used as specified in Table 9.

Class name | InterlockingLogiclnterface
The interface class ‘“InterlockinglLogicinterface” shall be used in order to
Description referenceinterlockinginformation stored in a POU within an external IEC 61131-XML

document. AML interlocking interface objects shall reference this interface class.
Details and examples are specified in 6 and Annex D.

Parent class

AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConnecto
r/
PLCopenXMLInterface/Logiclnterface

Path for | AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConnecto
element r/

reference PLCopenXMLInterface/LogicInterface/InterlockingLogicInterface

Attributes none

Table 9: InterfaceClass InterlockingLogiclnterface

4.4.7

InterfaceClass LogicObjectinterface

The interface class “LogicObjectinterface” shall be used as specified in Table 10.

Class name | LogicObjectinterface
The interface class “LogicObjectinterface” shall be used to reference objects within
Description | anlEC 61131-XML document. AML logic object interface objects shall reference this

interface class. Details and examples are specified in 6 and Annex D.

Parent class

AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConnecto
r/
PLCopenXMLInterface

Path for | AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConnecto
element r/

reference PLCopenXMLInterface/LogicObjectinterface

Attributes none

Table 10: InterfaceClass LogicObjectinterface

Note: Within anlEC 61131-XML document logic objects can be steps, transitions, actions etc.

<AutomationML/> Part 4: AutomationML Logic

4.4.8

InterfaceClass Variablelnterface

The interface class “Variablelnterface” shall be used as specified in Table 11.

Class name | Variablelnterface
The interface class “Variablelnterface” shall be used in order to reference a variable
Description in an external IEC 61131-XML document on a signal level for industrial

communication. AML variable interface objects shall reference this interface class.
Details and examples are specified in 6 and Annex D.

Parent class

AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConnecto
r/
PLCopenXMLInterface

Path for | AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConnecto
element r/

reference PLCopenXMLInterface/Variablelnterface

Attributes none

Table 11: InterfaceClass Variablelnterface

4.4.9

InterfaceClass InterlockingConnector

The interface class “InterlockingConnector” shall be used as specified in Table 12.

Class name | InterlockingConnector
The interface class “InterlockingConnector” shall be used in order to model relations
Description between aninterlocking source group and aninterlocking target group. AML

interlocking interface objects shall reference this interface class. Details and
examples are specified in 10 and Annex F.

Parent class

AutomationMLInterfaceClassLib/AutomationMLBaselnterface

Path for

element AutomationMLInterfaceClassLib/AutomationMLBaselnterface/InterlockingConnector
reference

Attributes none

Table 12: InterfaceClass InterlockingConnector

<AutomationML/> Part 4: AutomationML Logic

4.4.10 InterfaceClass InterlockingVariablelnterface

The interface class “InterlockingVariablelnterface” shall be used as specified in Table 13.

Class name | InterlockingVariablelnterface
The interface class ‘“InterlockingVariableInterface” shall be used in order to
reference a variable which representsthe results of a function describing the
Description | interlocking condition stored in POU or a POU network.AML interlocking variable

interface objects shall reference this interface class. Details and examples are
specified in 10 and Annex F.

Parent class

AutomationMLInterfaceClassLib/AutomationMLBaselnterface/
ExternalDataConnector/PLCopenXMLInterface/Variablelnterface

Path for | AutomationMLInterfaceClassLib/AutomationMLBaselnterface/

element ExternalDataConnector/PLCopenXMLInterface/Variablelnterface/InterlockingVariabl
reference elnterface

The attribute “SafeConditionEquals” shall be
used in order to specify the result of the function
describing the interlocking condition. The
N allowed values shall be “true” or “false”and shall
Attributes SafeConditionEquals indicate which value of a unique Boolean
(type="xs:boolean”) variable represents the safe state of

aninterlocking source group.

The use of the attribute shall beoptional.The
default value shall be“true”.

Table 13: InterfaceClass InterlockingVariablelnterface

<AutomationML/> Part 4: AutomationML Logic

5 Metainformationabout the IEC 61131-XML source tool

In order to simplify the data exchange between a source tool and a destination tool, it is useful to store
information about the source tool directly into the IEC 61131-XML document. Hence, the following
provisions apply:

Note: In the engineering process it is useful to transfer the information of the project the data belongs to and the time of the
export of the data. This supports the implementation process of interfaces.

Each IEC 61131-XML document shall provideinformation about the tool which has written the
IEC 61131-XML document.

In a data exchange tool chain, the last participating tools shall store thisinformation in the IEC
61131-XML document.

This information shall be stored within attributes of thelEC 61131-XML element“fileHeader”.
The meta information shall provide information about:

name of the exporting software, the writer tool;

vendor of the writer tool;

URL of the writer tool;

product version of the writer tool;

product release number of the writer tool;

creation date and time of the IEC 61131-XML document.

The required information shall be stored by means of the attributes shown inTable 14.

XMLtagname Type Level Example

companyName Xs:string Mandatory “ToolX Vendor”

companyURL Xs:string Mandatory “http://www.ToolX-Vendor.org”
productName xs:anyURI Mandatory “ToolX”

productVersion Xs:string Mandatory “0.2”

productRelease Xs:string Mandatory “123 prealpha”
creationDateTime xs:dateTime | Mandatory “2011-05-25T09:30:47”

Table 14: Meta information about the IEC 61131-XML source tool

<AutomafionML/> Part 4: AutomationML Logic

6 Referencing IEC 61131-XML documents

6.1 General

According to the distributed document structure of AML it is necessary to put the different information
within the different documents in relation to each other. This clause focuses on the referencing of AML
objects (within a CAEX document) with logic information stored in IEC 61131-XML documents. An
informative overview of the referencingmethods is provided in Annex D.

6.2 Referencing logic information
Regarding referencing logic information, the following provisions apply:

A reference from an AML object to logic information within anlEC 61131-XML
document shall be modelled by means of a CAEX Externallnterface using the AML

InterfaceClasses “Logiclnterface”, “SequencinglLogiclnterface”,
“BehaviourLogiclnterface”, “SequencingBehaviourLogiclnterface”,
“InterlockingLogiclnterface”, “LogicObjectInterface”, “Variablelnterface”,

“InterlockingVariablelnterface”, or derivations of them, specified in 4.4.

Logic information shall be referenced by its URI within the attribute “refURI” of these
CAEX Externalinterfaces.

The value of the attribute “refURI” shall point at the logic information within the IEC
61131-XML document and shall follow the syntax: URI (which specifies the document)
followed by the separating character “#” followed by the IEC 61131-XML attribute
“globallD” (which specifies the logic information).

Note: It is recommended to use a universal unique identifier (UUID) for the globallD to enable a file crossing identification.

Note: Structure of the “refURI” attribute value resembles <URI>#<globallD>, e.g. file:///behaviour.xml# UUID_74e94dc8-b5a2-
490c-bfof-fOfdaad515ef.

Note: In this part of IEC 62714, UUIDs are presented in a short form such as “UUID1”, “UUID100” etc. This serves the
readability and acts as a real UUID.

Note: It is not recommended to just reference the IEC 61131-XML document itself, since the document may contain several
logic models containing logic information.

An AML object shall have one or more CAEX Externalinterfaces of the AML InterfaceClass
“Logiclnterface”, “SequencingLogiclnterface”, “BehaviourLogiclnterface”,
“SequencingBehaviourLogiclnterface”, “InterlockingLogiclnterface”, or a derivation of them
referencing one or more logic models which contain logic information. In case that an AML
object has the logic model already referenced within its parent objects no such an CAEX
Externallnterface shall not be necessary.

Note 1: If an AML object has no logic information assigned to it, no CAEX Externallnterface of the AML InterfaceClass
“Logiclnterface” is permitted.

Note 2: Logic information can be stored in one POU or distributed throughout several POUs called POU network.

Note 3: Logic information can be stored within one IEC 61131-XML document or distributed throughout several IEC 61131-XML
documents which can be connected by means of CAEX.

Logic models containing logic information shall be distinguishable, i.e. an AML object
shall not have more than one CAEX Externalinterface of the same AML

InterfaceClass “Logiclnterface”, “SequencingLogiclnterface”,
“BehaviourLogiclnterface”, “SequencingBehaviourLogiclnterface”, or a derivation of
them.

An AML object shall have zero or more CAEX Externalinterfaces of the AML
InterfaceClass “InterlockingLogiclnterface” or a derivation of it (see clause 10 and
Annex F).

The following AML InterfaceClasses shall be used for AML objects that havealready
referenced logic information within itself or within its parent objects. These shall be
modelled as direct or indirect children of AML objects with the AML InterfaceClass

<AutomationML/> Part 4: AutomationML Logic

“LogicInterface”, “SequencinglLogiclnterface”, “BehaviourLogiclnterface”,
“SequencingBehaviourLogiclnterface”, “InterlockingLogiclnterface”, or a derivation of
them.

= An AML object referencing a logic object shall have one or more Externallnterfaces of the
AML InterfaceClass “LogicObjectinterface” or a derivation of it.

Note: Within a POU of anlEC 61131-XML document, logic objects can be steps, transitions, actions etc.

= An AML object referencing a variable shall have one or more Externalinterfaces of the
AML InterfaceClass “Variablelnterface” or a derivation of it.

Note: The variables can, then, be assigned, e.g. to signals of other AML objects or to variables of other POUs, by using
InternalLinks.

= An AML object referencing an interlocking variable shall have one Externalinterface of
the AML InterfaceClass “InterlockingVariablelnterface” or a derivation of it.

<AutomationML/> Part 4: AutomationML Logic

7 Intermediate Modelling Layer

7.1 General

This clause defines the Intermediate Modelling Layer (IML),as a decoupling layer between the
mapping of logic models and SFCs according to IEC 61131-3 as the IEC 61131-XML
representation,and describes the IML system elements.

7.2 IML system overview

An IML system consists of elements with their properties and relations as depicted in Figure 4.

Note: For further information see A.3.

SimultaneousDivergence simDiv

simDiv.ID
— State s
(EDIY & simDiv.Pre
D s.ID spre A
a. s.Name
a.Ngme s.Init SimultaneousConvergence simCon
a.Init P s.Current -
a.Curre_nt a.Pre s.Terminal |a . simCon.ID
a.Terminal simCon.Pre
a.Time
a.Formula s.Pre A
A é selDiv.Pre
SelectionDivergence selDiv
s.Pre st.Pre P
IL’ selDiv.ID
\ 4
st.Guard. | StateTransition st
a.FiredEvents ConsumedEvents stID st.Pre
st.Name v
st.Guard P
SelectionConvergence selCon
+ Guard.Bool selCon.Pre
st.Guard.Boolean selCon.ID
\ 4
Variable var
v v var.|D
var.Name
Event ev var.Type Comment com
ev.ID Var.Cont_ent com.Content
ev.Name var.SlUnit
’ var.Initialvalue |
var.Address | All entities '

com. Pre
h. MembersT

Header h | ad.Pre addData ad
h.ID ad.ID

‘ ad.Type
h-Name ad.Value

Figure 4: IML system entities and its relations

7.3 Definition of IML system elements

An IML system is a set of the following IML system elements with their corresponding properties and
relations.

7.3.1 “Header”
A header“h” serves as a description of an IML system.
A header “h” shall have the following properties:
“h.ID”shall represent the unique identification of the IML system.

“h.Name”shall represent the uniqgue name of the IML system.

<AutomationML/> Part 4: AutomationML Logic

A header “h”shall have the following relation:

“h.Members”shall represent the set of all IML system elements of the IML system.

7.3.2 “State”

A state “s” describes a stable situation within an IML system where a dedicated set of parametersis
valid. These parameters can be given by running actions, events, and values of process variables.
States are reached and left via state transitions.

A state “s” shall have the following properties:
“s.ID”shall represent the unique identification of the state “s” within an IML system.
“s.Name” shall represent the unique name of the state “s” within an IML system.
Additionally the following provisions apply:
Initial states shall have the property “s.Init” with a value “true”.

Note: The value “false” or the absence of the property “s.Init” indicates that the present state is not an initial state.

Currently activated states shall have the property “s.Current” with a value “true”.

Note: The value “false” or the absence of the property “s.Current” indicates that the present state is not a currently activated
state.

Terminal states shall have the property “s.Terminal” with a value “true”.
Note: The value “false” or the absence of the property “s.Terminal” indicates that the present state is not a terminal state.

Except of the initial state all other states “s”shall have the following relation:

“s.Pre” shall represent the set of predecessors of the state “s” covering the references
to selection convergences, simultaneous divergences or state transitions.

7.3.3 “State transition”

A state transition “st” describes the transition from one state to one or moresubsequent states by
interpreting state transition conditions.

A state transition “st” shall have the following properties:
“st.ID”shall represent the unique identification of the state transition“st” within an IML system.
“st.Name”shall represent the unique name of the state transition “st” within an IML system.

“st.Guard’shall representone or more of the following execution conditions of the state
transition “st”. An overview of all possible combinations is given in Table 15.

Empty guard: This represents a permanently fulfilled state transition condition.
One of the following:

“st.Guard.Boolean”shall name the unique Boolean variable giving the firing
condition.

“st.Guard.Value’shall name a unique variable and a closed interval of valid
values for the variable as necessary firing condition.

Note: The condition is “true” only if the value of the variable is within or on the borders of the interval.

“st.Guard.Formula”shall name a Structured Text following IEC 61131-3
formula providing a Boolean value to encode the necessary firing condition.

“st.Guard.ConsumedEvent’shall name all events that together are necessary to
fire conditions.

Possible combinations | st.Guard st.Guard.ConsumedEvent

<AutomationML/> Part 4: AutomationML Logic

of execution conditions Empty B0O- value | Eor-

lean mula

Combination 1 X

Combination 2 X

Combination 3 X X

Combination 4 X

Combination 5 X X

Combination 6 X

Combination 7 X X

Combination 8 X

Table 15: Overview of all possible combinations of execution conditions
Each state transition “st” shall have the following relation:

“st.Pre” shall represent the set of predecessors of the state transition “st” covering the
references to predecessor states, simultaneous convergences or selection divergences.

7.3.4 “Activity”

An activity “a” describes one or more operations related to a certain state. It is characterized by
required and to be changed variables, local time properties and by possible events fired after its
execution.

Note: Activities cannot be attached to state transitions.

@0

An activity “a” shall have the following properties:

“a.ID”shall represent a unique identification of the activity “a” within an IML system.

“a.Name”shall represent the unique name of the activity “a” within an IML system.

“a.Formula” shall name a Structured Text formula.
Additionally the following provisions apply:
Initial activities shall have the property “a.lnit” with a value “true”.
Note: The value “false” or the absence of the property “a.Init” indicates that the present activity is not an initial activity.

Currently running activities shall have the property “a.Current” with a value “true”.

Note: The value “false” or the absence of the property “a.Current” indicates that the present activity is not a currently running
activity.
Terminal activities shall have the property “a.Terminal” with a value “true”.

Note: The value “false” or the absence of the property “a.Terminal” indicates that the present activity is not a terminal activity.

For a mapping of time information the following property shall be used:

“a

“a.Time”shall represent the time condition of the activity “a” (using the Sl unit second
(s)) and shall consist of a subset of the following properties:

Note: The subset results from the transformation rules of the mapping between logic models and the Intermediate Modelling
Layer.

“a.Time.Duration” shall be a non-negative real value representing the duration

of the activity “a”.

“a.Time.Start” shall be a range [Earliest,Latest] with non-negative real values

as boundaries for the start point of the activity “a”.

“a.Time.End” shall be a range [Earliest,Latest] with non-negative real values

“a

as boundaries for the end point of the activity “a”.

<AutomationML/> Part 4: AutomationML Logic

“a.Time.Delay” shall be a non-negative real value representing the delay of

@

starting the activity “a”.

“ a0

An activity “a”shall have the following relation:
“a.Pre” shall represent the set of states to which the activity “a” relates.
Additionally the following provision applies:

[l

“a.FiredEvent” shall name all events fired at the end of the activity “a”.

7.3.5 “Selection divergence”

A selection divergence “selDiv” is a logical association between one predecessor state and two or
more successor state transitions. The successor state transitions can be regarded as having an XOR
relation.

A selection divergence “selDiv” shall have the following property:

“selDiv.ID” shall represent the unique identifier of the selection divergence “selDiv” within an
IML system.

A selection divergence “selDiv’shall have the following relation:

“selDiv.Pre” shall represent the predecessor state of the selection divergence “selDiv”.

7.3.6 “Simultaneous divergence”

A simultaneous divergence “simDiv” is a logical association between one predecessor state transition
and two or more successor states. The successor state can be regarded as having an AND relation.

A simultaneous divergence “simDiv” shall have the following property:

“simDiv.ID” shall represent the unique identifier of the simultaneous divergence “simDiv” within
an IML system.

A simultaneous divergence “simDiv”shall have the following relation:
“simDiv.Pre” shall represent the predecessor state transition of the simultaneous divergence
“simDiv”.

7.3.7 “Selection convergence”

A selection convergence “selCon” is a logical association between two or more predecessor state
transitions and one successor state.

A selection convergence “selCon” shall have the following property:

“selCon.ID” shall represent the unique identification of the selection convergence “selCon”
within an IML system.

A selection convergence “selCon”shall have the following relation:

“selCon.Pre” shall represent the set of predecessors of the selection convergence
“selCon”covering the references to predecessor state transitions.

7.3.8 “Simultaneous convergence”

A simultaneous convergence “simCon” is a logical association between two or more predecessor
states and one successor state transition.

A simultaneous convergence “simCon” shall have the following property:

“simCon.ID” shall represent the unique identification of the simultaneous convergence
“simCon” within an IML system.

<AutomationML/> Part 4: AutomationML Logic

A simultaneous convergence “simCon”shall have the following relation:

“simCon.Pre” shall represent the set of predecessors of the simultaneous convergence
“simCon”covering the references to predecessor states.

7.3.9 “Event”

An event “ev” is fired by an activity to which it is associated. Events are mainly used as triggers for
state transitions.

An event “ev” shall havethe following properties:
“ev.ID” shall represent the unique identification of the event “ev” within an IML system.

“‘ev.Name” shall represent the unique name of the event “ev” within an IML system.

7.3.10 “Variable”

A variable “var” is a modelling entity that characterizes states and activities. It value can be changed
by activities; it can be used as trigger conditions for state transitions or as system input and output.

A variable “var” shall have the following properties:
“var.ID” shall represent the unique identifier of the variable “var” within an IML system.
“var.Name” shall represent the unique name of the variable “var” within an IML system.

“var.Type” shall be the data type of the variable “var” following the data types defined by IEC
61131-3.

“var.Content” shall describe the use of the variable “var” as local, input, output or inout
variable. Default value shall be local.

Additionally the following provisions apply:

“var.SIUnit” shall be the measurement type of the variable “var” following the SI
system of measuring units.

“var.InitialValue” shall be the initial value of the variable “var”.

“var.Address” shall be the physical address of the variable “var” as defined by IEC
61131-3.

7.3.11 “Comment”
A Comment “com” is used for descriptive information.
A comment “com” shall have the following property:
“com.Content” shall be the content string of the comment “com”.
A comment “com”shall have the following relation:

“com.Pre”shall reference the IML system element to which the comment “com” is associated.

7.3.12 “Additional data”

Additional data “addData” allowsto store and exchange additionalinformation.

Note: Examples are complex timing information, runtime information or descriptive data.
An addData “ad” shall have the following properties:

“ad.Type”shall contain one value of the list of types for additional data as described in8.2.

Note: The syntax of additional data is specified in a separate XML schema (see Annex I).
“ad.Value” shall be a string representing the XML content of the addData “ad”.

“ad.ID” shall represent the unique identification of the addData “ad” within an IML system.

Part 4: AutomationML Logic

An addData “ad’shall have the following relation:

= “ad.Pre” shall represent the IML system element to whichthe addData “ad” relates.

Note: This predecessor can be every IML system element.

<AutomationML/> Part 4: AutomationML Logic

8 Mapping of IML to IEC 61131-XML

8.1 General

This clause defines rules for the transformation of IML systems to IEC 61131-XMLdocuments. AML
uses the IEC 61131-XML representation of the IEC 61131-3 programming language "Sequential
Function Charts” (SFC) to store all relevant logic information of the IML. But first, a schema defined is
specified by AML for storing additional logic information within the IEC 61131-XML element “addData”.

8.2 AML addData schema for additional data within logic information

AML exploits the additional data mechanism of IEC 61131-XML to integrate logic model specific
information required by AML but not covered by the IEC 61131-XML. Hence, AML specifies an XML
schema covering those additional elements and attributes. It is called AML addData schema. Annex
1.1 provides an XML representation of the schema.

The declaration of the AML addData schema in IEC 61131-XML documents, enabling the usage of the
AML addData schema, is described in 8.2.1. Then, the additional data can be stored within IEC
61131-XML elements “addData” according to the AML addData schema (see 8.2.2 - 8.2.21).

Note: Examples for storing additional data within IEC 61131-XML elements “addData” is given in 8.3.

8.2.1 Declaration and usage of AML addDataschema in IEC 61131-XML

To use the AML addData schema in an IEC 61131-XML document, the schemashall be listedin the
IEC 61131-XML element “addDatalnfo” to enabletheunambiguous identification of the corresponding
IEC 61131-XML element “addData” contents (seeFigure 5).

<contentHeader name="logic model">

<addDatalnfo>
<info name="http://www.automationml.org/IEC62714-4Ed1/AML_addData.xsd"
vendor="AutomationML">
<description>
<xhtml:p>Schema to integrate logic model specific information required by
AML.</xhtml:p>
</description>
</info>
</addDatalnfo>
</contentHeader>

Figure 5: XML text of declaration of AML schema for storing additional logic information within IEC
61131-XML documents

<AutomationML/> Part 4: AutomationML Logic

8.2.2 XML schema description ofAMLspecific data

Table 16 specifies the use of the AML schema element “AML”. Only one “AML” element shall exist; All
information describes in this subclause shall be grouped within one “AML” element.

Diagr amITimE
am [
i aml:ChartType
| ami:ResourceStateChangeDefin... [
___ Rl
{ aml:InterruptibleAction F]
i aml:StateChartSubCharts
R fialifinfiinfinfiifinfiofiinfinfififinfinfiinfiafinfliali Sl
0.
AML (51| 2 statechartstate Type [
- comprises all D:'_|'|-:_:
;tl_dtinna_l, AML specific logic r--1 aml:StateChartActionType
inrormation. |~ iiaiaiaieieiefefefeNeeiaiaiaiiefiefeteieteiefafafetefeteiaiaiall
| aml:impulseDiagramResourceG...
“amlImpulseDiagramPLCVariable [
. aml:State Status [
! aml:ActionStatus
L amiUnit B
Prop content: complex
erties Followed by a “sequence”.
Child | aml:Time,aml:ChartType,aml:ResourceState ChangeDefinition,aml:InterruptableAction,aml:St
ren ateChartSubCharts,aml:StateChartState Type,aml:StateChartActionType,
aml:ImpluseChartResourceGroup,aml:ImpulseDiagramPLCVariable,aml:StateStatus,aml:Acti
onStatus, aml:Unit

Table 16. AML schema element “AML”

file:///C:/Dokumente%20und%20Einstellungen/Lorenz/Desktop/addData.doc%23Link00000008%23Link00000008

<AutomationML/> Part 4: AutomationML Logic

8.2.3 XML schema description of timing data

Table 17 specifies the use of the AML schema element “Time”.

Dlagram i_aaﬂd]h;ﬂ;]l;ect;ﬁ;ica
| Blatiribute |
| = _ __]
4 aml:Duration []
amiTime E}— : [g
-4 amlEarlieststart [£]
L4 amlLatestStart B
- amEarliestEnd]
{ amiLatestend B
L2 amiDetay B
Properties | isRef: 0
minOcc: 0
maxQOcc: 1
content: complex
Followed by a “sequence”.
Children aml:Duration,aml:EarliestStart,aml:LatestStart,aml:EarliestEnd,aml:LatestEnd,aml:Delay
Attributes | Attribute: ID (from type “xs:string " with use “required”)
Type extension of aml:addDataBaseObject

Table 17. AML schema element “Time”

<AutomationML/> Part 4: AutomationML Logic

8.2.4 XML schema description ofdurations regarding timing data

Table 18 specifies the use of the AML schema element “Duration”.

Diagram i—ﬂﬁﬂdﬁa;a;ﬁ;ect;t;icﬂ
e | Hatribute :
| 2miDuration [

= ___,
-
it
Properties isRef: 0
minOcc: 0
maxOcc: 1
content: complex
Attributes | Attribute: ID (from type “xs:string " with use “required”)
Attribute: Value (from type “xs:decimal " with use “required”)
Attribute: Unit (from type “xs:string " with use “optional”)
Type extension of aml;:addDataBaseObject

Table 18: AML schema element “Duration” (within the AML schema element “Time’)

<AutomationML/> Part 4: AutomationML Logic

8.25 XML schema description of earliest starts regarding timing data

Table 19 specifies the use of the AML schema element “EarliestStart”.

Diagram r
|
o et
|
Properties isRef: 0
minOcc: 0
maxOcc: 1
content: complex
Attributes | Attribute: ID (from type “xs:string " with use “required”)
Attribute: Value (from type “xs:decimal " with use “required”)
Attribute: Unit (from type “xs:string " with use “optional”)
Type extension of aml:addDataBaseObject

Table 19: AML schema element “EarliestStart” (within the AML schema element “Time”)

<AutomationML/> Part 4: AutomationML Logic

8.2.6 XML schema description of latest starts regarding timing data

Table 20 specifies the use of the AML schema element “LatestStart”.

Diagram r T T T T T

Properties isRef: 0
minOcc: O
maxOcc: 1

content:. complex

Attributes | Attribute: ID (from type “xs:string " with use “required”)
Attribute: Value (from type “xs:decimal " with use “required”)
Attribute: Unit (from type “xs:string " with use “optional”)
Type extension of aml:addDataBaseObject

Table 20: AML schema element “LatestStart” (within the AML schema element “Time”)

<AutomationML/> Part 4: AutomationML Logic

8.2.7 XML schema description of earliest ends regarding timing data

Table 21 specifies the use of the AML schema element “EarliestEnd”.

Diagram r T T T T T

Properties isRef: 0
minOcc: O
maxOcc: 1

content:. complex

Attributes | Attribute: ID (from type “xs:string " with use “required”)
Attribute: Value (from type “xs:decimal " with use “required”)
Attribute: Unit (from type “xs:string " with use “optional”)
Type extension of aml:addDataBaseObject

Table 21: AML schema element “EarliestEnd” (within the AML schema element “Time”)

<AutomationML/> Part 4: AutomationML Logic

8.2.8 XML schema description of latest ends regarding timing data

Table 22 specifies the use of the AML schema element “LatestEnd”.

Diagram r
|
; amiLatestind
|
Properties isRef: 0
minOcc: 0
maxOcc: 1

content: complex

Attributes | Attribute: ID (from type “xs:string " with use “required”)
Attribute: Value (from type “xs:decimal " with use “required”)

Attribute: Unit (from type “xs:string " with use “optional”)

Type extension of aml:addDataBaseObject

Table 22: AML schema element “LatestEnd” (within the AML schema element “Time”)

<AutomationML/> Part 4: AutomationML Logic

8.2.9 XML schema description of delays regarding timing data

Table 23 specifies the use of the AML schema element “Delay’.

Dlagram |raml:aclchﬂtaBaseUbject (extension) |
| HAttribute |
aml:Delay |
|
Properties isRef: 0
minOcc: O
maxOcc: 1

content: simple

Attributes | Attribute: ID (from type “xs:string " with use “required”)
Attribute: Value (from type “xs:decimal " with use “required”)

Attribute: Unit (from type “xs:string " with use “optional”)

Type extension of aml:addDataBaseObject

Table 23: AML schema element “Delay” (within the AML schema element “Time”)

<AutomationML/> Part 4: AutomationML Logic

8.2.10 XML schema description of chart types
Table 24 specifies the use of the AML schema element “ChartType”.

LR TTEG_OJTTT
_________________ | HlAttribute I
aml:ChartType
----------------- | |

_______ i

Properties | isRef: 0

minOcc: 0
maxOcc: 1
content: complex
Attributes | Attribute: ID (from type “xs:string " with use “required”)
Attribute: ChartType (from type “xs:string ", derived by “restriction”, with use
“required”)
Enumeration: StateChart
Enumeration: TimingDiagram
Enumeration: GanttChart
Enumeration: ActivityOnNodeNetwork
Enumeration: SequentialFunctionChart
Enumeration: FunctionBlockDiagram
Type extension of aml:addDataBaseObject

Table 24: AML schema element “ChartType”

<AutomationML/> Part 4: AutomationML Logic

8.2.11 XML schema description of change definitions of resource states

Table 25 specifies the use of the AML schema element “ResourceStateChangeDefinition”.

Diagram
Properties | isRef: 0
minOcc: 0
maxOcc: unbounded
content:. complex
Attributes | Attribute: ID (from type “xs:string " with use “required”)
Attribute: DefinitionName (from type “xs:string " with use “required”)
Attribute: Duration (from type “xs:decimal " with use “required”)
Type extension of aml:addDataBaseObject

Table 25: AML schema element “Resource State ChangeDefinition”

8.2.12 XML schema description of interruptible actions

Table 26 specifies the use of the AML schema element “InterruptableAction”.

Diagram r T T

| ElAttribute
E aml:InterruptibleAction -
ElAttribute

Properties | isRef: 0
minOcc: O
maxOcc: 1

content:. complex

Attributes | Attribute: ID (from type “xs:string " with use “required”)

Attribute: Value (from type “xs:boolean " with use “required”)

Type extension of aml:addDataBaseObject

Table 26: AML schema element “InterruptibleAction”

<AutomationML/> Part 4: AutomationML Logic

8.2.13 XML schema description of sub chartsin state charts
Table 27 specifies the use of the AML schema element “StateChartSubCharts”.

LR (TEG_mTt_t_T
___________________________ | ElAttributs :
aml:StateChartSubCharts
'' ; i:;;g']| |

_______ J
ElAttribute
Properties | isRef 0
minOcc 0O
maxOcc unbounded
content complex
Attributes | Attribute: ID (from type “xs:string " with use “required”)
Attribute: POUREef (from type “xs:string " with use “required”)
Type extension of aml:addDataBaseObject

Table 27: AML schema element “StateChartSubCharts”

<AutomationML/> Part 4: AutomationML Logic

8.2.14 XML schema description of state types of state charts
Table 28 specifies the use of the AML schema element “StateChartStateType”.

DIEEN (TEG_DL_TT
__________________________ | BlAttribute :
aml:StateChartState Type
-------------------------- d |
_______ i
| StateChartStateType |
Properties | isRef: 0
minOcc: 0
maxOcc: 1
content: complex
Attributes | Attribute: ID (from type “xs:string " with use “required”)
Attribute: StateChartStateType (from type “xs:string ", derived by “restriction”, with
use “required”)
Enumeration: HigherLevelState
Enumeration: HistoryConnector
Enumeration: ConditionConnector
Enumeration: StateForActivity
Type extension of aml:addDataBaseObject

Table 28: AML schema element “StateChartState Type”

<AutomationML/> Part 4: AutomationML Logic

8.2.15 XML schema description of actions types of state charts

Table 29 specifies the use of the AML schema element “StateChartActionType”.
bigram | [T/ T

|raml:aclclDataBaseUbject (extension) |

| BlAttribute |

_______ i
‘ StateChartActionType |
Properties | isRef: 0
minOcc: 0
maxOcc: 1
content: complex
Attributes | Attribute: ID (from type “xs:string " with use “required”)

Attribute: StateChartActionType (from type “xs:string ", derived by “restriction”, with
use “required”)

Enumeration: DoAction
Enumeration: EXxitAction

Enumeration: EntryAction

Type extension of aml:addDataBaseObject

Table 29: AML schema element “StateChartActionType”

<AutomationML/> Part 4: AutomationML Logic

8.2.16 XML schema description of resource groups of timing diagrams

Table 30 specifies the use of the AML schema element “TimingDiagramResourceGroup”.
Diag,am | T

= atfributes

Properties | isRef: 0
minOcc: O
maxOcc: 1

content: complex

Attributes | Attribute: ID (from type “xs:string " with use “required”)
Attribute: Name (from type “xs:string " with use “required”)
Type extension of aml:addDataBaseObject

Table 30: AML schema element “TimingDiagramResourceGroup”

<AutomationML/> Part 4: AutomationML Logic

8.2.17 XML schema description of PLC variables of timing diagrams

Table 31 specifies the use of the AML schema element “TimingDiagramPLCVariable”.

Rlavian | aml:addDataBaseObject(eriensiclnj_l
__ | (= attributes |
! aml:TimingDiagramPLCVariable =}
-- | |
\ - |
[atfributes
| | Datatype
| Address |
Properties | isRef: 0
minOcc: O
maxOcc: 1
content:. complex
Attributes | Attribute: ID (from type “xs:string " with use “required”)
Attribute: Name (from type “xs:string " with use “required”)
Attribute: DataType (from type “xs:string " with use “optional”)
Attribute: Address (from type “xs:string " with use “optional”)
Type extension of aml:addDataBaseObject

Table 31: AML schema element “TimingDiagramPLC Variable”

<AutomationML/> Part 4: AutomationML Logic

8.2.18 XML schema description of state status

Table 32 specifies the use of the AML schema element “StateStatus”.

Diagram [T T T T

| amladdDataBaseObject (extension) |

Properties | isRef: 0
minOcc: O
maxOcc: 1

content: complex

Attributes Attribute: ID (from type “xs:string " with use “required”)
Attribute: Current (from type “xs:boolean" with use “required”)

Attribute: Terminal (from type “xs:boolean” with use “required”)

Type extension of aml:addDataBaseObject
Table 32: AML schema element “StateStatus”

<AutomationML/> Part 4: AutomationML Logic

8.2.19 XML schema description of action status

Table 33 specifies the use of the AML schema element “ActionStatus”.

Diagram r e T T

:
:
z
-0
|
T
5
or
i &

==]

Blattribute

Current

Terminal

Properties | isRef: 0
minOcc: O
maxOcc: 1

content:. complex

Attributes Attribute: ID (from type “xs:string " with use “required”)
Attribute: Initial (from type “xs:boolean" with use “required”)
Attribute: Current (from type “xs:boolean" with use “required”)

Attribute: Terminal (from type “xs:boolean" with use “required”)

Type extension of aml:addDataBaseObject

Table 33: AML schema element “ActionStatus”

<AutomationML/> Part 4: AutomationML Logic

8.2.20 XML schema description of units of measurement

Table 34 specifies the use of the AML schema element “Unit”.

Diagram T T T T T
el |raml:ﬂcIcIDﬂtaE!aseClbject-e:der'sicr': |

__________ | B Attributs |

BlAttriute

Properties | isRef: 0
minOcc: O
maxOcc: 1

content: complex

Attributes Attribute: ID (from type “xs:string " with use “required”)

Attribute: Name (from type “xs:boolean" with use “required”)

Type extension of aml:addDataBaseObject
Table 34: AML schema element “Unit”

8.2.21 XML schema description of addDataBaseObject

Table 35 specifies the use of the AML schema element “addDataBaseObiject”.

Diagram

SlAtribute
[add DataBaseObject |$|— 0
Properties | isRef: 0
minOcc: O
maxOcc: 1

content: complex

Attributes Attribute: ID (from type “xs:string " with use “required”)

Used by aml:Time, aml:Time/Duration, aml:Time/EarliestStart, aml:Time/LatestStart,
aml:Time/EarliestEnd, aml:Time/LatestEnd, aml:Time/Delay, aml:ChartType,
aml:ResourceStateChangeDefinition, aml:InterruptibleAction,
aml:StateChartSubCharts, aml:StateChartStateType, aml:StateChartActionType,
aml:ImpulseDiagramResourceGroup, aml:ImpulseDiagramPLCVariable,
aml:StateStatus, aml:ActionStatus, aml:Unit

Table 35: AML schema element “addDataBaseObject”

<AutomationML/> Part 4: AutomationML Logic

8.3 Mapping of IML to IEC 61131-XML SFC

Note: All tags and attributes are omitted which are mandatory for a valid IEC 61131-XMLdocument but are not relevant for the
certain transformation of IML system elements to IEC 61131-XML.

Note: Multiple vendor specific information may be merged into one IEC 61131-XML element “addData”.

8.3.1 Common rules

While transformingIML to IEC 61131-XMLeach IML system element shall be translated to a
corresponding POU element respectively SFC element by means of the mapping rules below.
Information given in IML but not directly expressible by IEC 61131-XMLshall be mapped to additional
data as described in 8.2.

The following mapping provisions apply:

Each IML system shall be represented byone IEC 61131-XML element “pou”. All sub-
elements of the IML system shall be represented within the IEC 61131-XML element “pou”
(see 8.3.2).

Each IML system element “header” shall be represented by attributes of the IEC 61131-XML
element “pou” (see 8.3.2).

Each IML system element “state”’shall be represented byone IEC 61131-XML element “step”
within the IEC 61131-XML element “SFC” (see 8.3.3).

Each IML system element “state transition”shall be represented by two IEC 61131-XML
elements (see 8.3.4):

One IEC 61131-XML element “transition” within the corresponding IEC 61131-XML
element “SFC”.

OnelEC 61131-XML element “transition” within the IEC 61131-XML element
“transitions” of the same “pou”.

Note: The IEC 61131-XML element ,transition (child node of the IEC 61131-XML element ,transitions®) can be referenced
multiple times by IEC 61131-XML elements “transition” belonging to the IEC 61131-XML element “SFC”.

Each IML system element “activity’shall be represented by two IEC 61131-XML elements (see
8.3.5):

One IEC 61131-XML element “action”within anlEC 61131-XML element “actionBlock”
within the corresponding IEC 61131-XML element “SFC”.

One IEC 61131-XML element “action” within the IEC 61131-XML element “actions” of
the same “pou”.

Note: The IEC 61131-XML element ,action”(child node of the IEC 61131-XML element ,actions®) can be referenced multiple
times by IEC 61131-XML elements “action” belonging to the IEC 61131-XML element “SFC”.

Each IML system element “selection divergence”shall be represented byone IEC 61131-XML
element “selection divergence” within the IEC 61131-XML element “SFC” (see 8.3.6).

Each IML system element “simultaneous divergence” shall be represented byone IEC 61131-
XML element “simultaneous divergence” within the IEC 61131-XML element “SFC” (see
8.3.7).

Each IML system element “selection convergence”shall be represented byone IEC 61131-
XML element “selection convergence” within the IEC 61131-XML element “SFC” (see 8.3.8).

Each IML system element “simultaneous convergence” shall be represented byone IEC
61131-XML element “simultaneous convergence” within the IEC 61131-XML element “SFC”
(see 8.3.9).

Each IML system element “event” shall be represented byone IEC 61131-XML element
“variable” of the data type “event” within the IEC 61131-XML element “interface” (see 8.3.10).

Each IML system element “variable’shall be represented byone IEC 61131-XML element
“variable” within the IEC 61131-XML element “interface” (see 8.3.11).

<AutomationML/> Part 4: AutomationML Logic

Each IML system element “comment’shall be represented byonelEC 61131-XML
element‘documentation” (see 8.3.12).

Each IML system element “addData” shall be represented byone element of the AML addData
schema according to the IEC 61131-XML 2.0 and IEC 61131-XML 2.0.1 specification (see
8.3.13).Each IEC 61131-XML element shall have zero or one IEC 61131-XML element
“addData”. Several IML system elements “addData” shall be combined to only one IEC 61131-
XML element “addData”.

Each property and relation of the IML system elements shall be represented either by IEC
61131-XML element attributes or by sub elements of the corresponding IEC 61131-XML
element.

Note: The mapping rules are designed in a way that the combination of several IML system elements to one IEC 61131-XML
element is reversible.

According to the structure of the IEC 61131-XML schema all information representing an IML system
is represented either in the IEC 61131-XML elements “pou”, “interface”, “actions”, “transitions”, or

“SFC” of one POU within one IEC 61131-XML document (see Figure 6).

= attributes

aftributes

|
|
|
|
r-< pprbody -
|
|
|
|
|
|
|
L

| T 2o
(o i

Figure 6. Used parts of the IEC 61131-XML schema to represent a IML system

<AutomationML/> Part 4: AutomationML Logic

8.3.2 Mapping of headers

Table 36specifies the mapping
to IEC 61131-XML.

of the properties and the relation of the IML system element “header”

IML system element

Representation in IEC 61131-XML

<pou pouType="program”>

</pou>

Representation as <pou> attributes

h.ID

globallD="h.ID”

h.Name

name="h.Name”

Representation within the IEC

61131-XML element “pou”

h.members

“‘h.members” (e.g. step, transition, action)shall be mapped to sub
elements of the IEC 61131-XML element “pou”.

<body>
<SFC>

<’h.members”>

</’h.members”>
</SFC>

</body>

Table 36: Mapping of the IML system element “header” to IEC 61131-XML

An example of the mapping of an IML system element “header” is given inTable 37.

IML example Resulting IEC 61131-XML
h <pou pouType="program" globallD="UUID100"
hID = UUID100 name="Example|ML">
h.Name = ExampleML <body>
<SFC>

h.members =

State
(UUID101),

<step globallD="UUID101” ...>

</step>
</SFC>
</body>

</pou>

Table 37: Example transformation IML system element “header” to IEC 61131-XML

<AutomationML/> Part 4: AutomationML Logic

8.3.3 Mapping of states

Table 38 specifies the mapping of the properties and the relation of the IML system element “state” to
anlEC 61131-XML element “step”.

IML system element Representation in IEC 61131-XML
<step>

s
</step>
within the IEC 61131-XML element “SFC”.

Representation as <step> attributes

s.ID globalld="s.ID”
s.Name name="s.Name”
s.Init initialStep="s.Init”

Representation within the IEC 61131-XML element “step”

<addData>

<data
name="http://www.automationml.org/AML_addData.xsd">
<AML>

s.Current,
<StateStatus Current="s.Current”

s.Terminal Terminal="s.Terminal’/>
</AML>
</data>
</addData>

For anlEC 61131-XML element “el” with the local ID “el.x” named in
“s.Pre” one IEC 61131-XML element “connectionPointin” shall be
created as follows:

<connectionPointIn>

<connection refLocalld="el.x"/>
s.Pre))
</connectionPointin>

Note: “s.Pre” contains the globallD of the previous IML system
element.

Note: LocallD’s are created according to IEC 61131-XML 2.0 and
IEC 61131-XML 2.0.1.

Table 38: Mapping of the IML system element “state” to IEC 61131-XML

<AutomationML/> Part 4: AutomationML Logic

An example of the mapping of an IML system element “state” is given in Table 39.

IML example

Resulting IEC 61131-XML

S

s.ID = UUID104

s.Name = IntermediateState

s.Init = false

s.Current = true

s.Terminal = false

s.Pre = UUID103

Note: The IML system
element with the globallD =
UUID103, which is the
predecessor of s, contains
the locallD = 3.

<step localld="4" globalld="UUID104" name="IntermediateState"
InitialStep="false">

<addData>

<data
name="http://www.automationml.org/AML_addData.xsd">

<AML>
<StateStatus Current="true” Terminal="false”/>
</AML>
</data>
</addData>
<connectionPointin>
<connection refLocalld="3"/>
</connectionPointIin>

</step>

Table 39: Example transformation IML system element “state” to IEC 61131-XML

8.3.4 Mapping of state transitions

Table 40 specifies the mapping of the properties and the relation of the IML system element “state

transition” to IEC 61131-XML.

IML system element

Representation in IEC 61131-XML

st

Representation within the IEC 61131-XML element “transitions”

<transition>

</transition>

Representation within the IEC 61131-XML element “SFC”

<transition>

</transition>

Representation as <transition>

attributes

Representation within the IEC 61131-XML element “transitions”

no representation

stib Representation within the IEC 61131-XML element “SFC”
globalld="st.ID”
Representation within the IEC 61131-XML element “transitions”
name="st.Name”

st.Name

Representation within the IEC 61131-XML element “SFC”

no representation

<AutomationML/> Part 4: AutomationML Logic

Representation within the IEC 61131-XML element “transition”
Representation within the IEC 61131-XML element “transitions”
no representation
st Name Representation within the IEC 61131-XML element “SFC”
<condition>
<reference name="st.Name"/>
</condition>
Representation within the IEC 61131-XML element “transitions”
If “st.Guard” contains an empty guard (see combination 1 in
Table 15) the mapping shall be done as follows:
<body>
<ST>
<xhtml xmIns="http://www.w3.0rg/1999/xhtml">
st.Name:=TRUE;
</xhtml>
</ST>
</body>
If “st.Guard” contains “st.Guard.Boolean” and the set {ey, ..., e} of
“st.Guard.ConsumedEvent” is not empty (see combination 3 in
Table 15) the mapping shall be done as follows:
<body>
<ST>
st.Guard <xhtml xmIns="http://www.w3.0rg/1999/xhtm|">
IF (st.Guard.Boolean AND e1 AND ... en)
THEN st.Name:=TRUE;
(*Begin: ConsumedEvent*)
el:=False;
(*other ConsumedEvents*)
en:=False;
(*End: ConsumedEvent*)
ELSE st.Name:=FALSE;
END_IF;
</xhtml>
</ST>
</body>
If no set {e1, ..., en} of “st.Guard.ConsumedEvent” exists (see
combination 2 in Table 15) the entry “AND e1 AND ... en” within the
IF expression shall be omitted as well as the entry starting from

<AutomationML/> Part 4: AutomationML Logic

“(*Begin: ConsumedEvent*)” until “(*End: ConsumedEvent*)” within
the THEN expression.

If “st.Guard” contains “st.Guard.Value” and the set {ej, ..., e} of
“st.Guard.ConsumedEvent” is not empty (see combination 5 in
Table 15) the mapping shall be done as follows:

<body>
<ST>
<xhtml xmIns="http://www.w3.0rg/1999/xhtm|">

IF (st.Guard.Value.low <= st.Guard.Value.var AND
st.Guard.Value.var<= <= st.Guard.Value.high AND e1 AND ... en)

THEN st.Name:=TRUE;
(*Begin: ConsumedEvent*)

el:=False;

en:=False;
(*End: ConsumedEvent*)

ELSE st.Name:=FALSE;

END_IF;
</xhtml>
</ST>
</body>
If no set {e1, ..., en} of “st.Guard.ConsumedEvent’ exists (see

combination 4 in Table 15) the entry “AND e1 AND ... en” within the
IF expression shall be omitted as well as the entry starting from
“(*Begin: ConsumedEvent*)” until “(*End: ConsumedEvent*)” within
the THEN expression.

If “st.Guard” contains “st.Guard.Formula” and the set {ef1, ..., en} of
“st.Guard.ConsumedEvent” is not empty (see combination 7 in
Table 15) the mapping shall be done as follows:

<body>
<ST>
<xhtml xmIns="http://www.w3.0rg/1999/xhtm|">
IF (st.Guard.Formula AND e1 AND ... en)
THEN st.Name:=TRUE;
(*Begin: ConsumedEvent*)

el:=False;

<AutomationML/> Part 4: AutomationML Logic

en:=False;
(*End: ConsumedEvent*)
ELSE st.Name:=FALSE;

END_IF;
</xhtml>
</ST>
</body>
If no set {e1, ..., en} of “st.Guard.ConsumedEvent’ exists (see

combination 6 in Table 15) the entry “AND e1 AND ... en” within the
IF expression shall be omitted as well as the entry starting from
“(*Begin: ConsumedEvent*)” until “(*End: ConsumedEvent*)” within
the THEN expression.

“st.Guard.Formula” shall be defined as a string following the syntax
of Structured Text of IEC 61131-3; providing a Boolean value as
evaluation result.

If “st.Guard” only contains the set {e1, ..., en} of
“st.Guard.ConsumedEvent” (see combination 8 in Table 15) the
mapping shall be done as follows:

<body>
<ST>
<xhtml xmIns="http://www.w3.0rg/1999/xhtml">
IF (¢1 AND ... en)
THEN st.Name:=TRUE;

el:=False;
en:=False;
ELSE st.Name:=FALSE;
END_IF;
</xhtm[>
</ST>
</body>

Note: For each element of “st.Guard.ConsumedEvent” the name of
the IEC 61131-XML element “variable” representing it is integrated
in the Structured Text body by (a) integrating its logical value in the
transition firing condition and (b) afterwards set to “false”.

Note: “(*...*)” represents a comment.
Note: “<=" represents a less-than-or-equal sign (<=)
Representation within the IEC 61131-XML element “SFC”

<AutomationML/> Part 4: AutomationML Logic

no representation

Representation within the IEC 61131-XML element “transitions”

no representation

Representation within the IEC 61131-XML element “SFC”

For anlEC 61131-XML element “el” with the local ID “el.x” named in
“st.Pre” one IEC 61131-XML element “connectionPointin” element
shall be created as follows:

st.pre <connectionPointin>
<connection refLocalld="el.x " />
</connectionPointin>

Note: “st.Pre” contains the globallD of the previous IML system
element.

Note: LocallD’s are created according to IEC 61131-XML 2.0 and
IEC 61131-XML 2.0.1.

Table 40: Mapping of the IML system element “state transition” to IEC 61131-XML

<AutomationML/> Part 4: AutomationML Logic

An example of the mapping of an IML system element “state transition” is given in Table 41.

IML example Resulting IEC 61131-XML
st <transitions>
st.ID = UUID106 <transition name="Transition3">
st.Name = Transition3 <body>
st.Guard.Boolean = “¢” <ST>
st.Guard.ConsumedEvents = <xhtml xmIns="http://www.w3.0rg/1999/xhtm|">
e’ IF (c AND e)
THEN Transition3:=TRUE;
e:=False;
ELSE Transition3:=FALSE;
END_IF
</xhtml>
</ST>
</body>

</transition>

</transitions>
st.Pre = UUID105

Note: The IML system
element with the globallD = | <°0dy>

UuUID105, which is the <SFC>

predecessor of st, contains . . B "

the locallD = 5. <transition localld="6" globalld="UUID106">
<condition>

<reference name="Transition3"/>

</condition>

<connectionPointin>
<connection refLocalld="5"/>

</connectionPointin>

</transition>
</SFC>
</body>

Table 41: Example transformation IML system element “state transition” to IEC 61131-XML

<AutomationML/> Part 4: AutomationML Logic

8.3.5 Mapping of activities

Table 42 specifies the mapping of the properties and relations of the IML system element “activity” to
IEC 61131-XML.

IML system element Representation in IEC 61131-XML

Representation within the IEC 61131-XML element “actions”

<action>

</action>

a Representation within the IEC 61131-XML element “actionBlock”
within thelEC 61131-XML element “SFC”

<action>

</action>

Representation as <action> attributes

Representation within the IEC 61131-XML element “actions”

no representation

a.lb Representation within the IEC 61131-XML element “SFC” within the
“actionBlock”

globalld="a.ID”
Representation within the IEC 61131-XML element “actions”

name="a.Name"

a.Name Representation within the IEC 61131-XML element “SFC” within the
“actionBlock”

no representation

Representation within the IEC 61131-XML element “actions”

no representation

Representation within the IEC 61131-XML element “actionBlock”
within the IEC 61131-XML element “SFC”

If “a.Time.Duration” is not empty the mapping shall be done as
follows:

qualifier="SD" duration="a.Time.Duration”

a.Time If “a.Time.Duration” is empty and “a.Time.Delay” is not empty the

mapping shall be done as follows:

qualifier="D" duration="a.Time.Delay”

If “a.Time.Duration” and “a.Time.Delay” is empty the mapping shall
be done as follows:

qualifier="D" duration="0"

Note: Because the <action> tag only has one “qualifier” which can
be used for timing information anaddData information is necessary

<AutomationML/> Part 4: AutomationML Logic

| to allow more complex timing information representations.

Representation within the IEC 61131-XML element “action”

Representation within the IEC 61131-XML element “actions”

no representation

a.Name Representation within the IEC 61131-XML element “actionBlock”
within the IEC 61131-XML element “SFC”

<reference name="a.Name"/>

Representation within the IEC 61131-XML element “actions”

no representation

Representation within the IEC 61131-XML element “actionBlock”
within the IEC 61131-XML element “SFC”

If “a.Time.Duration” is not empty the mapping shall be done as
follows:

<addData>

<data
name="http://www.automationml.org/AML_addData.xsd”>

<AML>
<Time>

<EarliestStart Value="
a.Time.Start.EarliestStart”/>

<LatestStart Value=" a.Time.Start.LatestStart’/>

<EarliestEnd Value=" a.Time.End.EarliestEnd”/>

a.Time, <LatestEnd Value=" a.Time.End.LatestEnd’/>
a.lnit, <Delay Value=" a.Time.Delay’/>
a.Current, </Time>
a.Terminal <ActionStatus Initial="a.Init” Current="a.Current”

Terminal="a.Terminal’/>

</AML>
</data>
</addData>

If “a.Time.Duration” is empty the mapping shall be made as follows:
<addData>

<data
name="http://www.automationml.org/AML_addData.xsd">

<AML>
<Time>

<EarliestStart Value="
a.Time.Start.EarliestStart”/>

<LatestStart Value=" a.Time.Start.LatestStart’/>

<EarliestEnd Value=" a.Time.End.EarliestEnd”/>

<AutomationML/> Part 4: AutomationML Logic

<LatestEnd Value=" a.Time.End.LatestEnd”/>
</Time>

<ActionStatus Initial="a.Init” Current="a.Current”
Terminal="a.Terminal’/>

</AML>
</data>
</addData>

If one of the elements “a.Time.EarliestStart”, “a.Time.LatestStart”,
“a.Time.EarliestEnd”, or “a.Time.LatestEnd’is empty the
corresponding tags of the IEC 61131-XML element “addData”
maybe omitted.

Representation within the IEC 61131-XML element “actions”

If “a.Formula” and the set {es,...e,} of “a.FiredEvent” are not empty
the mapping shall be done as follows:

<body>
<ST>
<xhtml xmIns="http://www.w3.0rg/1999/xhtml">
(*Begin: ChangedVariables*)
a.Formula
(*End: ChangedVariables*)
(*Begin: FiredEvent*)

el:=true;
en:=true;
a.Formula, (*End: FiredEvent¥)
a.FiredEvent </xhtml>
</ST>
</body>
If no set {e1, ..., en} of “a.FiredEvent’ exists the entry starting from

“(*Begin: FiredEvent*)” until “(*End: FiredEvent*)” shall be omitted.

If “a.Formular” is empty the entry starting from “(*Begin:
ChangedVariables*)” until “(*End: ChangedVariables*)” shall be
omitted.

If “a.Formular’ as well as “a. FiredEvent” are empty the entry
starting from “(*Begin: ChangedVariables*)” until “(*End:
FiredEvent*)” shall be omitted.

Note: “(*...*)" represents a comment.

Representation within the IEC 61131-XML element “actionBlock”
within the IEC 61131-XML element “SFC”

no representation

Representation within the IEC 61131-XML element “actions”

a.Pre

no representation

<AutomationML/> Part 4: AutomationML Logic

Representation within the IEC 61131-XML element “actionBlock”
within the IEC 61131-XML element “SFC”

For anlEC 61131-XML element “el” with the local ID “el.x” named in
“a.Pre” one IEC 61131-XML element “connectionPointin” shall be
created as follows:

<connectionPointIn>
<connection refLocalld="el.x"/>
</connectionPointin>

Note: “a.Pre” contains the globallD of the previous IML system
element.

Note: LocallD’s are created according to IEC 61131-XML 2.0 and
IEC 61131-XML 2.0.1.

Table 42: Mapping of the IML system element “activity” to IEC 61131-XML

An example of the mapping of an IML system element “activity” is given in Table 43.

IML example Resulting IEC 61131-XML
a <actions>
a.ID = UUID109 <action name="Action1">
a.Name = Actionl <body>
a.Init = false <ST>
a.Current = true <xhtml xmIns="http://www.w3.0rg/1999/xhtm|">
a.Terminal = false (*FiredEvent*)
a.Formula = “a:=true” e=true;
a.FiredEvent = {e} (*ChangedVariables*)
a.Time.Delay = 6 a:=True
</xhtml|>
</ST>
</body>
</action>
</actions>
a.Pre = UUID107 <body>
cloment wih, the globallp = | <SFC>
UuID107, which is the <actionBlock localld="8">
predecessor of a, contains . .
the locallD = 7. <connectionPointin>

<connection refLocalld="7"/>
</connectionPointin>

<action localld="9" globalld="UUID109" qualifier="D"
duration="6">

<reference name="Actionl1"/>

<addData>

<AutomationML/> Part 4: AutomationML Logic

<data
name="http://www.automationml.org/AML_addData.xsd">

<AML>

<ActionStatus Initial="false”
Current="true” Terminal="false”/>

<Time>
<Delay Value="6"/>
</Time>
</AML>
</data>
</addData>
</action>
</actionBlock>
</SFC>
<body>

Table 43: Example transformation IML system element “activity” to IEC 61131-XML

8.3.6 Mapping of selection divergences

Table 44 specifies the mapping of the property and relation of the IML system element “selection
divergence” to IEC 61131-XML.

IML system element Representation in IEC 61131-XML

<selectionDivergence>

selDiv])
</selectionDivergence>

within the IEC 61131-XML element “SFC”.

Representation as <selectionDivergence> attributes
selDiv.ID globalld="selDiv.ID”

Representation within the IEC 61131-XML element “selectionDivergence”

For anlEC 61131-XML element “el” with the local ID “el.x” named in
“selDiv.Pre” one IEC 61131-XML element “connectionPointin” shall
be created as follows:

<connectionPointin>

. <connection refLocalld="el.x"/>
selDiv.Pre))
</connectionPointIn>

Note: “selDiv.Pre” contains the globallD of the previous IML system
element.

Note: LocallD’s are created according to IEC 61131-XML 2.0 and
IEC 61131-XML 2.0.1.

Table 44. Mapping of the IML system element “selection divergence” to IEC 61131-XML

An example of the mapping of an IML system element “selection divergence” is given in Table 45.

IML example Resulting IEC 61131-XML

<AutomationML/> Part 4: AutomationML Logic

selDiv

selDiv.ID = UUID113

<selectionDivergence localld="13" globalld="UUID113">

selDiv.Pre = UUID112

Note: The IML system
element with the globallD =
UuID112, which is the
predecessor of selDiv,
contains the locallD = 12.

<connectionPointIn>
<connection refLocalld="12"/>
</connectionPointIn>

</selectionDivergence>

Table 45: Example transformation IML system element “selection divergence” to IEC 61131-XML

8.3.7

Mapping of simultaneous divergences

Table 46 specifies the mapping of the property and relation of the IML system element “simultaneous

divergence” to IEC 61131-XML.

IML system element

Representation in IEC 61131-XML

simDiv

<simultaneousDivergence>

</simultaneousDivergence>
within the IEC 61131-XML element “SFC”.

Representation as <simultaneousDivergence> attributes

simDiv.ID

globalld="simDiv.ID”

Representation within the IEC

61131-XML element “simultaneousDivergence”

simDiv.Pre

For anlEC 61131-XML element “el” with the local ID “el.x” named in
“simDiv.Pre” one IEC 61131-XML element “connectionPointIn” shall
be created as follows:

<connectionPointIn>
<connection refLocalld="el.x"/>
</connectionPointin>

Note: “simDiv.Pre” contains the globallD of the previous IML
system element.

Note: LocallD’s are created according to IEC 61131-XML 2.0 and
IEC 61131-XML 2.0.1.

Table 46: Mapping of the IML system element “simultaneous divergence” to IEC 61131-XML

<AutomationML/> Part 4: AutomationML Logic

An example of the mapping of an IML system element “simultaneous divergence” is given in Table 47.

IML example

Resulting IEC 61131-XML

simDiv

simDiv.ID = UUID115

<simultaneousDivergence localld="15" globalld="UUID115">

simDiv.Pre = UUID114

Note: The IML system
element with the globallD =
UuID114, which is the
predecessor of simDiv,
contains the locallD = 14.

<connectionPointIn>
<connection refLocalld="14"/>
</connectionPointIn>

</simultaneousDivergence>

Table 47: Example transformation IML system element “simultaneous divergence” to IEC 61131-XML

8.3.8 Mapping of selection

convergences

Table 48 specifies the mapping of the property and relation of the IML system element “selection
convergence” to IEC 61131-XML.

IML system element

Representation in IEC 61131-XML

selCon

<selectionConvergence>

</selectionConvergence>
within the IEC 61131-XML element “SFC”.

Representation as <selectionConvergence> attributes

selCon.ID

globalld="selCon.ID”

Representation within the IEC

61131-XML element “selectionConvergence”

selCon.Pre

For eachlEC 61131-XML element “el” with the local ID “el.x” named
in “selCon.Pre” one IEC 61131-XML element “connectionPointin”
shall be created as follows:

<connectionPointIn>
<connection refLocalld="el.x"/>
</connectionPointin>

Note: “selCon.Pre” contains the globallD’s of the previous IML
system elements.

Note: LocallD’s are created according to IEC 61131-XML 2.0 and
IEC 61131-XML 2.0.1.

Table 48: Mapping of the IML system element “selection convergence” to IEC 61131-XML

<AutomationML/> Part 4: AutomationML Logic

An example of the mapping of an IML system element “selection convergence” is given in Table 49.

elements with the globallD =
UUID116 and globallD
UuUID117, which are
predecessors of
contains the locallD
and locallD = 17.

the
selCon,
16

IML example Resulting IEC 61131-XML
selCon <selectionConvergence localld="18" globalld="UUID118">
selCon.ID = UUID118 <connectionPointIn>
selCon.Pre = UUID116, ; _n1gn
UUID117 <connection refLocalld="16"/>
< i i >
Note: The IML system /connectionPointin

<connectionPointIn>
<connection refLocalld="17"/>
</connectionPointIn>

</selectionConvergence>

Table 49: Example transformation IML system element “selection convergence” to IEC 61131-XML

8.3.9

Mapping of simultaneous convergences

Table 50 specifies the mapping of the property and relation of the IML system element “simultaneous
convergence” to IEC 61131-XML.

IML system element

Representation in IEC 61131-XML

simCon

<simultaneousConvergence>

</simultaneousConvergence>
within the IEC 61131-XML element “SFC”.

Representation as <simultaneousConvergence> attributes

simCon.ID

globalld="simCon.ID”

Representation within the IEC

61131-XML element “simultaneousConvergence”

simCon.Pre

For eachlEC 61131-XML element “el” with the local ID “el.x” named
in “simCon.Pre” one IEC 61131-XML element “connectionPointIn”
shall be created as follows:

<connectionPointIn>
<connection refLocalld="el.x"/>
</connectionPointin>

Note: “simDiv.Pre” contains the globallD’s of the previous IML
system elements.

Note: LocallD’s are created according to IEC 61131-XML 2.0 and
IEC 61131-XML 2.0.1.

Table 50: Mapping of the IML system element “simultaneous convergence” to IEC 61131-XML

<AutomationML/> Part 4: AutomationML Logic

An example of the mapping of an IML system element “simultaneous convergence” is given in
Table 51.

IML example Resulting IEC 61131-XML
simcon <simultaneousConvergence localld="21" globalld="UUID121">
simCon.ID = UUID121 <connectionPointIn>
simCon.Pre = UUID119, . _nqon
UUID120 <connection refLocalld="19"/>
< i i >
Note: The IML system /connectionPointin
elements with the globallD = <connectionPointIn>

UUID119 and globallD =
UuUID120, which are the
predecessors of simCon, </connectionPointIn>
contains the locallD = 19
and locallD = 20.

<connection refLocalld="20"/>

</simultaneousConvergenc >

Table 51: Example transformation IML system element “simultaneous convergence” to IEC 61131-
XML

8.3.10 Mapping of events

Table 52 specifies the mapping of the properties of the IML system element “event” to IEC 61131-
XML.

IML system element Representation in IEC 61131-XML

<variable>

<type>
ev <derived name="event’/>
</type>

</variable>

Representation as <variable> attributes

ev.ID globalld="ev.ID"

ev.Name name="ev.Name"
Table 52: Mapping of the IML system element “event” to IEC 61131-XML

An example of the mapping of an IML system element “event” is given in Table 53.

IML example Resulting IEC 61131-XML
ev <interface>
ev.ID = UUID122 <localvVars>

<variable globalld="UUID122" name="e">
<type>
<derived name="event"/>
ev.Name = e </type>
</variable>

</localVars>

</interface>

Table 53: Example transformation IML system element “event” to IEC 61131-XML

<AutomationML/> Part 4: AutomationML Logic

8.3.11 Mapping of variables

Table 54 specifies the mapping of the properties of the IML system element “variable” to IEC 61131-
XML.

IML system element Representation in IEC 61131-XML
<variable>

var
</variable>

Representation as <variable> attributes

var.ID globalld="var.|D”
var.Name name="var.Name"
var.Address address="var.Address"

Representation within the IEC 61131-XML element “variable”

<type>
<‘var.Type’/>
var.Type </type>

The defined types according to IEC 61131-XML 2.0 and IEC 61131-
XML 2.0.1 shall be used.

<initialValue>
var.InitialValue <simpleValue value="var.InitialValue"/>

<finitialValue>

<addData>

<data
name="http://www.automationml.org/AML_addData.xsd”>

<AML>

var.SlUnit <Unit Name="var.SIUnit"/>
</AML>

</data>

</addData>

“Variable” representation within the IEC 61131-XML element “interface”

If “var.Content” has the value “local” the mapping shall bedone as
follows:

<localvVars>

</localVars>
var.Content

If “var.Content” has the value “input” the mapping shall bedone as
follows:

<inputVars>

</inputVars>

<AutomationML/> Part 4: AutomationML Logic

If “var.Content” has the value “output” the mapping shall bedone as

follows:

<outputVars>

</outputVars>

If “var.Content” has the value “inout” the mapping shall bedone as

follows:

<inOutVars>

</inOutVars>

The default value of “var.Content” shall be local

Table 54: Mapping of the IML system element “variable” to IEC 61131-XML

An example of the mapping of an IML system element “variable” is given in Table 55.

IML example

Resulting IEC 61131-XML

var

var.lD = UUID123

var.Name = a

var.Address = %I1X0.0

var.Type = INT

var.InitialValue = 9

var.SlUnit =m

var.Content = input

<interface>

<inputVars>

<variable globalld="UUID123" name="a

address="%1X0.0">
<type>
<INT/>
</type>
<initialValue>
<simpleValue value="9"/>
</initialValue>
<addData>

<data
name="http://www.automationml.org/AML_addData.xsd”>

<AML>
<Unit Name=" var.SIUnit">
</AML>
</data>
</addData>
</variable>
<[/inputvVars>

</interface>

Table 55: Example transformation IML system element “variable” to IEC 61131-XML

<AutomationML/> Part 4: AutomationML Logic

8.3.12 Mapping of comments

Table 56 specifies the mapping of the properties and relation of the IML system element “comment” to
IEC 61131-XML.

IML system element Representation in IEC 61131-XML

<documentation>

<xhtml xmIns="http://www.w3.0rg/1999/xhtml">
com

</xhtml|>

</documentation>

Representation within the IEC 61131-XML element “documentation”

com.Content “com.Content”

“Documentation” representation of the IEC 61131-XML elements

For anlEC 61131-XML element “el” named in “com.Pre” one IEC
61131-XML element “documentation” shall be created within the
IEC 61131-XML representation of “el” as follows:

<el globalld="com.Pre”>
<documentation>

com.Pre

</documentation>

</el>

Note: “com.Pre” contains the globallD of the corresponding IML
system element, to which “com” belongs to.

Table 56: Mapping of the IML system element “comment” to IEC 61131-XML

An example of the mapping of an IML system element “comment” is given in Table 57.

IML example Resulting IEC 61131-XML
com <step globalld="UUID124">
com.Content = This is a test <documentation>
step. <xhtml xmins="http:/www.w3.0rg/1999/xhtml">
com.Pre = UUID124 This is a test step.
Note: The comment belongs </xhtml>
to a Step W|th the globa“D = </documentation>
uuiD124.
</step>

Table 57: Example transformation IML system element “comment” to IEC 61131-XML

<AutomationML/> Part 4: AutomationML Logic

8.3.13 Mapping of additional data

Table 58specifies the mapping of the property and relation of the IML system element “additional data”
to IEC 61131-XML.

IML system element Representation in IEC 61131-XML

<addData>

<data
name="http://www.automationml.org/AML_addData.xsd”>

<AML>
ad
</AML>
</data>
</addData>

For further use

ad.ID Note: Non of the transformation rules described here in this
standard need this ID.

Representation within the IEC 61131-XML element <addData>

ad.Type
All possible ad.Value’s (see 8.2) shall be created as<ad.Type>
attributes.The mapping shall be done as follows:
<ad.TypeattributeName="ad.Value”/>

ad.Value

“addData” representation of the IEC 61131-XML elements

For anlEC 61131-XML element “el” named in “ad.Pre” one IEC
61131-XML element “addData” shall be created within the IEC
61131-XML representation of “el” as follows:

<el globalld="ad.Pre”>
<addData>
ad.Pre
</addData>
</el>

Note: “ad.Pre” contains the globallD of the corresponding IML
system element, to which “ad” belongs to.

Table 58: Mapping of the IML system element “additional data” to IEC 611371-XML

<AutomationML/> Part 4: AutomationML Logic

An example of the mapping of an IML system element “additional data” is given in Table 59.

IML example Resulting IEC 61131-XML
ad <step globalld="UUID126">
ad.Type = StateStatus <addData>
ad.Value = Current <data
name="http://www.automationml.org/AML_addData.xsd”>
<AML>
ad.Pre= UUID126 <StateStatus Current="true” Terminal="false”/>
Note: The additiona}l data </AML>
Sﬁiﬁgﬁé iouﬁlgtfgs.WIth e </data>
</addData>
</step>

Table 59: Example transformation IML system element “additional data” to IEC 611371-XML

<AutomationML/> Part 4: AutomationML Logic

9 Usage of mathematical expressions in logic information

9.1 General

This clause defines rules for exploiting mathematical functions for logic information beyond the means
of IEC 61131-3. It is described how the Mathematical Markup Language (MathML) can be integrated
in IEC 61131-XML for this purpose. MathML is an XML based data format which was developed to
enable an exchange of mathematical expressions.

At first, the general integration concept is described giving the essential rules. After defining a
‘mapping layer’ for mapping IEC 61131-XML variables to the variables defined in MathML it is
described how MathML expressions are generally assigned to IEC 61131-XML elements. Additionally,
an interpretation of the result of the MathML expression is given in this clause.

9.2 General integration concept

For defining mathematical expressions in the scope of AML logic information MathML version 2.0
content part shall be used. Mathematical expressions shall be given in an IEC 61131-XML element
“addData”. The IEC 61131-XML element “addData” shall also contain the variable assignment of
variables within a mathematical expression to the IEC 61131-XML elements “variable”.

For the usage of mathematical expressions in logic information the following provisions apply:

Mathematical expressions, described within an IEC 61131-XML element “addData”, shall be
modelled by two IEC 61131-XML elements “data”:

The first IEC 61131-XML element “data” shall describe the mapping between IEC
61131-XML and MathML.

The second IEC 61131-XML element “data” element shall describe the MathML
expression itself.
An IEC 61131-XML element shall have zero or one mathematical expression.

Note: For an unambiguous assignment of the behaviour to an IEC 61131-XML element only one mathematical expression at
the IEC 61131-XML element is allowed. But the mathematical expression itself can be composed out of several formulas.

The structure of the IEC 61131-XML elements “data” within an IEC 61131-XML element “addData” is
shown in Table 60.

IEC 61131- | Representation in IEC 61131-XML

XML elements

“data”

mapping layer <data name="http://www.automationml.org/IEC62714-4Ed1/ MathMLinIEC61131-
XML.xsd">
</data>

MathML <data name="http://www.w3.0rg/1998/Math/">

expression
</data>

Table 60: Structure of the IEC 61131-XML element "addData"

<AutomationML/> Part 4: AutomationML Logic

The mapping concept for MathML variables and IEC 61131-XML elements “variable” is based on a
mapping layer. The mapping layer includes the assignment of the name of MathML variables to the
IEC 61131-XML attribute “globallD” of IEC 61131-XML elements “variable” as shown in Figure 7.

| IEC 61131-XML \
globallD

| mapping layer ‘
MathMLVariable

| MathML \

Figure 7: Mapping concept for MathML variables and IEC 61131-XML elements “variable”

The structure of the IEC 61131-XML element “data” for the mapping is defined in 9.2 and the IEC
61131-XML element “data” for MathML expressions in 9.4. For the assignment of the result of MathML
expressions to a variable different cases can be distinguished, which are described in 9.5.

Mathematical expressions shall be only assigned to:
the following IEC 61131-XML “SFC” elements:
action
pou
step
transition
variable
the following IEC 61131-XML “FBD” elements:
block
FbdNetwork
pou

variable
9.3 Mapping between MathML variables and IEC 61131-XMLelements “variable”

9.3.1 General

The mapping of MathML variables and IEC 61131-XMLelements “variable” takes place within the
mapping layer. The mapping layer shall be the first IEC 61131-XML element “data” within an IEC
61131-XML element “addData”.

For the mapping layer the following provisions apply:

The IEC 61131-XML element “data” shall have the attribute “name” with the value
“http://www.automationml.org/IEC62714-4Ed1/MathMLinPLCopenXML.xsd”.

Note: “http://www.automationml.org/IEC62714-4Ed1/MathMLinPLCopenXML.xsd” is the schema of the mapping layer.

The IEC 61131-XML element “data” shall include one “formula” element with the following
attributes:

“Name”; name of the MathML expression
“ID”: unigue ID within the whole IEC 61131-XML document

Note: It is recommended to use a UUID.
The “formula” element shall have one or more “variable® elements.

Every “variable” element shall have the following attributes:

<AutomationML/> Part 4: AutomationML Logic

“direction”: defines, that a variable is an input (“In”) or an output (“Out”) within the
mathematical expression

“refMathMLVariable”: name of the referenced MathML variable

“refGloballd”: IEC 61131-XML attribute “globallD” of the referenced IEC 61131-XML
element“variable”

The structure of the mapping layer within an IEC 61131-XML element "addData" is shown in Figure 8.

<data name="http://www.automationml.org/IEC62714-4Ed1/MathMLinIEC61131-XML.xsd">
<formula Name="integrator" ID="UUID34">
<variable refMathMLVariable="x" refGloballD="UUID35" direction="In"/>
<variable refMathMLVariable="y" refGloballD="UUID36" direction="Out"/>

</formula>
</data>

Figure 8: XML text of the mapping of MathML variables and IEC 61131-XMLelements “variable”

The schema for the mapping layer is defined in 9.3.3 and in 1.2.

9.3.2 Declaration and usage of the XML schema for variable mappings for MathML in IEC
61131-XML

To use the XML schema for variable mappings for MathML in an IEC 61131-XML document, the
schema shall be listed in the IEC 61131-XML element “addDatalnfo” to enable the unambiguous
identification of the corresponding IEC 61131-XML element “addData” contents (see Figure 10).

<contentHeader name="logic model">

<addDatalnfo>
<info name="http://www.automationml.org/IEC62714-4Ed1/MathMLIinIEC61131-XML.xsd" vendor="AutomationML">
<description>
<xhtml:p>Schema for variable mappings for MathML usage within IEC 61131-XML.</xhtml:p>
</description>
</info>

</addDatalnfo>
</contentHeader>

Figure 9: XML text of the declaration of the XML schema for variable mappings for MathML in IEC
61131-XML

<AutomationML/> Part 4: AutomationML Logic

9.3.3 XML schema description of formula data

Table 61 specifies the use of the schema element “formula”.

Diagram O Attribute

il

Root element for the variable | ——+

mappings for MathML usage = formula:variable
within IEC 61131-XML. ‘"=’ aiaisisiasiassisdianias ;

Properties | content: complex

Followed by a “sequence”.

Children formula:variable

Attributes | Attribute: Name (from type "xs:string” with use “required”)

Attribute: ID (from type “xs:ID” with use “required”)

Table 61: MathML schema element “formula”

9.3.4 XML schema description of variable data

Table 62 specifies the use of the schema element “variable”.

Diagram (= Attribute

i formula-variable [
| formulawvariable (= o L

Type xs:complextype

Properties | minOcc: 0

content: complex

Attributes | Attribute: refMathMLVariable (from type “xs:string” with use “optional”)
Attribute: refGloballD (from type “xs:ID” with use “required”)

Attribute: direction (from type “xs:string”, derived by “restriction”, with use
“required”)

Enumeration: In

Enumeration: Out

Table 62: MathML schema element “variable”

<AutomationML/> Part 4: AutomationML Logic

9.4 Assignment of MathML expressions to IEC 61131-XML elements

The assignment of MathML expressions to IEC 61131-XML elements shall be done via the IEC
61131-XML element “data” for MathML expressions within an IEC 61131-XML element “addData”. The
IEC 61131-XML element “data” shall have the structure as shown in Figure 10 to represent a MathML
expression.

<data name="http://www.w3.0rg/1998/Math/">
<math xmIns="http://www.w3.0rg/1998/Math/MathML">

</math>
</data>

Figure 10: XML text of the IEC 61131-XML element “data” for the MathML expression

9.5 Assignment of results of a MathML expression to IEC 61131-XMLelements
“variable”

Results of a MathML expression are
the value of the mathematical expression of this MathML expression or
the values of target variables within the mathematical expression of this MathML expression.

Within a MathML expression, all variables and results shall be determined. The following provisions
are made to ensure that the MathML expressions can be evaluated:

If the evaluation of the mathematical expression of this MathML expression results in a value,
the following provisions apply:

Exactly one output variable assignment within the mapping layer is permitted

Within the output variable assignment the attribute “refMathMLVariable” shall not be
included

If the evaluation of the mathematical expression of this MathML expression results in
assignments of values to target variables, the following provisions apply:

For each target variable an output variable assignment within the mapping layer shall
be done

Within each output variable assignment the attribute “refMathMLVariable” shall be
included

The equations within the mathematical expression of this MathML expression should
be solvable.

Note: The assignment of variables shall be done within the mapping layer. The value of the attribute “direction” of the “variable”
element shall have the value “Out” for output variables.

<AutomationML/> Part 4: AutomationML Logic

Figure 11 depicts the assignment of results of a MathML expression to IEC 61131-XML
element‘variable”.

the evaluation of a
mathematical ex-
pression resultin a

A \ 4

A'variable" tag with the following attributes shall For each result a ,variable” tag with the following
be created: refGloballD, direction="Out" attributes shall be created:
The attribute “refMathMLVariable® shall be omitted. refMathMLVariable, refGloballD, direction="Out"

Figure 11: Decision tree for the assignment of results of MathML expressions to IEC 61131-
XMLelements “variable”

An informative overview of the usage of mathematical expressions in logic information is provided in
Annex E.

<AutomationML/> Part 4: AutomationML Logic

10 Linking AML objects withinterlocking information

10.1 General

Interlocking information is an important part of the engineering of production systems to ensure their
safe behaviour. This clause focuses on the interlocking concept which comprises two levels of detail to
model and store interlocking information in AML.An informative overview of interlocking concept is
provided in Annex F.

10.2 Referencing interlocking information

On the first level of the interlocking concept, interlocking source groups and interlocking target groups
are linked to describe functional dependencies among AML object groups respectively AML objects.
For this, the following provisions apply:

An interlocking target group shall be created by using the AML Group concept according to
IEC 62714-1.

For identifying the group as an interlocking target group the role class
“InterlockingTargetGroup” shall be used, which is described in 4.3.1.

Note 1: An interlocking target group is a set of objects which belongs to the same interlocking target group.

Note 2: The objects of an interlocking target group execute the actions which are necessary to ensure functional safety.

An interlocking source group shall be created by using the AML Group concept according to
IEC 62714-1.

For identifying the group as an interlocking source group the role class
“InterlockingSourceGroup” shall be used, which is described in 4.3.2.

Note 1: An interlocking source group is a set of objects which belongs to the same interlocking source group.

Note 2: The objects of an interlocking source group indicate when actions are necessary to provide functional safety.

Each interlocking target group and each interlocking source group shall have one CAEX
Externalinterface of the AML InterfaceClass “InterlockingConnector”, which is described in
4.4.9.

The CAEX Externalinterface of the interlocking source group shall be linked to the
CAEX Externallnterface of the corresponding interlocking target group via an
InternalLink.

The state of the interlocking source group shall affect the interlocking target group.

Note: The assignment between both groups is not restricted to a 1:1 relation. Several interlocking source groups can exist
which are connected to one or more interlocking target groups.

On the second level of the interlocking concept, the simple grouping of AML objects into interlocking
source groups and interlocking target groups (of the first level) is extended by a function describing the
interlocking condition ofinterlocking source groups. For this, the following provisions apply:

The function shall be represented by a single POU or a network of POUs.
The function shall be expressed by Function Block Diagram (FBD).

The FBD shall result in a unique Boolean variable describing the output respectively
evaluation result of this FBD.

This unigue Boolean variable shall represent the interlocking condition of the interlocking
source group which shall affect the interlocking target group.

Note: The value of the Boolean variable can be “true” or “false”. This indicates whether the safe state of the interlocking source
group is represented by a “true” or “false” value.

<AutomationML/> Part 4: AutomationML Logic

The unique Boolean variable shall be referenced within the interlocking source group
modelling one CAEX Externallnterface of the AML InterfaceClass
“InterlockingVariablelnterface”.

= This CAEX Externalinterface shall have zero or one attribute “SafeConditionEquals” to
store the Boolean value which indicates the safe state.

The referencing between variables of POUs within a POU network, which is distributed
throughout several IEC 61131-XML documents, shall be done by using InternalLinks
connecting the corresponding CAEX Externalinterfaces of the AML InterfaceClass
“Variablelnterface” within the interlocking source group according to clause 6.

<AutomafionML/> Part 4: AutomationML Logic

Annex A Logic information in AML

A.1 Logic information in production system engineering

This part focuses on the storage of logic information - an important aspect for electrical design, HMI
development, PLC and robot control programming, for simulation purposes, and virtual
commissioning.

To support different phases in the iterative production system engineering process covering different
levels of detail, AML needs to be able to cover logic information from different tools and disciplines.
Thus, different types of logic information belonging to aproduction system or to single components
have to be stored. This variety of information can be differentiated into: sequencing information and
behaviour information, which serve different purposes, but those can overlap depending on the point
of view and utilization of elements in AML (see Figure A.1).

Sequencinginformation is logic informationdescribing the controlled behaviour of a system or a
part of it. In its most detailed form, itis often represented by a program executed in one or
more controllers, e.g. robot controller or PLC.But the development of sequences starts earlier
in the engineering process: on a high level of abstraction - with models which model, e.g. the
required operations of a larger scale unit (cell, line, plant etc.) and ends with highly detailed,
executable programs.

Behaviourinformation is logic information describing how a system or a part of it responds to
the controlled behaviour (also called uncontrolled behaviour).It is often represented by a given
model which reacts on external input, e.g. behaviour of a gripper or valve. Those external
inputs would trigger the behaviour or signalling of the gripper’s states.

Intelligent devices may have both logic information assigned to it,sequencing information and
behaviour information, e.g. robot or conveyor.From an external point of view, the devices can
be controlled respectively externally triggered. From an internal point of view,the behaviour of
the device could be described as sequences.

Project Systems with:

Sequencing

AML Objects with Logic Description

. Reference Behaviour
Statlon - Sequencing

A4 Sequencing/Behaviour
Sequencing
—

o |
——>

Behaviour

Gripper _>‘ Behaviour
> Interlocking
—————— |

—
—

Figure A.1: Types of logic information in AML

<AutomationML/> Part 4: AutomationML Logic

Besidessequencing information and behaviour information, interlocking information is a third
complementary type of logic information (seeFigure A.1). It is an important part within the engineering
of production systems to ensure their safe behaviour. It affects not only the safe interaction with
humans and the environment but it also helps to avoid unstable states of the systems possibly causing
harmful effects on humans and environment or damages on machines and products.

A.2 Logic models in production system engineering

To be applicable within the engineering process of production systems, AML needs to support typical
logic models— storing the logic information: which cover each phase of the engineering process (see
Figure A.2). These logic models are the following:

Gantt charts are used mainly within early phases of the engineering process to represent the
timing and duration of manufacturing processes on a high level of abstraction (see B.2).

Activity-on-node networks are applied mainly within early phases of the engineering process
to represent the timing and interdependence of manufacturing processes with the capability to
store timing information (see B.3).

Timing diagrams are used mainly within the later phases of the engineering process to
describe the devices with its states and their timing relationships (see B.4). Real signals are
introduced and it is possible to express sequencing information.

State charts are one of the UML language units of the ISO/IEC 19505 applicable within the
entire engineering process of production systems (see B.5). Modelling of behaviour
information is possible on different levels of abstraction.

Sequential Function Charts (SFC) are one of the programming languages of the IEC 61131-3
mainly applied within later phases of production system engineering (see B.5.3). Modelling of
sequencing information as well as behaviour information is possible.

Function Block Diagrams (FBD) are one of the programming languages of the IEC 61131-3
mainly applied within later phases of production system engineering (see B.5.4). Modelling of
interlocking information as well as behaviour information is possible.

<AutomationML/> Part 4: AutomationML Logic

Product Plant PLC Robot HMI Virtual
. . MCAD ECAD Program- Program- Program- Commis-
Design Planning , . . Lo
ming ming ming sioning,

Gantt chart >

sequencing activity-on-node network >
Information of production processes

timing diagram >

sequencing information
of devices

FBD >

interlocking information

SFC >

sequencing information
of the production system

state chart

SFC

behaviour information
of the production system FBD

NAAY

Figure A.2: Logic models in AML
A.3 Storing logic modelsinAML

AML uses one common data model to storethe different logic models, namely Sequential Function
Charts (SFC) as one of the PLC programming languages defined in IEC 61131-3. Thus, the logic
models need to be translated intoa SFCstored as anlEC 61131-XML representation: the target format.

To decouple the target formatfrom the various logic models, AML defines an Intermediate Modelling
Layer (IML). Normative provisions are defined in clause 3 and 7. In this way, the complex
transformation rules to IEC 61131-XML need to be defined only once (see 8.3), for each logic model
only transformation rules to the simpler IML need to be defined (see Annex C).This enhances the
extensibility of AML for new logic models as shown in Figure A.3.

Mapping rules based Mapping of IML
on transformation of elements to
model elements IEC 61131-XML

elements

Gantt chart

activity-on-node
network

timing diagram

T TN T
_>

IEC 61131-XML

> odeling Laver |)

|

Set of model
elements

Figure A.3. Transformation to IEC 61131-XML

90

<AutomationML/> Part 4: AutomationML Logic

Using those transformation rules and the IML, not only a transformation from one logic model to IEC
61131-XML is possible. It is also possible to transform one logic model into another logic model. This
is essential since the engineering process of production systems is a process of information
enrichment.In the beginning,the sequencing information of a production system is only roughly
described by using a Gantt chart and needs to be detailed in the next step. So, the Gantt chart is
transformed into an activity-on-node network: The information from the Gantt chart is taken over and
the complex timing conditions can be added now. Theoretically, this workflow can be done until the
executable program.

The logic models have different modelling powers. So, the transformation from one logic model to
another, e.g. from activity-on-node network to Gantt chart, will cause information loss.

All in all, this part is not about to simply store PLC programs. It is about making the logic models,
emerging during the engineering process of production system, exchangeable. A re-entry of
information within the subsequentengineering tool is, therefore, not necessary. The scope of this part
is given in Figure A.4.

))
Gantt charts lr >
activity-on-node networks } > 3‘
~ —
X
T : L = =
timing diagrams 5 > @ 7
0p]
o
state charts ',: > Q
- =
[SFC hemmm oo >
~
()
=
| FBD ke > X
—
e
=i
Mapping rules: 8
scope of IEC 62714-4 «—> Ll

scope of IEC 61131-XML <€--->

|

Figure A.4: Scope of IEC 62714-4 regarding mapping rules

<AutomationML/> Part 4: AutomationML Logic

A.4 Storing additional information to logic models in AML

To enable IEC 61131-XML to be applicable in the scope of AML, additional information needs to be
covered.

1.1.1 Additional logic model specific information

Since IEC 61131-XML intends to store and exchange all relevant programming information for IEC
61131-3 PLC programming projects, and AML goes beyond this scope and use it to store logic
models, additional information needs to be stored. This logic model specific information, not covered
by IEC 61131-XML, is covered by integrating an additional schema: the so called AML addData
schema. Normative provisions are defined in 8.2.

1.1.2 Meta information on file level

To enable a proper data exchange in the scope of AML, meta information on file level are necessary
to identify and characterize the file. Normative provisions are defined in clause 5.

1.1.3 Mathematical expressions

Application dependent there can be a need to store mathematical expressions to a logic model. This
goes also beyond the scope of IEC 61131-3 and, therefore, also of IEC 61131-XML. Clause 9 defines
the normative provisions necessary to integrate mathematical expressions into IEC 61131-XML within
the scope of AML. An informative overview is provided in Annex E.

A.5 Referencinglogic information in AML

In the multi-document architecture of AML, logic information is stored in separate documents following
the IEC 61131-XML data format. Modelling logic information is, therefore, divided into two parts. First,
an object, which has logic information, is modelled in CAEX, the top-level format. Second, an IEC
61131-XML document has to be provided containing this logic information. Finally, a reference
between the CAEX object and the IEC 61131-XML document needs to be created. Normative
provisions for referencing all of the three types of information are defined in clause 4 and 6. An
informative overview is provided in Annex D.

But for referencing interlocking information, additional provisions need to be considered. These are
normatively defined in clause 10. An informative overview is provided in Annex D.

<AutomationML/> Part 4: AutomationML Logic

Annex B Logicmodels in AML

B.1 General

This clause defines the logic modelswhich are considered in this part of IEC 62714, which information
they store, and how this is mapped to the model elements.

B.2 Gantt charts
B.2.1 General

Gantt charts are a graphical representation of a schedule typically used to model partially ordered sets
of sequentially and concurrently running activities comprisingexecution order and execution time of the
activities.They do not provide means for modelling alternatives and cycles.

Note: Gantt charts are also known as bar charts.
Note: The information represented by a Gantt chart can also be represented, e.g. by a table or spreadsheet.

B.2.2 Model elements

In a Gantt chart the following model elements shall be used (see Figure B.1):
One or more bars;
One y-axis listing all the names of the corresponding bars;
One time line (x-axis) realised as a global clock;

Zero or more arrows.

Name of bar m
t1l 2

t0

Figure B.1: Model elements of Gantt charts
B.2.3 Chart structuring
The following structuring for a Gantt chart shall be used:

Each Gantt chart shall be represented by a coordinate system (x-axis: time; y-axis: listing of
the name of the bars).

Each bar shall have its own line in the coordinate system with its corresponding name on the
y-axis.

The timed start point and timed end point of a bar shall correspond with the x-axis. This shall
represent the length of the bar. The length of the bar shall represents the duration of a bar.

An arrow shall connect the right side of one bar with the left side of another bar. Several bars
shall be connected by a branched arrow.

A starting bar shall be represented by a bar with an outgoing arrow.
An ending bar shall be represented by a bar with an incoming arrow.

An isolated bar shall be represented by a bar with zero outgoing and zero incoming
arrows.

A bar, which is a part of the sequence of bars, shall have an outgoing and incoming
arrow.

<AutomationML/> Part 4: AutomationML Logic

B.2.4 Amount of information
Gantt charts shall comprise the following information:
Name of an activity;
Start time of an activity;
Finish time of an activity;
Duration of an activity;
Predecessor-successor-relation among activities;
Starting activity;
Ending activity;
Isolated activity;

Sequence of activities.
B.2.5 Mapping rules

For the mapping of the information to the model elements of a Gantt chart the following provisions
apply (see Figure B.2):

An activity shall be represented by a bar.

A predecessor-successor-relation among activities shall be represented by an arrow.

Predecessor/Successor relation

Activity 1

Duration

Figure B.2: Information provided by Gantt charts
B.3 Activity-on-node networks
B.3.1 General

Activity-on-node networks are used to describe and analyse temporal and causal relations of a set of
interdependent activities.The end-start-relation between the nodes states that a nodecan only start
after the previous node has ended.Activity-on-node networks do not provide means for modelling
alternatives and cycles.

B.3.2 Model elements
In an activity-on-node network the following model elements shall be used (see Figure B.3):
One or more nodeswith seven boxes;

Zero or more arrows.

<AutomationML/> Part 4: AutomationML Logic

Earliest . Earliest
Duration
start end
—_—> Node name _
Latest Buffer Latest
start end

Figure B.3. Model elements of activity-on-node networks

B.3.3 Network structuring

The following structuring for an activity-on-node network shall be used:
The earliest start of a node shall be located in the box in the upper left corner of the node.
The duration of a node shall be located in the box in the upper center corner of the node.
The earliest end of a node shall be located in the box in the upper right corner of the node.
The node name shall be located in the box in the center of the node.
The latest start shall be located in the box in the lower left corner of the node.
The buffer shall be located in the box in the lower center corner of the node.
The latest end shall be located in the box in the lower right corner of the node.

An arrow shall connect the right side of one node with the left side of another node. Several
nodes shall be connected by a branched arrow.

A starting node shall be represented by a node with an outgoing arrow.
An ending node shall be represented by a node with an incoming arrow.

An isolated node shall be represented by a node with zero outgoing and zero
incoming arrows.

A node, which is a part of the sequence of node, shall have an outgoing and incoming
arrow.

B.3.4 Amount of information
Activity-on-node networks shall comprise the following information:
Name of an activity;
Earliest start time of an activity;
Latest start time of an activity;
Earliest end time of an activity;
Latest end time of an activity;
Duration of an activity;
Buffer time of an activity;
Predecessor-successor-relations among activities;
Starting activity;
Ending activity;
Isolated activity;

Sequence of activities.

<AutomationML/> Part 4: AutomationML Logic

B.3.5 Mapping rules

For the mapping of the information to the model elements of a activity-on-node network the following
provisions apply (see Figure B.4):

An activity shall be represented by a node.

A predecessor-successor-relation among activities shall be represented by an arrow.

Predecessor/Successor relation

Earliest | Duration | Earliest Earliest | Duration | Earliest Earliest | Duration | Earliest
start 1 1 end 1 start 2 2 end 2 start 5 5 end 5
Activity 1 —» Activity 2 Activity 5
Latest Latest Latest Latest Latest Latest
start 1 ‘ Buffer 1 ‘ end 1 start 2 ‘ Buffer 2 ‘ end 2 start 5 ‘ TS ‘ end 5

Earliest | Duration | Earliest Earliest | Duration | Earliest
start 3 3 end 3 start 4 4 end 4
Activity 3 R Activity 4 —
Latest Latest Latest Latest
start 3 ‘ ks ‘ end 3 start 4 ‘ SRS ‘ end 4

Figure B.4. Information provided by activity-on-node networks
B.4 Timingdiagrams
B.4.1 General

Timing diagrams are usedto describe the temporal and causal relations betweensignalsand system
states. Furthermore, they describehow changes of system states are affected by signals and how
signals are generated by states changes. Timing diagrams enable the modelling of alternatives.

B.4.2 Model elements
In a timing diagram the following model elements shall be used (see Figure B.5):
One column for resource;
One column for states;
One or more lines for resources;
Two or more lines for states;
One or more arrows;
One time line (x-axis) realised as a global clock;

One or more pseudo-waveforms.

Resource State IO 1 2 3
I I B
Arrow 1 t
State 1
Resource . Pseudo-waveform
State 2

Figure B.5: Model elements of timing diagrams

B.4.3

<AutomationML/> Part 4: AutomationML Logic

Diagram structuring

The following structuring for a timing diagram shall be used:

B.4.4

Each state shall have its own line.

States which belong to one resource shall be grouped as one line in the resource column.
One resource shall be represented by two or more states.

Each resource shall have one pseudo-waveform.
A pseudo-waveform shall represent a sequence of statesand state changes of one resource.
An arrow shall connect:

The time line with one or more pseudo-waveforms,

A pseudo-waveform of one resource with one or more pseudo-waveforms of other
resources,

A pseudo-waveform of one resource with the pseudo-waveform of the same resource.
An arrow shall induce a change of the state in one or more pseudo-waveforms.
A change of the state of a resource shall create zero or more arrows.

Arrows shall be created at any point at the time line.

Amount of information

Timing diagrams shall comprise the following information:

B.4.5

Name of a resource;

Name of a resourcestate;

Name of a signal;

Point in time when a signal occurs;

Influence of a signal on the state of a resource;

Duration of a resource state;

Duration of a resource state change;

Resource state flow;

Delay between two subsequent external signals (called “signal time delay”);

Duration of a resource state change or a predefined duration within a resource state (called
“time delay”).

Mapping rules

For the mapping of the information to the model elements of a timing diagram the following provisions
apply (see Figure B.6):

A device shall be represented by a resource.
A device state shall be represented by a state.
A signal shall be represented by an arrow.

A device state flow shall be presented by a pseudo-waveform.

<AutomationML/> Part 4: AutomationML Logic

Signal
< .
Resource state |0 | ime Te'ay
Device 1 Signal 1
| state1
. Device 1 .
Device 1 State 2 Signal 2
Device 1_ o -
state 3
Device 2
| stael L_y» [
. Device 2 . |
Device 2 state 2 Signal 3
Duration of Duration of :
- > >
- resource state resource state -
: change :
- > >
- Time . Time delay : Time delay

: delay :
Figure B.6: Information provided by timing diagrams
B.5 State charts
B.5.1 General

This part of IEC 62714 does not need the entire scopeof state machines as specified in ISO/IEC
19505. The model elements which are necessary to cover the scope of AML are listed in B.5.2 and
mapped to the state machine model elements. And this model is named, in this standard, state chart.

State charts are discrete event-driven models which describe the behaviour of systems.

Chart structuring, amount of information, and mapping rules of state charts are in compliance with
state machines as defined in ISO/IEC 19505.

B.5.2 Model elements

In a state chart the following model elements shall be used (see Table B.1 and Figure B.7):

State chart model elements State machine model elements

State State
State transition Transition
Action Activity
Guard Constraint
Event Trigger
Signal Trigger

History connector

Deep history/shallow history pseudo state

Condition connector

Join/fork/junction/choice pseudo state

Initial state

Initial pseudo state

Terminal state

Terminate pseudo state

Entry action

Activity

<AutomationML/> Part 4: AutomationML Logic

Do action Activity
EXxit action Activity
Region region

Table B.1: Mapping of model elements of state charts to model elements of state machines

?

/ State 1 \

-
Event 4 / [Guard 5]

@A/Event 4/ [Guard 4]

State 1.1

(e

|
|
|
[Guard 6.1] Event 2 | Event 2
|
|
|
|

Event 1 /[Guard 1] Events
State 1.2 Event 3/[Guard 3] Guard 2 / Action 1
State 1.4
K [Guard 6.2]
[Guard7] Event 6. State 3
Entry Action 2
[Guard 6] Do Action 3

Exit Action 4

Figure B.7: Model elements of state charts
B.5.3 Sequential function charts

Sequential Function Charts (SFC) describe causal and temporal dependencies of sequences of
system states and state transitions. The modelling of complex sequences with loops and conditional
execution is possible.

This part of IEC 62714 shall use SFCs asspecified in IEC 61131-3.
B.5.4 Function block diagrams

Function Block Diagrams (FBD) describe logical networks of function blocks respectively how input
and output variables are connected functionally.

This part of IEC 62714 shall use FBDs as specified in IEC 61131-3. The usage of function blocks
specified in IEC 61131-3 shall be allowed.

<AutomationML/> Part 4: AutomationML Logic

Annex C Mapping of logic models

C.1 General

This clause defines rules for the mapping of logic models to IML systems. For each logic model
element mapping a textual representation in the IML and a graphical representation as a SFC is given.
The SFC representation is not binding and only for clarification. Examples are given in Annex G.

C.2 Mapping of Gantt charts to IML

c.21 Common rules

For mapping a Gantt chart to an IML system, the following provisions apply:
Each Gantt chart shall be mapped to an IML system.
For the start of a Gantt chart the following provision applies:

For each IML representation of a Gantt chart, one initial “state” (named “InitialStep”)
shall be created, followed by a “state transition” with condition “true” as a link to all
further elements, see C.2.2.

For bars in a Gantt chart the following provisions apply:

Each Gantt bar shall be represented in an IML system by a state with two activities
associated to it and a successor state transition, see C.2.3.

The first activity shall represent directly the time behaviour of the related
Gantt bar and may be delayed in execution in order to start “synchronously” to
the appropriate Gantt bar (see red line in Figure C.1). Hence, the activity shall
have a definition for its earliest start point, see C.2.4. The naming convention
for this action is: “DA_" + name of the Gantt bar.

The second activity shall be responsible for enabling the transition to
“synchronously” deactivate the state according to the end of the Gantt bar.
Hence, the activity shall contain a definition for the duration in order to delay
the start of the activity and shall store it for synchronization reasons, see
C.2.5. The naming convention for this activity is: “TA_” + name of the Gantt
bar.

For predecessor and successor relations in a Gantt chart the following provisions apply:

If a Gantt bar has two or more successor bars, it shall be connected to them by a
simultaneous divergence, see C.2.6.

If a Gantt bar has two or more predecessors, they shall be connected to them by a
simultaneous convergence. Between this simultaneous convergence and the
predecessor states there shall be synchronization states with no activities and a
successor transition with a “true” condition, see C.2.7.

If there are no explicit relations between Gantt bars, i. e. they are concurrent, the
order of associated IML states shall be parallel and they shall have no ordering
relation based on state-state transition sequences, see C.2.6 and C.2.7.

If predecessor/successor relations between Gantt bars are defined, the resulting
structure shall be a sequence of IML states and state transitions, see C.2.6 and C.2.7.

As Gantt charts typically have a global time, while IML activities use local time starting
at activation of the state, a conversion between the two time systems is needed. For
bars with no predecessors the reference time point shall be the start point of the Gantt
chart. For bars with predecessors, the reference time point shall be the end of the
latest predecessor bar, see C.2.4.

For the end of a Gantt chart the following provision applies:

Each Gantt chart shall have a unique termination state, see C.2.8.

<AutomationML/> Part 4: AutomationML Logic

Bar 1

t0 t1 t2

S Barl

DA Barl

TA_Bar 1

If the condition for the transition is “true®,
the step is deactivated.

Figure C.1: Actions of IML for Gantt bar representation
c.2.2 Mapping of the start

Table C.1 specifies the mapping of properties and relations of the start of a Gantt chart to IML system
elements.

IML system element Graphical IML representation as SFC

General: =
Initial

state s with Step

s.ID = <some ID>
s.Name = “InitialStep”
S.Init = true

state transition st with
st.ID = <some ID>
st.Name = “InitialTransition”
st.Guard.Formula = true
st.Pre =s.ID

addData ad with
ad.ID = <some |ID>
ad.Type = ChartType
ad.Value = “Gantt”

ad.Pre =s.ID

Case A: Initial

(one predecessor bar) Step
Do nothing —I— true

<AutomationML/> Part 4: AutomationML Logic

Case B:

(more than one predecessor bar)

simultaneous divergence simDiv with
simDiv.ID = <some ID>

simDiv.Pre = st.ID

Initial
Step

—1— true

Table C.1: Mapping of the start of a Gantt chart to IML system elements

c.23 Mapping of bars

Table C.2 specifies the mapping of Gantt chart bars to IML system elements.

IML system element

Graphical IML representation as SFC

General:
state s with
S.ID = <some ID>
s.Name = “S_” + bar name
s.Init = false
activity a; with
a,.ID = <some ID>
a;.Name = “DA_” + bar name
a;.Pre =s.ID
activity a, with
a,.ID = <some ID>
a,.Name =“TA_” + bar name
a,.Pre =s.ID
state transition st with
st.ID = <some ID>
st.Name = “T_" + bar name

st.Guard.Formula = a,.name

st.Pre =s.ID

“Sb_a“r+ —l | “DA_" + bar name

name —l | “TA_“ + bar name

J— “TA_“ + bar name + “= 1*

Table C.2: Mapping of Gantt chart bars to IML system elements

c.24 Mapping of bar start points

Table C.3 specifies the mapping of a Gantt chart bar start point to IML system elements.

IML system element

Graphical IML representation as SFC

Case A:
(no predecessor bar)
activity a; with

a;.Time.Start.Earliest = Bar.startpoint

Case A: tx=0

“g g

bar —I D tx | “DA_“ + bar name

name —I ‘ “TA_" + bar name

J— “TA_“ + bar name + “= 1

Case B:

(one predecessor bar)

Case B: tx=Bar.startpoint - predecessorBar.endpoint

<AutomationML/> Part 4: AutomationML Logic

activity a; with ‘s o4 —

. . . bar —IDtx | DA_“ + bar name I
a;.Time.Start.Earliest = Bar.startpoint - name _I ‘ T — |
predecessorBar.endpoint —

“TA_" + bar name + “= 1°
Case C: Case C: tx=Bar.startpoint — max(predecessorBar.endpoint)
(more than one predecessor bar) 'S "+ —

o] bar —IDtx | DA_“ + bar name I
activity a; with name | | [“TA_" + bar name |
a;.Time.Start.Earliest = Bar.startpoint -

“TA_" + bar name + “= 1°

max(predecessorBar.endpoint)

Table C.3: Mapping of a Gantt chart bar start point to IML system elements
C.25 Mapping of bar end points

Table C.4 specifies the mapping of a Gantt chart bar end point to IML system elements.

IML system element Graphical IML representation as SFC
Case A: Case A: ty=Bar.endpoint
(no predecessor bar) .
S “+
L.) bar —I D tx ‘ “DA_“ + bar name |
activity a, with
name —I SD ty | “TA_“ + bar name I
a,.Time.Duration = Bar.endpoint
“TA_" + bar name + “= 1°
Case B: Case B: ty=Bar.endpoint - predecessorBar.endpoint
(one predecessorBar) .
“ “ 4
i i A Dt “DA_*
activity a, with bar (10X [DA+ bar name |
. . . name —I SD ty | “TA_" + bar name I
a,.Time.Duration = Bar.endpoint -
predecessorBar.endpoint “TA_“+ bar name + “= 1
Case C: Case C: ty=Bar.endpoint — max(predecessorBar.endpoint)
(more than one predecessor bar)
activity a, with b_ar+ _I D tx ‘ “DA_* + bar name |
ap.Time.Duration = Bar.endpoint: name L Ispty [“TA_*+bar name |
max(predecessorBar.endpoint)
“TA_" + bar name + “= 1°

Table C.4: Mapping of a Gantt chart bar end point to IML system elements
C.2.6 Mapping of successor bars

Table C.5 specifies the mapping of Gantt chart bar successor activities to IML system elements.

IML system element Graphical IML representation as SFC
Case A: Case A:
(no or only one successor bar) “g oy
. bar —l D tx | “DA_* + bar name I
Do nOthmg name —l SD ty | “TA_“ + bar name I
J— “TA_“ + bar name + “= 1"

<AutomationML/> Part 4: AutomationML Logic

Case B: Case B:
(more than one successor bar) —
. - D tx “DA_" + bar name
simultaneous divergence simDiv with bar M [0 |
name _l SD ty | “TA_“+ bar name I

simDiv.ID = <some ID>
—— “TA_" + bar name + “= 1°

simDiv.Pre = st.ID

Table C.5: Mapping of Gantt chart successor bars to IML system elements
c.2.7 Mapping of predecessor bars

Table C.6 specifies the mapping of Gantt chart predecessor bars to IML system elements.

IML system element Graphical IML representation as SFC

Case A: Case A:

(the only bar in the diagram with no Initial

predecessor bars) Step

state s with true

s.Pre = st.ID of the initial state transition “s_*+ HDtx ['DA_“+bar name |
n:z:e —|SD ty ‘ TA_“ + bar name |

J— TA_" + bar name + “= 1°

Case B: Case B:

(no predecessor bar and at least one nitial

other bar in the Gantt chart with no Step

predecessor) T e

state s with |

s.Pre = simDiv.ID of the initial “S_"+ —I D tx ‘ “DA_“+ bar name |
bar

simultaneous divergence name |{SDty | TA *+bar name |

J— “TA_“ + bar name + “= 1“

Case C: Case C:
(only one predecessor bar and no other Howo oA xx |
. S
bar with the same predecessor bar) " by [TAx |
state s with TA xx=1
s.Pre = stID of the predecessor state “Sb_a“r+ H o “DA_" + bar name
transition generated for the predecessor name 1Sty | TA "+ bar name
bar
J— “TA_“ + bar name + “= 1°
Case D: Case D:
(only one predecessor bar and this HDix [DA xx |
S
predecessor bar has more than one XX [Tsoy [TAx |
successor bar)
—|—TA7><><:1
state s with |
s.Pre = simDiv.ID of the predecessor s+ Hptx |'DA_+bar name |
simultaneous divergence generated for ngamfe {sDty | TA_" + bar name |
the predecessor bar
J_ TA_“ + bar name + “= 1"
Case E: Case E:

<AutomationML/> Part 4: AutomationML Logic

(more than one predecessor bar, the
predecessor bar has only one successor)

Synchronization state:
state s; with
s;.ID = <some ID>
s;.Init = false
si.Name = “SyS " + bar name + “ "+

si.Pre = st.ID of the predecessor state
transition generated for the predecessor
bar

Note: For each predecessor step (if there
is more than one) one synchronization
step is created. They shall be numbered
to ensure unique naming.

simultaneous convergence simCon with
simCon.ID = <some ID>
simCon.Pre ={..., s;.ID}

state transition st with
st.ID = <some ID>
st.Name = “SyT_” + bar name
st.Guard.Boolean = true
st.Pre = simCon.ID

state s;,1 with

Si+1.Pre = st.ID

S_xx

—|Dt><

‘ DA_xx |

—|SDty

‘ TA_Xx |

TA xx=1

“
|

“SyS_" +
bar name +

- true

“S 4 ﬁ D tx ‘ “DA_" + bar name

bar

name ﬁ SD ty ‘ ‘TA_" + bar name

—— “TA_"+ bar name + “= 1'

Case F:

(more than one predecessor bar, the
predecessor bar has more than one
successor bar)

Synchronization state:
state s; with
s;.ID = <some ID>
S;.Init = false
s;i.Name = “SyS_" + bar name + “_ "+

s;.Pre = simDiv.ID of the predecessor

simultaneous divergence generated
for

the predecessor bar

Note: For each predecessor state (if there
is more than one) one synchronization
state is created. They shall be numbered
to ensure unique naming.

simultaneous convergence simCon with

simCon.ID = <some ID>

Case F:

—| D tx ‘ DA_xx

S_xx

sty [Taxx

—|_ TA xx=1

SyS_"
bar name +

-1 true

S vt _| D tx ‘ “DA_“+ bar name

bar

name —| SD ty ‘ “TA_* + bar name

—— “TA_"+bar name + “= 1

<AutomationML/> Part 4: AutomationML Logic

simCon.Pre ={..., s;.ID}

state transition st with
st.ID = <some ID>
st.Name = “SyT_” + bar name
st.Guard.Boolean = true
st.Pre = simCon.ID

state s;,1 with

Si+1.Pre = st.ID

Table C.6: Mapping of Gantt chart predecessor bars to IML system elements

Cc.2.8 Mapping of the end

Table C.7 specifies the mapping of the end of a Gantt chart to IML system elements.

IML system element

Graphical IML representation as SFC

Case A:

(One predecessor state transition for the
terminal state)

state transition st with
st.ID = <some ID>
st.Name = “TerminalTransition”
st.Guard.Boolean = true
state s with
s.ID = <some ID>
s.Init = false
s.Name = “TerminalStep”

s.Pre =st.ID

Case A:

—IDlx

‘ DA_xx

S_xx

—ISDIy

‘ TA_XX

—|_ true

Terminal
Step

Case B:

(One simultaneous convergence for all
synchronisation states)

Synchronization state:
state s; with
Si.ID = <some ID>

s;.Init = false

si.Name = “SyS_Terminal” +”_" +i

s;.Pre = st.ID of the predecessor state

transition generated for the
predecessor

bar

Note: For each state with no successor
state (if there is more than one) one
synchronization state is created. They
shall be numbered to ensure unique
naming. All synchronization states are

Case B:

—IDtx

‘ DA_xx

—ISDty

‘TA XX

— TA xx=1

SyS_
Terminal

- true

Terminal
Step

<AutomationML/> Part 4: AutomationML Logic

predecessors of the final simultaneous
convergence.

simultaneous convergence simCon with
simCon.ID = <some ID>
simCon.Pre ={..., s;.ID}

state transition st with
st.ID = <some ID>
st.Name = “TerminalTransition”
st.Guard.Boolean = true
st.Pre = simCon.ID

Terminal State:

state s;,; with
Si+1.ID = <some ID>
Si+1.Init = false

Si+1.Name = “TerminalStep”

Si+1.Pre = st.ID

Table C.7: Mapping of the end of a Gantt chart to IML system elements
C.3 Mapping of activity-on-node networks to IML

C.3.1 Common rules

For mapping an activity-on-node network to an IML system, the following provisions apply:
Each activity-on-node network shall be mapped to an IML system.
For the start of an activity-on-node network the following provision applies:

For each IML system representing an activity-on-node network, an initial IML system
element “State” (named “InitialStep”) shall be created, followed by an IML system
element “State Transition” with condition “true” as link to all further elements, see
c.3.2.

For nodes in an activity-on-node network the following provisions apply:

Each node of the activity-on-node network shall be represented by the IML system
element “State” with two IML system elements “Activity” associated to it and a
successor IML system element “State Transition”, see C.3.3 and C.3.4.

The first IML system element “Activity” shall represent directly the timing
behaviour of the associated node. Hence, the IML system element “Activity”
shall have a definition for its earliest start point, see C.3.4. The naming
convention is: “DA_" + name of the node.

The second IML system element “Activity” shall be responsible for enabling
the IML system element “State Transition” to synchronously deactivate the
IML system element “State” according to the end of the node. Hence, the IML
system element “Activity” shall contain a definition for the duration in order to
delay the start of the activity and to store it for synchronization reasons, see
C.3.5. The naming convention is: “TA_” + name of the node.

The subsequent IML system element “State Transition” shall have the
following condition: Name of the second IML system element “Activity” + “=

true”.

<AutomationML/> Part 4: AutomationML Logic

For predecessor and successor relations in an activity-on-node network the following
provisions apply:

If an activity-on-node network node has two or more successor nodes, it shall be
connected to them by a simultaneous divergence, see C.3.6.

If an activity-on-node network node has two or more predecessor nodes, it shall be
connected to them by a simultaneous convergence. Between this simultaneous
convergence and the predecessor states there shall be synchronization states with no
activities and a successor transition with a “true” condition, see C.3.7.

If there are no explicit relations between activity-on-node network nodes, i. e. they are
concurrent, the associated IML states shall be parallel and they shall have no ordering
relation based on state-state transition sequences, see C.3.6 and C.3.7.

If predecessor/successor relations between activity-on-node network nodes are
defined, the resulting structure shall be a sequence of IML states and state transitions,
see C.3.6 and C.3.7.

Within activity-on-node networks, various timing conditions are used. They shall be
stored in AutomationML specific additional data related to the first activity (“DA_" +
name of the activity-on-node network node) according to the additional data structure
defined by PLCopen XML 2.0.

activity-on-node networks use global time values. Hence, for timing values of IML
activities these timing values shall be converted to local relative time related to the
activation time of the current state.

For the end of an activity-on-node network the following provision applies:

Each activity-on-node network shall have a unique termination state, see C.3.8.
Cc.3.2 Mapping of the start of an activity-on-node network

Table C.8 specifies the mapping of the start of an activity-on-node network to IML system elements.

IML element Graphical IML representation as SFC

General: Initial

state s with s.ID = <some ID> Step

1

s.Name = “InitialStep” true

s.Init = true

state transition st with
st.ID = <some ID>
st.Name = “InitialTransition”
st.Guard.Formula = true
st.Pre =s.ID

addData ad with
ad.ID = <some ID>
ad.Type = ChartType
ad.Value = “ActivityOnNodeNetwork”
ad.Pre =s.ID

Case A: Initial

(one node with no predecessor nodes) Step
Do nothing + true

<AutomationML/> Part 4: AutomationML Logic

Case B: Initial
(more than one node with no predecessor Step
nodes in the diagram additionally) —— true

simultaneous divergence simDiv with
simDiv.ID = <some ID>

simDiv.Pre = st.ID

Table C.8: Mapping of the start of an activity-on-node network to IML system elements
C.3.3 Mapping of nodes

Table C.9 specifies the mapping of activity-on-node network nodes to IML system elements.

IML element Graphical IML representation as SFC
General: "S_"+ _| | “DA_“ + node name |
. node
state s with name —| | “TA_“ + node name |
s.ID = <some ID> |
“TA_" + node name + “= true“

s.Name = “S_" + node name
s.Init = false

activity a; with
a;.ID = <some ID>
a;.Name = “DA_" + node name
a;.Pre =s.ID

activity a, with
a,.ID = <some ID>
a,.Name = “TA_” + node name
a,.Pre =s.ID

state transition st with
st.ID = <some ID>
st.Name = “T_” + node name
st.Guard.Formula = “a,.name”
st.Pre =s.ID

Table C.9: Mapping of activity-on-node network nodes to IML system elements

<AutomationML/> Part 4: AutomationML Logic

C.34 Mapping of node start points

Table C.10 specifies the mapping of activity-on-node network node start points to IML system
elements.

IML element Graphical IML representation as SFC
General: -
Sid + —I D tx | “DA_“ + node name |
H H noae
aCtIVIty a with name _I ‘ “TA_“ + node name |
a,.Time.Start.Earliest = Node.earlieststart J_ ,
‘TA_" + node name + “= 1°

a,.Time.start.latest = Node.lateststart

Table C.10: Mapping of activity-on-node network node start points to IML system elements
C.35 Mapping of node end points

Table C.11 specifies the mapping of activity-on-node network node end points to IML system
elements.

IML element Graphical IML representation as SFC
General: 'S 4

o] node —I D tx ‘ “DA_" + node name |
activity a, with name _I SDty ‘ “TA_“ + node name I

a,. Time.Duration = Node.duration J_
“TA_* + node name + “=1°

a,. Time.end.earliest =
Node.earliestend

a,.Time.end.latest = Node.latestend

a,.Time.delay = Node.delay

Table C.11: Mapping of activity-on-node network node end points to IML system elements
C.3.6 Mapping of successor nodes

Table C.12 specifies the mapping of activity-on-node network successor activities to IML system
elements.

IML element Graphical IML representation as SFC
Case A: Case A:
no or only one successor node “g
(y) S_'+ —l D tx | “DA_“ + node name I
. node
Do nOthmg name —I SDty | “TA_“ + node name I

J— “TA_“ + node name + “= 1“

Case B: Case B:
(more than one successor node) “g 4 —

. node _I D tx | DA_“ + node name I
simultaneous divergence simDiv with name _[SDty | “TA_* + node name |

simDiv.ID = <some ID>
—— “TA_“ + node name + “= 1"

simDiv.Pre = st.ID

Table C.12: Mapping of activity-on-node network successor nodes to IML system elements

<AutomationML/> Part 4: AutomationML Logic

C.3.7 Mapping of predecessor nodes

Table C.13 specifies the mapping of activity-on-node network predecessor nodes to IML system
elements.

IML element Graphical IML representation as SFC
Case A: Case A:
(the only node in the diagram with no \nitial
predecessor node) Step
state s with true

s.Pre = stID of the initial state s+ HDix | DA "+ node name |
transition node

name —I SD ty ‘ “TA_* + node name |
J— “TA_* + node name + “=1“

Case B: Case B:
(no predecessor node and at least one nitial
other node in the activity-on-node network Step
with no predecessor) 1 e
state s with

s.Pre = simDiv.ID of the initial “S*+ HDtx ['DA_“+node name |
simultaneous divergence :giz L [SDy | TA_" + node name |

J— “TA_* + node name + “=1°

Case C: Case C:
(only one predecessor node and no other D tx | DA_xx |
activity with the same predecessor node) S TSy [TA |
state s with TAX=1

s.Pre = st.ID of the predecessor state "5+ H{Dix | “DA_"+ node name |
transition generated for the predecessor node =
node name —| SD ty ‘ TA_“ + node name |

J— “TA_" + node name + “= 1°
Case D: Case D:
(only one predecessor node and this HDx [DA xx |
predecessor node has more than one 5 | [SDy [TAxx |
successor nodes) _|_
TA xx=1

state s with I

s.Pre = simDiv.ID of the predecessor “§_"+ HDtx [“DA_“+node name |
simultaneous divergence generated for r’]’;flz - [sDty [*TA_" + node name |
the predecessor node J_

“TA_" + node name “= 1

Case E: Case E:
(more than one predecessor node, the
predecessor node has only onesuccessor
node)
state s; with

S;.ID = <some ID>

<AutomationML/> Part 4: AutomationML Logic

s;.Init = false D tx [DA_xx |
S_Xxx
si.Name = “SyS_ " + node name HSoy [TAx |
+ ”+i —|—TA7><><:l

SyS_ +
s.Pre = stID of the predecessor state node name

transition generated for the predecessor AL

mode
Note: If more than one predecessor state - true
exists, one synchronization state for each s+ Mo | 'DA_" + node name |
node - =
predecessor state shall be created. They name [SPW |'TA_*+node name |
shall be numbered to ensure a unique T
i “TA_" + node name + “= 1"
naming. -~

simultaneous convergence simCon with
simCon.ID = <some |D>
simCon.Pre ={..., s;.ID}

state transition st with
st.ID = <some ID>
st.Name = “SyT_” + node name
st.Guard.Boolean = true
st.Pre = simCon.ID

state s;,1 with

Si+1.Pre = st.ID

Case F: Case F:
(more than one predecessor node, the Dt [DA xx |
predecessor node has more than one Sxx L Tsby [TAxx |
succeeding nodes) _I_ N
state s; with
T
s.ID = <some ID> yS
, +
s;.Init = false
si.Name = “SyS_” + node name + “_”
. —— true
+i
“S_“+ —I D tx ‘ ‘DA_" + node name |
si.Pre = simDiv.ID of the predecessor node [SDyy | “TA "+ node name |
simultaneous divergence generated for T
the predecessor node ‘TA s+ node name =10

Note: If more than one predecessor state
exists, one synchronization state for each
predecessor state shall be created. They
shall be numbered to ensure a unique
naming.

simultaneous convergence simCon with
simCon.ID = <some |D>
simCon.Pre ={..., s;.ID}

state transition st with

st.ID = <some ID>

st.Name = “SyT " + node name

<AutomationML/> Part 4: AutomationML Logic

st.Guard.Boolean = true
st.Pre = simCon.ID

state s;,1 with

Si+1.Pre = st.ID

Table C.13: Mapping of activity-on-node network predecessor nodes to IML system elements
Cc.3.8 Mapping of the end of an activity-on-node network

Table C.14 specifies the mapping of the end of an activity-on-node network to IML system elements.

IML element Graphical IML representation as SFC
Case A: Case A:
(One predecessor state transition for the How [oax |
terminal state) S oy [TAx |
state transition st with —|— true
st.ID = <some ID> Terminal
Step

st.Name = “TerminalTransition”
st.Guard.Boolean = true
state s with
s.ID = <some ID>
s.Init = false

s.Name = “TerminalStep”

s.Pre =st.ID
Case B: Case B:
(One simultaneous convergence for all o | DA Xx |
synchronisation states) S_xx o e |
Synchronization state: ~|~ TA XX =1
state s; with Sys_
Terminal_i

s;.ID = <some ID>

s;i.Init = false {F true
si.Name = “SyS_Terminal’ +”_" +i

Terminal
Step

s;i.Pre = st.ID of the predecessor state

transition generated for the
predecessor

bar

Note: For each state with no successor
state (if there is more than one) one
synchronization state is created. They
shall be numbered to ensure unique
naming. All synchronization states are
predecessors of the final simultaneous
convergence.

simultaneous convergence simCon with

simCon.ID = <some ID>

simCon.Pre ={..., s,.ID}

<AutomationML/> Part 4: AutomationML Logic

state transition st with
st.ID = <some ID>
st.Name = “TerminalTransition”
st.Guard.Boolean = true
st.Pre = simCon.ID
Terminal State:
state s;,1 with
Si+1.ID = <some ID>
Si41.1Nit = false

si+1.Name = “TerminalStep”

Si+1.Pre = st.ID

Table C.14: Mapping of the end of an activity-on-node network to IML system elements
C.4 Mapping of timing diagrams to IML
C41 Common rules
For mapping a timing diagram to an IML system, the following provisions apply:
Each timing diagram shall be mapped to an IML system.
For the startof a timing diagram the following provision applies:

For each IML representation of a timing diagram, an initial state (named
“InitialStep”) shall be created, followed by a state transition with condition
“true” and an initial simultaneous divergence as link to all further elements,
see C.4.2.

For the timeline in a timing diagram the following provision applies:

The timeline within a timing diagram shall be represented by one parallel
branch of a simultaneous divergence in the IML system, see C.4.3.

For resources in a timing diagram the following provisions apply:

Each resource within a timing diagram shall be represented by a parallel
branch of a simultaneous divergencein the IML system, describing the
corresponding resource state flow, see C.4.4.

For resource statesin a timing diagram the following provisions apply (see C.4.5):

Each resource state flow shall be represented by a sequence of states and their state
transitions in the associated branch of the IML system.

Each resource state and each resource state change shall be represented by an
activity and shall be associated to a SFC state within the corresponding branch.

The current resource state or resource state change shall be represented by one
activity attached to the active state in the corresponding IML system branch.

Each resource state change shall be triggered by a signal.

<AutomationML/> Part 4: AutomationML Logic

Each resource state change shall have a duration which is defined in the
corresponding activity. The duration shall be equal to or greater than zero. The end of
a resource state change leads to firing a signal which shall be used only as condition
to enter the subsequent resource state or resource state change.

Predecessor/successor relations between resource states and resource state
changes of one resource shall be represented by sequences of states and state
transitions.

For signals in a timing diagram the following provisions apply (seeC.4.6):

Signals shall be represented by the integration of Boolean values within state
transition guards.

Firing of signals resulting from a resource state change shall be represented by an
activity, associated to the corresponding state of the resource.

Each firing of a signal from the timeline (time signal) shall be described by a state and
one attached activity within the timeline.

Note: Signals can be fired by the timeline at any time or by a resource after remaining within a resource state with a predefined
duration.

For the end of a timing diagram the following provision applies:

Each representation of a timing diagram shall contain a terminal simultaneous
convergence, a terminal state transition, and a terminal step as end frame, see C.4.7.
The condition for the terminal state transition is the firing of an external end signal.

c.4.2 Mapping of the start of a timing diagram

Table C.15 specifies the mapping of the start of a timing diagram to IML system elements.

IML element Graphical IML representation as SFC
General:
) INIT
state s with
s.ID = <some ID> —— tue
s.Name = “INIT”
s.Init = true

state transition st with
st.ID = <some ID>
st.Name = “InitialTransition”
st.Guard.Formula = true
st.Pre =s.ID

addData ad with
ad.ID = <some ID>
ad.Type = ChartType
ad.Value = “TimingDiagram”
ad.Pre =s.ID

simultaneous divergence simDiv with

simDiv.ID = <some ID>

simDiv.Pre = st.ID

Table C.15: Mapping of the start of a timing diagram to IML system elements

<AutomationML/> Part 4: AutomationML Logic

C4.3 Mapping of the timeline

Table C.16 specifies the mapping of the timeline to IML system elements.

s.ID = <some ID>
s.Name = “Time_Step_0"
s.Init = false

s.Pre = simDiv.ID of the simultaneous
divergence resulting from the start of the
timing diagram

activity a with
a.lID = <some ID>
a.Name = “Signal_Time_0”
a.Pre =s.ID
a.Time.Delay =0
state transition st with
st.ID = <some ID>
st.Name = “T_” + a.Name
st.Guard.Boolean = a.Name
st.Pre =s.ID
For each additional fired external signal:
state s, with

Sy.ID = <some ID>

s,.Name = “Time_Step ” +sequence
number

Sy.Init = false
sy.Pre = st.ID of predecessor state

transition within timeline

IML element Graphical IML representation as SFC
General:

) || INIT
state s with

—1— true

—|D0 | Signal_Time_0

Time_Step_0

— [Signal_Time_0 = true]

“Time_Step_* -| Dtd | “Signal_Time_* + sequence number
+ sequence
number
—1— [“Signal_Time_" + sequence number = true]

Table C.16: Mapping of the timeline to IML system elements

C.4.4 Mapping of resources

Table C.17 specifies the mapping of timing diagram resources to IML system elements.

IML element

Graphical IML representation as SFC

General:

For each resource one parallel branch is
created in the SFC. This branch contains:

state s with
s.ID = <some ID>

s.Name = resource name + “ 0"

s.Init = False

INIT

—I— true

resource

—I DO | resource name + “_“ + initial resource state name

name +“_0"

<AutomationML/> Part 4: AutomationML Logic

s.Pre = simDiv.ID
activity a with

a.ID = <some ID>
a.Name = resource name + initial
resource state name

a.Pre =s.ID
a.Time.Delay =0

Note:The sequence of values for the
resource is represented by the resource
state flow.

Table C.17: Mapping of timing diagram resources to IML system elements
c45 Mapping of resource states

Table C.18 specifies the mapping of timing diagram resource states to IML system elements.

IML element Graphical IML representation as SFC

Case A:

(remain within one resource state [active n;riiofr.ﬁ +HDO resource name + “_“ + resource state name

State]) sequence [1sptd | “Signal_“ + resource name + “_“ + sequence number
number

For each active resource state one state + [“Signal_* + resource name +* -+ sequence number = true]

shall be created:
state s with
s.ID = <some ID>

s.Name = resource name +
sequence number

“w o » +

s.Init = false

s.Pre = stID of the predecessor state
transition within the resource state flow

activity a with
a.lID = <some ID>

a.Name = resource name + " " +
resource state name

a.Time.Delay =0

a.Pre = s.ID of associated state within the
resource state flow

Note 1:If the resource state is never
entered within the resource state flow, the
action is defined in the declarative part of
the PLCopen XML document only.

Note 2:Multiple activations of resource
states are possible and lead to a new
state each time.

Note 3: To each state at least one activity
is associated, setting the active resource
state. The following state transition waits
for a signal to trigger the succeeding

<AutomationML/> Part 4: AutomationML Logic

resource state change. The active
resource state will automatically be set to
“false” when leaving the step. When
leaving the state after a predefined
duration, a second activity is needed.

Case B:
(resource state Change) resource DO resource name + “_* + origin resource state name +
name + “_“ + “_to_* + target resource state name
Each resource state Change leads to one s§ﬂumebr;cre —I SDtd | “Signal_" + resource name + “_“ + sequence number
state: I
i [“Signal_“ + resource name + “_“ + sequence number = true]
state s with

s.ID = <some ID>

s.Name = resource name + “” +
sequence number

s.Init = false

s.Pre = stID of the predecessor state
transition within the resource state flow

activity a with

a.lID = <some ID>

a.Name = resource name +’_" + origin
resource state name + " _to " + target
resource state name

a.Time.Delay =0

a.Pre = s.ID of associated state within the
resource state flow

Note 1:If a predefined resource state
change is never executed within the
resource state flow the action is defined in
the declarative part of the PLCopen XML
document only.

Note 2: Multiple activations, even with
different durations, are possible and lead
to a new state each time.

Note 3: To each state two activities are
associated: one activity to set the active
resource state change and one activity to
fire a signal at the end of the resource
state change. A state transition activates
the succeeding state. The condition for
this state transition shall only be the
boolean signal of the resource state
change.

Table C.18: Mapping of timing diagram resource states to IML system elements

<AutomationML/> Part 4: AutomationML Logic

C.4.6 Mapping of signals

Table C.19 specifies the mapping of timing diagram signals to IML system elements.

IML element Graphical IML representation as SFC
Time signals: l
activity a with |
—i— [“Signal_* + resource name + “_* + sequence number = true]
a. I D = <some |D> “Time_Step SD std ‘r‘:\’g"rézlr_ﬂme_“ + sequence resource _{ DO ;eas‘ﬁgrce name +_* + resource state l

sequence
number

+sequence
number

a.Name = ”Signal_Time” + sequence
number

[“Signal_Time_* + sequence number = true]

a.Time.Duration = signal time delay

a.Pre = s.ID of actual state within the
timeline

Note:Activity a belongs to a state in the
timeline.

state transition st with
st;.ID = <some ID>

st;.Name = “T_Signal_Time” + sequence
number

st;.Guard.Boolean = a.Name

st;.Pre = s.ID of the state, which
associates to a.lD

state transition st, with
st,.ID = <some ID>

st,.Name = “T_Signal_Time_" + sequence
number

st,.Guard.Boolean = a.Name

st,.Pre = s.ID of active state within the
resource state flow where a change is
triggered by the signal

Signals between two resource state

flows: | [
I . ‘ [‘Signal_" + resource name + *_* + sequence number = true]
activity a with e] | [[P
name + *_* name +*_* name
+sequence | [SDtd | “Signal_" + resource name +*_" + + sequence _{ ‘ l
a. I D = <Som e I D> number -I ‘ sequence number | number

['Signal_Time_* + sequence number = true]
w »

a.Name ="Signal_"+ resource name +
+ sequence number

a.Time.Duration = time delay

a.Pre = s.ID of actual state within the
resource state flow

state transition st; with
st;.ID = <some ID>

st;.Name = “T_"+ resource name +
+ sequence number

st;.Guard.Boolean = a.Name

st;.,Pre = s.ID of the state, which

<AutomationML/> Part 4: AutomationML Logic

associates to a.ID
state transition st, with
st,.ID = <some ID>

st,.Name = “T_"+ resource name +
+ sequence number

st,.Guard.Boolean = a.Name

st,.Pre = s.ID of active state within the
resource state flow where a change is
triggered by the signal

Note: If a change within a resource state
flow depends on more than one signal,
these signals can be combined with a
boolean expression.

Signal within one resource state flow:
activity a with
a.ID = <some ID>

“w o

a.Name = "Signal_"+ resource name +
+ sequence number

a.Time.Duration = time delay

a.Pre = s.ID of the actual state within the
resource state flow

state transition st with
st.ID = <some ID>

st.Name = “T_Signal_"+ resource name +

7 + sequence number
st.Guard.Boolean = a.Name

st.Pre = s.ID of the state associated to

a.lD

resource

name +“_" +
sequence
number

— SD td

“Signal_* + resource name + “_“ + sequence number

—— [‘Signal_" +re

resource

name +“ “+
sequence
number

source name + “_" + sequence number = true]

DO

resource name + “_“ + resource state name

Table C.19: Mapping of timing diagram signals to IML system elements

<AutomationML/> Part 4: AutomationML Logic

c.4.7 Mapping of the end of a timing diagram

Table C.20 specifies the mapping of the end of a timing diagram to IML system elements.

IML element Graphical IML representation as SFC

General:

Time_Step_n —‘ SD ... ‘

For the termination of the complete timing
diagram, all resource state flows and the
timeline are synchronized by an end time — [.]
signal and the following resulting
elements:

Time_Step_ | I'sp std| Signal_Time_END |
END

Timeline end state:

state s; with |

S1.ID = <some ID> —1— [Signal_Time_END = true]

s1.Init = false rerminal
s:.Name = “Time_Step END” Step

s;.Pre = st.ID of last state transition within
timeline

activity a with
a.ID = <some ID>
a.Name ="Signal_Time_END”
a.Time.Duration = signal time delay
a.Pre =s,.ID

simultaneous convergence simCon with
simCon.ID = <some |ID>

simCon.Pre = [a.ID; ID of the last states in
each resource state flow]

state transition st with
st.ID = <some ID>
st.Name = “TerminalTransition”

st.Guard.Boolean = [Signal_Time_END =
true]

st.Pre = simCon.ID
Terminal state:
state s, with
S,.ID = <some ID>
S,.Init = false
s,. Terminal = true

s,.Name = “TerminalStep”

s,.Pre =st.ID

Table C.20: Mapping of the end of a timing diagram to IML system elements
c.4.8 Mapping of timing diagram details

Table C.21 specifies the mapping of further information of a timing diagram to IML system elements.

<AutomationML/> Part 4: AutomationML Logic

IML element

Graphical IML representation as SFC

Name of groups:
Additional Data ad with
ad.ID = <some ID>
ad.type = TimingDiagramResourceGroup

ad.value = name of the group the element
belongs to

ad.Pre = s.ID of the first step within the
parallel branch belonging to the resource

Group =some_group/some_subgroup

ad.ID = <some ID>

ad.type = TimingDiagramResourceGroup

ad.value = name of the group the element belongs to
ad.Pre = s.ID of the first step within the parallel branch
belonging to the resource

N

Names of resource state changes:
Additional Data ad with
ad.ID = <some ID>

ad.type =
ResourceStateChangeDefinition.Definion
Name

ad.value = name of the resource change

ad.Pre = a.ID of associated action

Name = some name

ad.ID = <some ID>
ad.type = ResourceStateChangeDefinition.DefinionName
ad.value = name of the resource change
ad.Pre = a.ID of associated action

N

Durations of resource states and
resource state changes:

Additional Data ad with
ad.ID = <some ID>

ad.type =
ResourceStateChangeDefinition.Duration

ad.value = name of the group the element
belongs to

ad.Pre = a.ID of associated action

Duration = some duration

ad.ID = <some ID>

ad.type = ResourceStateChangeDefinition.Duration
ad.value = name of the group the element belongs to
ad.Pre = a.ID of associated action

Names of signal inputs associated to
resource states:

Additional Data ad with
ad.ID = <some ID>

ad.type =
TimingDiagramPLCVariable.Name

ad.value = name of the variable

associated to the input

ad.Pre = a.ID of associated action

PLCopenVariable = variable name

ad.ID = <some ID>

ad.type = TimingDiagramPLCVariable.Name

ad.value = name of the variable associated to the input
ad.Pre = a.ID of associated action

|

Names of actuator outputs associated
to resource states:

Additional Data ad with
ad.ID = <some ID>

ad.type =
TimingDiagramPLCVariable.Name

ad.value = name of the variable

PLCopenVariable = variable name

ad.ID = <some ID>

ad.type = TimingDiagramPLCVariable.Name
ad.value = name of the variable associated to the output
ad.Pre = a.ID of associated action

N

<AutomationML/> Part 4: AutomationML Logic

associated to the output

ad.Pre = a.ID of associated action

Table C.21: Mapping of timing diagram details to IML system elements
C.5 Mapping of state charts
C51 Common rules
For mapping a state chart to an IML system, the following provisions apply:
Each state chart shall be mapped to an IML system.
Each region of a state chart shall be represented in an IML system by a header, see C.5.2.
For states in a state chart the following provision applies:
Each state shall be represented in an IML system by a state, see C.5.3.
For state transitions in a state chart the following provisions apply:
Each state transition shall be represented in an IML system by a state transition.

If an action is executed during a state transition, the state transition shall be
represented in an IML system by a state transition, followed by a state with the action
associated to it, followed by a state transition with condition “true” as link to all further
elements, see C.5.9.

For history connectors in a state chart the following provision applies:

Each history connector of a state chart shall be represented in an IML system by a state
and an IML additional data element, see C.5.10.

For actions in a state chart the following provision applies:

Each action shall be represented in an IML system by an action, which shall be assigned
to a state, see C.5.5.

For events in a state chart the following provision applies:

Each event shall be represented in an IML system by an event and additional IML
attribute values, see C.5.7.

For condition connectors the following provision applies:

Each condition connector of a state chart shall be represented in an IML system by a state
and an IML additional data element, see Annex C.

For signals in a state chart the following provision applies:

Each signal shall be represented in an IML system by a variable, see C.5.8.

<AutomationML/> Part 4: AutomationML Logic

C.5.2 Mapping of regions

Table C.22 specifies the definition of state chart regions.

IML element Example for a graphical IML representation as SFC
Case A: Case A:

(flat state chart)

header h with InitialStep_noName

h.ID = <some ID>

_] -t true

State_State_1

h.Name = name of the state chart

h.Members = IDs of all entities resulting
from the transformation of the state chart

members
State_State_2
Case B: Case B:
(state chart with hierarchies) SEC State Main SEC State 2

A state chart with more than one
hierarchy level shall result in one IML
system with its IML header h for each sub
state chart:

InitialStep_noName InitialStep_noName

_] -—true —] = frue

h.ID = <some ID> State_State_1 State_State_2-1

header h with

h.Name = name of the state chart i —

h.Members = IDs of all entities resulting
from the transformation of the state chart
members of the corresponding sub state
chart

State_State_2 @ State_State_2-2

contains addData
element with reference
to SFC State_2

The relation between a state s and its
internal sub state charts is represented by
an additional data element attached to the
state:

addData ad with
ad.ID = <some ID>
ad.Type = StateChartSubCharts/POURef

ad.Value = reference to the IML system
representing the sub state chart

Note: In PLCopen XML the URI of the
POU

ad.Pre =s.ID

Table C.22: Definition of state chart headers

<AutomationML/> Part 4: AutomationML Logic

C53 Mapping of states

Table C.23 specifies the mapping of state chart states to IML system elements.

s.Init = true

s.Terminal = false

IML element Graphical IML representation as SFC

General:

state s with General:
s.ID = <some ID> _|_
s.Name = “State_" + state name stﬁﬁ:‘i;r;e
s.Init = false _|_
s.Terminal = false

Initial state:

state s with Initial state:
s.ID = <some ID> InitialStep_
s.Name = “InitialStep_noName” noName

—I_ true

Terminal state:
state transition st with
st.ID = <some ID>

st.Name = “StateTransition_ ” +
transition name

st.Guard.Boolean = true
state s with
s.ID = <some ID>
s.Init = false
s.Terminal = true
s.Name = “FinalStep_noName”

s.Pre =st.ID

state

Terminal state:

+ true

FinalStep_
noName

Table C.23: Mapping of state chart states to IML system elements

C54 Mapping of successors of states

Table C.12 specifies the mapping of state chart successor activities to IML system elements.

IML element

Graphical IML representation as SFC

Case A:
(no or only one successor)

Do nothing

Case A:

state name

—J— “StateTransition_” + state transition name

Case B:

(more than one successor)

simultaneous divergence simDiv with

Case B:

<AutomationML/> Part 4: AutomationML Logic

simDiv.ID = <some ID>

simDiv.Pre = st.ID state name

—— “StateTransition_" + state transition name

Table C.24: Mapping of state chart state successors to IML system elements
C5.5 Mapping of predecessor states

Table C.13 specifies the mapping of state chart predecessor states to IML system elements.

IML Element Graphical IML representation as SFC
Case A: Case A:
(only one predecessor state and no other
state with the same predecessor state) “State_* +
state name
state s with

“StateTransition_” + state transition name

s.Pre = st.ID of the predecessor state

it “State_“ +
transition, generated for the predecessor state name
state
Case B: Case B:

(only one predecessor state and this
predecessor state has more than one stitt:te@n:e
successor states)

i —|— “StateTransition_” + state transition name
state s with

s.Pre = simDiv.ID of the predecessor ot - 1
simultaneous divergence generated for state name
the predecessor state

Table C.25: Mapping of state chart predecessor states to IML system elements
C5.6 Mapping of actions

Table C.26 specifies the mapping of state chart actions to IML system elements.

IML element Graphical IML representation as SFC
Entry action: Entry action:
action a with “State * + N “Action_" + action name + “ofState” + “State_“ + state name
state [...
a.ID = <some ID> name
a.Name = “Action_” + action name +

“ ofState ” + s.Name for the state the
entry action belongs to

a.Formula = content of action a

a.FiredEvents = set of events fired by
a

a.Pre = s.ID for the state the entry action
belongs to

addData ad with
ad.ID = <some ID>

ad.Type = StateChartActionType

ad.Value = entryAction

<AutomationML/> Part 4: AutomationML Logic

ad.Pre =s.ID

Action within a state; do action:
action a with
a.lID = <some ID>

a.Name = “Action_” + action name +
“ ofState_” + s.Name for the state s the
do action belongs to

a.Formula = content of action a

a.FiredEvents = set of events fired by
a

a.Pre = s.ID for the state s the do action
belongs to

addData ad with
ad.ID = <some ID>
ad.Type = StateChartActionType
ad.Value = doAction
ad.Pre =s.ID

Action within a state; do action:

“State_" +

state — N

“Action_" + action name + “ofState” + “State_“ + state name

name

Exit action:
action a with
a.lID = <some ID>

a.Name = “Action_” + action name +
“ ofState_” + s.Name for the state the exit
action belongs to

a.Formula = Content of action

a.FiredEvents = set of events fired by
a

a.Pre = s.ID for the state the entry action
belongs to

addData ad with
ad.ID = <some |ID>
ad.Type = StateChartActionType
ad.Value = exitAction
ad.Pre =s.ID

Exit action:

“State_“ +

state — ..

name

“Action_" + action name + “ofState” + “State_“ + state name

Table C.26: Mapping of state chart actions to IML system elements

<AutomationML/> Part 4: AutomationML Logic

C.5.7 Mapping of events

Table C.19 specifies the mapping of state chart events to IML system elements.

IML element

Graphical IML representation as SFC

General:
event ev with
ev.ID = <some ID>

ev.Name = “Event_" + signal name

General:

IML Event with:
Name = Event_action_ev

Variable with:
Name = Action_action_ev
Type= derived

Table C.27: Mapping of state chart events to IML system elements

C58 Mapping of signals

Table C.28 specifies the mapping of state chart signals to IML system elements.

var.|ID = <some ID>

var.Type = Boolean
var.SlUnit = empty

var.InitialValue = empty

var.Address = empty

var.Name = “Signal_" + signal name

IML element Graphical IML representation as SFC
General: General:
variable var with Variable with:

Name = Signal_signall
Type= Boolean

Table C.28: Mapping of state chart signals to IML system elements

C.59 Mapping of state transitions

Table C.9 specifies the mapping of state chart state transitions to IML system elements.

IML element

Example for a graphical IML representation as SFC

Case A:

(Mapping of a state transition without
an action to IML system elements)

state transition st with
st.ID = <some ID>

st.Name = “StateTransition_” + state
transition name

st.Guard.Formula = content of the
state transition guard

Case A:

+ [Guard]

Case B:

(Mapping of a state transition with an
action to IML system elements)

state transition st with
st;.ID = <some ID>

st;.Name = “StateTransition_” + state
transition name

Case B:

<AutomationML/> Part 4: AutomationML Logic

st;.Guard.Formular = content of the

. State_State_1
state transition guard B B

state s with =l [Guard]
s.ID = <some ID> StateForActivity_ —l N | Action_action1_ofStateTransition
actionl
s.Name = StateForActivity " + t
activity name I

s.Init = false State_State 2

s.Terminal = false
s.Pre = st;.ID
addData ad with
ad.ID = <some ID>
ad.Type = StateChartStateType
ad.Value = stateForActivity
ad.Pre =s.ID
action a with
a.lID = <some ID>

a.Name = “Action_” + action name +
“ ofStateTransition”

a.Formula = content of action a

a.FiredEvents = set of events fired by
a

a.Pre =s.ID
state transition st, with

st,.ID = <some ID>

st,.Name
“StateTransitionForActivity " +
activity name

st,.Guard.Formual = true

st,.Pre =s.1D

Case C: Case C:

(Mapping of a state transition from a
higher state without an action to IML
system elements)

Higher level state chart:
state transition st with
st.ID = <some ID>

st.Name = “StateTransition_” + state
transition name

st.Guard.Formula = content of the
state transition guard

st.Pre = s.ID (if st is the only
successor state transition of the

<AutomationML/> Part 4: AutomationML Logic

source state sj)orselDiv.ID (if the
source state s; has more than one
successor state transition)

Sub state chart:
state s, with
S,.ID = <some ID>

s,.Name = “Proxy_” + state name of
the originator of the state transition

S,.Init = false
s,. Terminal = false

s,.Pre = st.ID

addData ad with
ad.ID = <some ID>
ad.Type = StateChartStateType
ad.Value = higherLevelState
ad.Pre = s,.ID

state transition st with

st.Name = “StateTransition_” + state

transition name

st.Guard.Formula = content of the

state transition guard

st.Pre = s,ID (if st is the only
successor state transition of the state
s,) orselDiv.ID (if the state s, has
more than one successor state
transition

SFC State_Main

SFC State_2

InitialStep_noName

Proxy_State_1

——{rue

—

—

et [Guard]

State_State_1

State_State_2-1

—I— [Guard]

+

State_State_2

State_State_2-2

T

contains addData

element with
reference to SFC
State_2

Case D:

(Mapping of a state transition from a
higher state with an action to IML
system elements)

Higher level state chart:
state transition st with

st.ID = <some ID>

st.Name = “StateTransition_” + state

transition name

st.Guard.Formula = content of the

state transition guard

st.Pre = s.ID (if st is the only
successor state transition of the
source state s;) or selDiv.ID (if the
source state s; has more than one
successor state transition)

Sub state chart:

state s; with

Case D:

SFC State_Main

SFC State_2

InitialStep_noName Proxy_State_1

—I— [Guard]

——true

—

StateForActivity_
actionl

State_State_1

N ‘ Action_action1_ofStateTransition

+ [Guard]

State_State_2

E.

_l -t true

State_State_2-1

State_State_2-2

contains addData
element with
reference to SFC
State_2

<AutomationML/> Part 4: AutomationML Logic

S1.ID = <some ID>

si1.Name = “Proxy_” + state name of
the originator of the state transition

s1.Init = false
si.Terminal = false
addData ad with
ad.ID = <some ID>
ad.Type = StateChartStateType
ad.Value = higherLevelState
ad.Pre =s;.ID
state transition st with
st;.ID = <some ID>

st;.Name = “StateTransition_” + state
transition name

st;.Guard.Formular = content of the
state transition guard

st;.Pre = s..ID (if st; is the only
successor state transition of the
source state s;) or selDiv.ID (if the
source state s; has more than one
successor state transition)

state s, with
S,.ID = <some ID>

s,.Name = “StateForActivity ” +
activity name

S,.Init = false
s,.Terminal = false
S,.Pre = st..ID
addData ad with
ad.ID = <some ID>
ad.Type = StateChartStateType
ad.Value = stateForActivity
ad.Pre = s,.ID
state transition st, with

st,.ID = <some ID>

st,.Name
“StateTransitionForActivity ” +
activity name

st,.Guard.Formual = true
st,.Pre = s,.ID
action a with

a.lD = <some ID>

<AutomationML/> Part 4: AutomationML Logic

a.Name = “Action_" + action name +
“ ofStateTransition”

a.Formula = content of action a

a.FiredEvents = set of events fired by

a
a.Pre =s,.1D
Case E: Case E:
(Mapping of a state transition from a SFC State_Main SFC State_1
lower level state without an action to
IML SyStem elementS) InitialStep_noName InitialStep_noName
Higher level state chart: — 1 e _|_
state transition st with State_State_1-1
State_State_1
st.ID = <some ID> | _|_
« e -I-[Guardl |
st.Name = “StateTransition_” + state State_State_1-2
transition name State_State 2 | |
| —|— [Guard]
st.Guard.F_o.rmuIa = content of the :I— ‘ S r——
state transition guard contains addData State_2
element with
stPre = s,.ID (if st is the only e

successor state transition of the
source state s;) or selDiv.ID (if the
source state s; has more than one
successor state transition)

Sub state chart:
state s; with
S3.ID = <some ID>

ss.Name = “Proxy_” + state name of
the originator of the state transition

sa.Init = false
ss. Terminal = false
addData ad with
ad.ID = <some |ID>
ad.Type = StateChartStateType
ad.Value = higherLevelState
ad.Pre = s3.1D
state transition st with
st.ID = <some ID>

st.Name = “StateTransition_” + state

transition name

st.Guard.Formula = content of the
state transition guard

st.Pre = s.ID (if st is the only
successor state transition of the
source state s;) or selDiv.ID (if the
source state s; has more than one

<AutomationML/> Part 4: AutomationML Logic

successor state transition)

Case F:

(Mapping of a state transition from a
lower level state with an action to IML
system elements)

Higher level state chart:
state transition st; with
st;.ID = <some ID>

st;.Name = “StateTransition_” + state
transition name

st;.Guard.Formular = content of the
state transition guard

st;.Pre = s.ID (if st; is the only
successor state transition of the state
s;) or selDiv.ID (if the state s; has
more than one successor state
transition)

state s; with
s1.ID = <some ID>

s;.Name =
activity name

StateForActivity * +

s;.Init = false
s;.Terminal = false
s..Pre = st,.ID
addData ad with
ad.ID = <some ID>
ad.Type = StateChartStateType
ad.Value = stateForActivity
ad.Pre =s,.ID
state transition st, with

st,.ID = <some ID>

st,.Name
“StateTransitionForActivity ”
activity name

+

st,.Guard.Formual = true
st,.Pre = s,.ID

action a with
a.ID = <some ID>

a.Name = “Action_" + action name +
“ ofStateTransition”

a.Formula = content of action a

a.FiredEvents = set of events fired by
a

Case F:

SFC State_Main

SFC State_1

InitialStep_noName
j —t— true

tai D:

State_State 1 by contains add. ata
element with

reference to SFC

—I— [Guard] State_1
StateFo_rAcuvny_ —I N ‘ Action_action1_ofStateTransition |

actionl = =

true

State_State_2

InitialStep_noName

State_State_1-1

State_State_1-2

[Guard]

Proxy_State_
State_2

<AutomationML/> Part 4: AutomationML Logic

a.Pre =s,.ID
Sub state chart:
state s, with
S4.ID = <some ID>

s4;.Name = “Proxy_” + state name of
the originator of the state transition

s,.Init = false
s,. Terminal = false
addData ad with
ad.ID = <some ID>
ad.Type = StateChartStateType
ad.Value = higherLevelState
ad.Pre =s,.ID
state transition st with
st.ID = <some ID>

st.Name = “StateTransition_” + state

transition name

st.Guard.Formula = content of the
state transition guard

st.Pre = s,ID (if st is the only
successor state transition of the
source state s;) or selDiv.ID (if the
source state s, has more than one
successor state transition)

Table C.29: Mapping of state chart state transitions to IML system elements

<AutomationML/> Part 4: AutomationML Logic

C.5.10 Mapping of history connectors

Table C.30 specifies the mapping of history connectors of state charts to IML system elements.

IML element Graphical IML representation as SFC
General: General:
state s with

super state name

s.ID = <some ID>

”

s.Name = “History_” + state name of the _I_
super state of the history connector

. “History_“ + super
s.Init = false state name

s.Terminal = false

addData ad with
ad.ID = <some ID>
ad.Type = StateChartStateType
ad.Value = historyConnector
ad.Pre =s.ID

Table C.30: Mapping of history connectors of state charts to IML system elements
C.5.11 Mapping of condition connectors

Table C.31 specifies the mapping of condition connectors of a state chart to IML system elements.

IML element Graphical IML representation as SFC
General: General:
step s with

super state name

s.ID = <some ID>

s.Name = “Condition_” + s.ID + “ "+ state —+
name of the state the condition connector “Condition_" + s.ID
is directly integrated in +"_" + super state
name
s.Init = false |

s.Terminal = false
addData ad with

ad.ID = <some ID>

ad.Type = StateChartStateType
ad.Value = Condition Connector
ad.Pre =s.ID

Table C.31: Mapping of state chart condition connectors to IML system elements

<AutomationML/> Part 4: AutomationML Logic

Annex D Referencing methods for logic information

D.1 General

This clause describes the referencing methods for logic information, which are stored in IEC 61131-
XML documents. It comprises the referencing of logic information which is stored within one POU,
which is distributed throughout several POUs,and the referencing of interlocking information which is
stored throughout several IEC 61131-XML documents.

Logic information is expressed as logic models. To reference not only the logic model itself (as
specified in D.2) but also certain parts of that logic model, e.g. a variable, additional referencing
methods are specified in D.3.

Note: In the CAEX file, GUIDs as an implementation of UUIDs are applied for object identification (see
IEC 62714-1), e.g. AC76BA86-7AD7-1033-7B44-A70000000000. GUIDs are presented in a short form
such as“GUID1”, “GUID100” etc. This serves the readability and acts as a real GUID.

D.2 Referencing logic information expressed as logic models

This subclause describes the referencing oflogicinformation expressed as logic models of an AML
object as specified in clause 6.

D.2.1 Referencing logic information stored in one POU

Sequencing, behaviour, or interlocking information, stored as a logic model within one POU, is
referenced by modelling a CAEX Externalinterface with an AML InterfaceClass “Logiclnterface”,
“SequencingLogiclnterface”, “BehaviourLogiclnterface”, “SequencingBehaviourLogiclnterface”,
“InterlockingLogiclnterface”, or a derivation of them, associated to it. This is depicted in Figure D.1 and
Figure D.2, in which logic information expressed as SFC is referenced.

CAEX file IEC 61131-XML file
L ,example.aml* ,2robot1.xml*
InternalElement
»Robot cell”
POU1
InternalElement (globallD=UUID1)

~Robot*

I
I
I
I
I
L : o L™ le
Interface ,Logic1* |
I
I
I
I
I

RefBaseClassPath:
Logiclnterface

Attribute ,refURI"
Value: file:///robotl.xm#UUID1

4

Figure D.1: Referencing logic information (as SFC) stored in one POU

4

<InternalElement Name="Robot cell" ID="GUID100">
<InternalElement Name="Robot" ID="GUID101">
<Externallnterface Name="Logic1"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLlInterface/Logiclnterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file:///robotl.xmI#UUID1</Value>
</Attribute>
</Externallnterface>
</InternalElement>
</InternalElement>

Figure D.2: XML text of the CAEX file for referencing logic information stored in one POU

<AutomationML/> Part 4: AutomationML Logic

Logic information can also be expressed as FBD as defined in A.3. The referencing method remains
unaffected.

D.2.2 Referencing logic information distributed throughout several POUs

Sequencing, behaviour, or interlocking information, stored as a logic model distributed throughout
several POUs, is referenced by modelling a CAEX Externalinterface with an AML InterfaceClass
“Logiclnterface”, “Sequencinglogiclnterface”, “BehaviourLogiclnterface”,

“SequencingBehaviourLogiclnterface”, “InterlockingLogiclnterface”, or a derivation of them, associated
to it.

This is depicted in Figure D.3. Here, a POU, which contains a SFC, callsother POUscontaining SFC or
FBDby IEC 61131-XML means. Also a POU, which contains a FBD, can call other POUs. The
referencing method remains unaffected. The XML text of the CAEX file for referencing logic
information distributed throughout several POUs is the same as depicted in Figure D.2.

CAEX file | IEC 61131-XML file ,robot1 .xml*
,example.aml* | POU2
| (globallD=UUID2)
InternalElement |
,Robot cell*
| POUL © @
InternalElement | (globallD=UUID1) > =
»Robot" |
| ol I L
Interface ,Logic1” End
RefBaseCIassPath: I
Logiclnterface I
L Attribute ,refURI* ! End PO_U3
(globallD=UUID3)
Value: file:///robotl.xml#UUID1 1 @ 7@
| FB1
| “ "L FB2
—> Referencing means of IEC 61131-XML 7| 7
|

Figure D.3: Referencing logic information distributed throughout several POUs

It is also possible that an IEC 61131-XML document contains several POUs which are not interlinked
with each other. In that case, the referencing method as specified in D.2.1 is applied.

D.2.3 Referencing interlockinginformation distributed throughout several IEC 61131-
XML documents

This referencing method is only valid for interlocking information as specified in clause 10.

Interlockinginformation, stored as a logic model distributed throughout several IEC61131-XML
documents, is modelled by a CAEX Externallnterfacefor each IEC61131-XML document throughout
the logic model containing the interlockinginformation is distributed. These CAEX Externalinterfaces
are associated with an AML InterfaceClass “InterlockingLogiclnterface”, or a derivation of them. This is
depicted in Figure D.4 and Figure D.5. Here, the interlockinginformation is distributed throughout two
IEC61131-XML documents.

<AutomationML/> Part 4: AutomationML Logic

CAEX file IEC 61131-XML file
L example.aml ,<robot1_lock.xml*
InternalElement ”
,Robot cell*
L InternalElement POU1l

~Robot* (globallD=UUID1)

FB1

I ‘LFsz

Interface ,LockPart1“

—> RefBaseClassPath:
InterlockingLogiclnterface

L Attribute ,refURI®
Value:

file://Irobot1_lock.xml#UUID1

y

Interface ,LockPart2“

—> RefBaseClassPath:
InterlockingLogiclnterface

IEC 61131-XML file
~robot2_lock.xml*

Attribute ,refURI*

Value:
file:///robot2_lock.xml#UUID2

POU2
(globallD=UUID2)

‘L FB4

FB3

v

— — — — — —

4 4

Figure D.4: Referencing interlockinginformation distributed throughout several IEC 61131-XML
documents

<InternalElement Name="Robot cell" ID="GUID100">
<InternalElement Name="Robot" ID="GUID101">
<Externallnterface Name="LockPart1"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLInterface/Logicinterface/InterlockingLogiclnterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file:///robotl_lock.xml#UUID1</Value>
</Attribute>
</Externallnterface>
<Externallnterface Name="LockPart2"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLlInterface/Logiclnterface/InterlockingLogiclnterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file:///robot2_lock.xml#UUID2</Value>
</Attribute>
</Externallnterface>
</InternalElement>
</InternalElement>

Figure D.5: XML text of the CAEX file for referencing interlocking information distributed throughout
several IEC 61131-XML documents

<AutomationML/> Part 4: AutomationML Logic

To connect both IEC61131-XML documents with each other, the relevant parts need to be referenced
as well. They can be connected by CAEX means. In Figure D.6 and Figure D.6 the output variable of
POU1 is connected with the input variable of POU2. The referencing method for variable is described
in D.3.

CAEX file | IEC 61131-XML file
”examp|e_am|“ I ,,r0b0t1_|OCk.Xm|“
InternalElement |
.Robot cell |
L InternalElement I POU1
Robot“ | (globallD=UUID1) v
” @ 7@
| FB1 =
Interface ,LockPart1“ I > 1 — g
—> RefBaseClassPath: | =
InterlockingLogicinterface | é
|
| =
Attribute ,refURI* |
Value:
file:///robotl_lock.xml#UUID1 I
Interface ,Output* I
—> RefBaseClassPath: P
Variablelnterface I
L Attribute ,refURI“ |
Value: f ;
file://frobot1_lock.xml#UUID11 I
Interface ,LockPart2“ I IEC 61131-XML file
> RefBaseClassPath: ,,rObOtZ_lOCk.XmI“
InterlockingLogiclnterface I §
)
; [l 3
Attribute ,refURI® | A POU2
Value: s (globallD=UUID2)
file://frobot2_lock xmI#UUID2 I s @ —@
= FB3
Interface ,Input* I 1 FB4
—> RefBaseClassPath: € I [
Variablelnterface I
L Attribute ,refURI* |
Value:
file:///robot2_lock. xml#UUID22 I
<—> |nternalLink 7 | 7
1

Figure D.6: Referencing interlockinginformation distributed throughout several IEC 61131-XML
documents using CAEX means

<AutomationML/> Part 4: AutomationML Logic

<InternalElement Name="Robot cell" ID="GUID100">
<InternalElement Name="Robot" ID="GUID101">
<Externallnterface Name="LockPart1"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLInterface/LogicInterface/InterlockingLogiclnterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file:///robotl_lock.xml#UUID1</Value>
</Attribute>
</Externallnterface>
<Externallnterface Name="OQutput"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLlInterface/Variablelnterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file:///robotl_lock.xml#UUID11</Value>
</Attribute>
</Externallnterface>
<Externallnterface Name="LockPart2"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLInterface/Logicinterface/InterlockingLogiclnterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file:///robot2_lock.xml#UUID2</Value>
</Attribute>
</Externallnterface>
<Externalinterface Name="Input"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLInterface/VariableInterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file:///robot2_lock.xml#UUID22</Value>
</Attribute>
</Externallnterface>
<InternalLink Name="Link_Outputinput" RefPartnerSideA="GUID101:Output"
RefPartnerSideB="GUID101:Input"/>
</InternalElement>
</InternalElement>

Figure D.7: XML text of the CAEX file for referencing interlocking information distributed throughout
several IEC 61131-XML documents using CAEX means

Normative provisions are given in 10. An informative overview is provided by Annex F.
D.3 Referencing logic information as a part of logic models

This subclause describes the referencing of logic information as a part of logic models of an AML
object as specified in clause 6.

<AutomationML/> Part 4: AutomationML Logic

D.3.1 Referencing a variable

A variable in a logic model, containing sequencing, behaviour, or interlocking information, is
referenced by modelling a CAEX Externallnterface of the AML InterfaceClass “Variablelnterface”. This
is depicted in Figure D.8 and

<InternalElement Name="Robot cell" ID="GUID100">
<InternalElement Name="Robot" ID="GUID101">
<Externallnterface Name="Logic1"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLlInterface/Logiclnterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file://frobotl.xml#UUID1</Value>
</Attribute>
</Externallnterface>
<Externallnterface Name="Output"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLInterface/VariableInterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file://lrobotl.xml#UUID11</Value>
</Attribute>
</Externallnterface>
</InternalElement>
</InternalElement>

Figure D.9, in which avariable “b” is referenced. But the logic model (stored in “POU1”) of which the
variable is a part of needs to be referenced before as described in D.2.

Note: Variables can be signals, parameters, internal variables.

CAEX file IEC 61131-XML file
.example.aml* ,robot1.xml*
InternalElement =
»Robot cell” 3
POUL E
InternalElement (globallD=UUID1) 3
~Robot*)
Init =~
@- -®

>
>

Interface ,Logic1”

—> RefBaseClassPath:
LogicInterface

L Attribute ,refURI*

Value: file:///robot1.xml#UUID1

, T

Stepl

|

End

Interface ,,Output”

—> RefBaseClassPath:
Variablelnterface

L Attribute ,refURI*

Value: file:///robotl.xmi#UUID11

Figure D.8: Referencing a variable

<AutomationML/> Part 4: AutomationML Logic

<InternalElement Name="Robot cell" ID="GUID100">
<InternalElement Name="Robot" ID="GUID101">
<Externallnterface Name="Logic1"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLInterface/Logiclnterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file://lrobotl.xmI#UUID1</Value>
</Attribute>
</Externallnterface>
<Externallnterface Name="OQutput"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLlInterface/Variablelnterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file://lrobotl.xml#UUID11</Value>
</Attribute>
</Externallnterface>
</InternalElement>
</InternalElement>

Figure D.9: XML text of the CAEX file for referencing a variable
D.3.2 Referencing an interlocking variable

An interlocking variable in a logic model, containing interlocking information, is referenced by
modelling a CAEX Externallnterface of the AML InterfaceClass “InterlockingVariablelnterface”. This is
depicted in Figure D.10 and Figure D.11, in which a variable “b” is referenced. But the logic model
(stored in “POU1”) of which the interlocking variable is a part of needs to be referenced before as
described in D.2.

Normative provisions are given in clause10. An informative overview is provided byAnnex F.

CAEX file | IEC 61131-XML file
example.aml|* | ,robot1_lock.xml*
InternalElement ” | ~
,Robot cell S
| 5
D
5
L InternalElement I F
,Robot" | POU1 s
(globallD=UUID1) =~
I @ -®
Interface ,Lock" | FB1 A
—>] RefBaseClassPath: . % — FB2
InterlockingLogiclnterface i —L |
L Attribute ,refURI*
Value:

file:///robot1_lock.xmi#UUID1

—> RefBaseClassPath:
InterlockingVariablelnterface

L Attribute ,refURI*
Value:

file:///robotl_lock.xml#UUID11

I
I
I
I
I
Interface ,Output” |
I
I
I
I
I

Figure D.10: Referencing an interlocking variable

<AutomationML/> Part 4: AutomationML Logic

<InternalElement Name="Robot cell" ID="GUID100">
<InternalElement Name="Robot" ID="GUID101">
<Externallnterface Name="Lock"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLInterface/LogicInterface/InterlockingLogiclnterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file:///robotl_lock.xml#UUID1</Value>
</Attribute>
</Externallnterface>
<Externallnterface Name="OQutput"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLlInterface/Variablelnterface/InterlockingVariablelnterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file:///robotl_lock.xml#UUID11</Value>
</Attribute>
<Attribute Name="SafeConditionEquals" AttributeDataType="xs:boolean">
<DefaultValue>true</DefaultValue>
<Value>true</Value>
</Attribute>
</Externallnterface>
</InternalElement>
</InternalElement>

Figure D.11: XML text of the CAEX file for referencing an interlocking variable
D.3.3 Referencing a logic object

A logic object in a logic model, containing sequencing, behaviour, or interlocking information, is
referenced by modelling a CAEX Externallnterfaces of the AML InterfaceClass “LogicObjectinterface”.
This is depicted in Figure D.12 and Figure D.13

<InternalElement Name="Robot cell" ID="GUID100">
<InternalElement Name="Robot" ID="GUID101">
<Externallnterface Name="Logicl"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLlInterface/Logiclnterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file:///robotl.xml#UUID1</Value>
</Attribute>
</Externallnterface>
<Externallnterface Name="Process1"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLlInterface/LogicObjectinterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file:///robotl.xml#UUID13</Value>
</Attribute>
</Externallnterface>
</InternalElement>
</InternalElement>

Figure D.13, where the step “Step1” is referenced. But the logic model (stored in “POU1”) of which the
logic object is a part of needs to be referenced before as described in D.2.

<AutomationML/> Part 4: AutomationML Logic

CAEX file IEC 61131-XML file
L .example.am|* ,robotl.xml"
InternalElement
~Robot cell
POU1
InternalElement (globallD=UUID1)

~Robot*

Init

F

Stepl
> (globallD =
UuID13)

I

End

Interface ,Logic1®

—> RefBaseClassPath:
LogiclInterface

L Attribute ,refURI"

Value: file:///robot1.xml#UUID1

v

Interface ,Process1”

—> RefBaseClassPath:
LogicObjectinterface

L Attribute ,refURI*

Value: file:///robotl.xmI#UUID13

4 y

Figure D.12: Referencing a logic object

<InternalElement Name="Robot cell" ID="GUID100">
<InternalElement Name="Robot" ID="GUID101">
<Externallnterface Name="Logicl"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLInterface/Logiclnterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file:///robotl.xmI#UUID1</Value>
</Attribute>
</Externallnterface>
<Externallnterface Name="Process1"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLlInterface/LogicObjectinterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file://lrobotl.xml#UUID13</Value>
</Attribute>
</Externallnterface>
</InternalElement>
</InternalElement>

Figure D.13: XML text of the CAEX file for referencing a logic object

<AutomationML/> Part 4: AutomationML Logic

The following modelling elements of SFC are logic objects:
<step>
<transition> within <SFC> within <body>
<action> within <SFC> within <body>
<selectionDivergence>
<simultaneousDivergence>
<selectionConvergence>
<simultaneousConvergence>
The following modelling elements of FBD are logic objects:
<block> within <FBD> within <body>
<action> within <FBD> within <body> within <actionBlock>
All <inVariable>s, <outVariable>, <inOutvariable> in <FBD>
D.4 Referencing logic information as a part of already referenced logic models

Parts of a logic model, containing sequencing, behaviour, or interlocking information, are referenced
from AML objects as described in D.3. But in case that this logic model is already referenced by one of
its parent AML objects, it is not necessary to reference this logic model again. Instead a prompt
referencing of the parts of this logic model is possible. This is depicted in Figure D.14 and Figure D.15,
in which a variable “b” of an already referenced logic model is referenced.

<AutomationML/> Part 4: AutomationML Logic

>

CAEX file IEC 61131-XML file
,example.aml® ~robot1.xml"
InternalElement = s
,Robot cell* A a
=) 2
z. POU1 E
InternalElement 3 (globallD=UUID1) 3
~Robot" 2 s
= Init =~
@- -®

+

Interface ,Logic1“

—> RefBaseClassPath: Stepl
LogicInterface
Attribute ,refURI* End

Value: file:///robot1.xml#UUID1

Interface ,Input®

—> RefBaseClassPath:
Variablelnterface

L Attribute ,refURI*

Value: file:///robot1.xml#UUID11

InternalElement
~Robot_ext*

Interface ,Output*

> RefBaseClassPath:
Variablelnterface

Attribute ,refURI*
Value: file:///robot1.xml#UUID12

4

Figure D.14: Referencing a variable of an already referenced logic model

<AutomationML/> Part 4: AutomationML Logic

<InternalElement Name="Robot cell" ID="GUID100">
<InternalElement Name="Robot" ID="GUID101">
<Externallnterface Name="Logic1"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLInterface/Logiclnterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file://lrobotl.xmI#UUID1</Value>
</Attribute>
</Externallnterface>
<Externallnterface Name="Input"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLlInterface/Variablelnterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file://lrobotl.xml#UUID11</Value>
</Attribute>
</Externallnterface>
<InternalElement Name="Robot_ext" ID="GUID102">
<Externallnterface Name="Output"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLInterface/VariableInterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file:///robotl.xml#UUID12</Value>
</Attribute>
</Externallnterface>
</InternalElement>
</InternalElement>
</InternalElement>

Figure D.15: XML text of the CAEX file for referencing a variable of an already referenced logic model

<AutomationML/> Part 4: AutomationML Logic

Annex E Using mathematical expressions in logic information

E.1 General

This annex shows, how the provisions of clause 9 for the integration of MathML into IEC 61131-XML
are applied to an example.

E.2 Example description

The example depicts an one-way flow control valve with exhaust-air flow control (see Figure E.1).

2

{’ >

1

Figure E.1: Diagram of an one-way flow control valve with exhaust-air flow control

It is used to regulate exhaust air flow rates with double-acting cylinders. In the reverse direction, the
air flows freely through the non-return valve with full cross-sectional flow.

E.3 Mathematical functions expressed in MathML for logic information

For modelling behaviour information and sequencing information, Gantt charts, activity-on-node
networks, timing diagrams, and state charts are not sufficient in some cases, especially with regard to
the modelling of physical behaviour. For this purpose MathML can be used in the “addData” elements
of IEC 61131-XML. This makes it possible to evaluate the corresponding MathML formulas and, thus,
to influence the switching behaviour in event-discrete models.

For the example described in E.2, MathML could be used to describe the flow rate of the valve. The
flow rate depends on the pressure at the input and output side and the adjustment of the adjustment
screw. In the supercritical range the flow rate remains constant with a changing input/output pressure
ratio. In the subcritical range the flow rate decreases if the input/output pressure decreases, see
Figure E.2.

C
3
super- sub-

c .y = ey s
o critical critical
) 2
]
©
.

; 1,5
k)

—
1
0,5
b
0
0 0,2 0,4 0,6 0,8 1

pressure ratio P,/P;

Figure E.2: Flow rate of valves

The flow rate can be calculated with the following formula:

<AutomationML/> Part 4: AutomationML Logic

2
L2_p
(P P2y iti
0= Pisn*Cx |1 (1—1:) oy 2 b (subcritical))

kPl * T % C,% <b (supercritical)
1

Q =flowrate

P1 =input absolute static pressure

P2 = output absolute static pressure

C = sonic conductance

b = critical pressure ratio

n = setting of adjustment screw (0..1)

According to the provisions of clause 9 formulas can be integrated in IEC 61131-XML by expressing
them with the content part of MathML version 2.0.

Integration of MathML expressions in IEC 61131-XML “addData” elements

According to the provisions of clause 9 MathML expressions can be integrated in IEC 61131-XML in
“addData” elements.

It is necessary to create an “addData” element, which includes two “data” elements:
One “data” element for describing the mapping between IEC 61131-XML and MathML and
One “data” element for describing the MathML expression itself.

The “data” element for describing the MathML expression should be structured as shown in Table 60.
For the given example of the flow rate of the control valve the “data” element is shown in Figure E.3.

<data name="http://www.w3.0rg/1998/Math/" handleUnknown="preserve">
<math xmlns="http://www.w3.0rg/1998/Math/MathML/" display = 'block">

<apply>
<eq/>
<ci>Q</ci>
<piecewise>
<piece>
<apply>
<times/>
<ci>P1</ci>
<apply>
<times/>
<ci>n</ci>
<apply>
<times/>
<ci>C</ci>
<apply>
<root/>
<apply>
<minus/>
<cn>1</cn>
<apply>

<power/>

<apply>

Part 4: AutomationML Logic

<divide/>
<apply>
<minus/>
<apply>
<divide/>
<ci>P2</ci>
<ci>P1</ci>
<lapply>
<ci>b</ci>
</apply>
<apply>
<minus/>
<cn>1</cn>
<ci>b</ci>
</apply>
</apply>
<cn>2</cn>
</apply>
</apply>
</apply>
</apply>
</apply>
</apply>
<apply>
<geq/>
<apply>
<divide/>
<ci>P2</ci>
<ci>Pl</ci>
</apply>
<ci>b</ci>
</apply>
</piece>
<piece>
<apply>
<times/>
<ci>P1</ci>
<apply>
<times/>
<ci>n</ci>
<ci>C</ci>
</apply>
</apply>
<apply>

<AutomationML/> Part 4: AutomationML Logic

<lIt/>

<apply>
<divide/>
<ci>P2</ci>
<ci>P1</ci>

</apply>

<ci>b</ci>

</apply>
</piece>
</piecewise>
</apply>

</math>

</data>

Figure E.3: “data” element for describing the MathML expression of the flow rate of a control valve

The content of the “data” element for describing the mapping between IEC 61131-XML and MathML
depends on the formula and the amount of variables, which should be mapped.

For the given example, six variables are included in the formula: One output variable (Q) and five input
variables (P1, P2, C, b and n). These variables can be mapped to the same amount of IEC 61131-
XML variables, which are referenced by their globallDs. Figure E.4 depicts the “data” element for the

mapping.

<data name="http://www.automationml.org/IEC62714-4Ed1/MathMLIinIEC61131-XML.xsd"
handleUnknown="preserve">

<formula Name="flow rate of a control valve" ID="UUID34">
<variable refMathMLVariable="Q" refGloballID="UUID63" direction="Out"/>
<variable refMathMLVariable="P1" refGloballID="UUID64" direction="In"/>
<variable refMathMLVariable="P2" refGloballD="UUID65" direction="In"/>
<variable refMathMLVariable="C" refGloballD="UUID66" direction="In"/>
<variable refMathMLVariable="b" refGloballID="UUID67" direction="In"/>
<variable refMathMLVariable="n" refGloballID="UUID68" direction="In"/>

</formula>

</data>

Figure E.4: “data” element for describing the mapping of MathML variables for calculating the flow rate
of a control valve to IEC 61131-XML variables

Both “data” elements are a part of the same “addData” element. The structure of the “addData”
element for the example is shown in Figure E.5.

<AutomationML/> Part 4: AutomationML Logic

<addData>

<data name="http://www.automationml.org/IEC62714-4Ed1/MathMLinIEC61131-XML.xsd"
handleUnknown="preserve">

<formula Name="flow rate of a control valve" ID="UUID34">

</formula>
</data>
<data name="http://www.w3.0rg/1998/Math/" handleUnknown="preserve">

<math xmIns="http://www.w3.0rg/1998/Math/MathML/" display="block'>

</math>

</data>

</addData>

Figure E.5. “addData” element including the MathML expression for the flow rate of a control valve and
the mapping of MathML variables to IEC 61131-XML variables

E.4 Integration positions in IEC 61131-XML for “addData” elements including
MathML expressions

MathML expressions can be only assigned to certain SFC and FBD elements in IEC 61131-XML, see
9.2. The position for the integration depends on the scope of the formula, which is expressed with
MathML, e. g. if a formula describes the behaviour of a component while a certain step is active, the
“addData” element of this step would be the appropriate position for the formula.

For the given example the flow rate could be relevant for a POU, which describes the behaviour of the
one-way flow control valve. The integration of the “addData” element for such a POU is shown in
Figure E.6.

<types>
<datatypes/>
<pous>
<pou pouType="functionBlock" name="one-way flow control valve" globalld="UUID60">

<interface/>
<actions/>
<transitions/>
<body/>
<addData>

<data name="http://www.automationml.org/IEC62714-4Ed1/MathMLIinIEC61131-XML.xsd"
handleUnknown="preserve">

<formula Name="flow rate of a control valve" ID="UUID34">

</formula>

</data>

<data name="http://www.w3.0rg/1998/Math/" handleUnknown="preserve">
<math xmlns="http://www.w3.0rg/1998/Math/MathML/">

</math>
</data>
</addData>
</pou>
</pous>

</types>

Figure E.6: Integration of the “addData” element including a MathML expression about the flow rate of
a control valve in a POU

<AutomationML/> Part 4: AutomationML Logic

Annex F Referencing interlocking information

F.1 General

This clause describes the two mechanisms for referencing interlocking information, which isstored in
IEC 61131-XML documents. This comprises the modelling and storage of interlocking information
without and with an explicitly modelled interlocking condition. Both levels are based on each other and
are explained consecutively using one and the same example.

Normative provisions are given in clause 10.

Note: Inthe CAEX file, GUIDs as an implementation of UUIDs are applied for object identification (see
IEC 62714-1), e.g. AC76BA86-7AD7-1033-7B44-A70000000000. GUIDs are presented in a short form
such as“GUID1”, “GUID100” etc. This serves the readability and acts as a real GUID.

F.2 Example description

The example depicts a manufacturing system containing different manufacturing equipment and safety

devices (see Figure F.1).
' Emergency stop switch

Conveyor
Robot 1 Robot 2

[—

Light barrier

Figure F.1: Example manufacturing system

The robot cell contains the objects respectively manufacturing resources “Robot 17, “Robot 2” and
“Conveyor”. It also contains the safety devices “Light barrier” and “Emergency stop switch”.Figure F.2
shows the exemplary aggregation of the manufacturing resources into an interlocking source group
and an interlocking target group. It is allowed to have more than one interlocking source group and
interlocking target group. In this example, there is one of each.

<AutomafionML/> Part 4: AutomationML Logic

Interlocking
source group

Interlocking
target group

| Robot1 | | Robot2 |

Conveyor

| Emergency stop switch |

\ Light barrier |

Figure F.2: Example interlocking source group and interlocking target group

F.3 Interlocking information

The third, complementary concept of logic information covered by AML is the interlocking information
expressed on two different levels of detail belonging to an industrial production system or to single
components. It reflects the two main concepts:

The causes of an interlocking condition and,
The resulting effects of an interlocking condition.

Hereby, the cause represents the situation resulting in the need to interlock something. This case is
covered by the definition and description of interlocking source groups. The effect to other groups of
objects is expressed by the definition, description of and assignmenttointerlocking target groups.

These relations between interlocking source group and interlocking target group express the relation
between cause and effect within interlocking information. In AML different levels of detail are used to
exchange these interlocking conditions. Therefore, AML provides two mechanisms to reference
interlocking information.

To describe interlocking source groups and interlocking target groups the basic AML group concept is
used. This concept exploits fundamental CAEX capabilities and enables an integration of the
necessary information within the AML top-level documents (see F.4).

To express the relation between interlocking source group and interlocking target group and to
express the internal logical relation within the groups, Function Block Diagrams (FBD) of the IEC
61131-3 are used (see F.5). They are stored in IEC 61131-XML documents similar to sequencing
andbehaviour information.

F.4 Referencing interlocking information without interlocking condition

On the first level of detail, functional dependencies among groups of objects are modelled: without
explicitly modelling an interlocking condition which would further specify that functional dependency.
Objects that indicate unsafe states within themanufacturing system are aggregated to theinterlocking
source group. These are the “Light barrier” and “Emergency stop switch”. Objects that are influenced
in their behaviour by the state of the interlocking source group are aggregated to the interlocking
target group. These are the “Robot 1”7, “Robot 2”, and “Conveyor”. They need to execute, then, specific
activities to re-establish safe system behaviour, e.g. stop of any movement of the objects of the

interlocking target group.

For each group, an additional CAEX InternalElement,with either an AML RoleClass
“InterlockingSourceGroup” or “InterlockingTargetGroup”, is modelled to separate structure information
from instance information. Each group contains a CAEX Externalinterface of the AML InterfaceClass
“InterlockingConnector” to relate the interlocking source group and interlocking target group to each
other. CAEXObjects which belong to one of those groups are modelled as mirror objects (see
Figure F.3 and Figure F.4).

<AutomationML/> Part 4: AutomationML Logic

CAEX file

L InternalElement »interlocking.aml
»Robot cell*
R InternalElement
,Robot 1“
R InternalElement
,Robot 2“
InternalElement
'_’ 113
~conveyor
R InternalElement
LLight barrier*
N InternalElement
~-Emergency Stop Switch®
InternalElement
|| ,Interlocking Source Group*
RefBaseRoleClassPath:
InterlockingSourceGroup

Interface ,Interface1”

&L
> RefBaseClassPath: -
InterlockingConnector

InternalElement (Mirror)
,Light barrier®

InternalElement (Mirror)
,Emergency Stop Switch*

InternalElement

|| .Interlocking Target Group*

RefBaseRoleClassPath:
InterlockingTargetGroup

Interface ,, Interface2*
l—> RefBaseClassPath: <€
InterlockingConnector
R InternalElement (Mirror)
,Robot1*
R InternalElement (Mirror)
,Robot2“
. [InternalElement (Mirror)
<> |nternalLink _Conveyor* 7

Figure F.3: Referencing interlocking information without interlocking condition

<AutomationML/> Part 4: AutomationML Logic

<InternalElement Name="Robot cell" ID="GUID200">
<InternalElement Name="Robot 1" ID="GUID201"></InternalElement>
<InternalElement Name="Robot 2" ID="GUID202"/>
<InternalElement Name="Conveyor" ID="GUID203"/>
<InternalElement Name="Light barrier" ID="GUID204"/>
<InternalElement Name="Emergency Stop Switch" ID="GUID205"/>
<InternalElement Name="Interlocking Source Group" ID="GUID206">
<Externallnterface Name="Interfacel"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/InterlockingConnec
tor"/>
<InternalElement Name="Light barrier" ID="GUID207"
RefBaseSystemUnitPath="GUID204"/>
<InternalElement Name="Emergency Stop Switch" ID="GUID208"
RefBaseSystemUnitPath="GUID205"/>
<RoleRequirements
RefBaseRoleClassPath="AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Group/Interlockin
gSourceGroup"/>
</InternalElement>
<InternalElement Name="Interlocking Target Group" ID="GUID207">
<Externalinterface Name="Interface2"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/InterlockingConnec
tor"/>
<InternalElement Name="Robot 1" ID="GUID208"
RefBaseSystemUnitPath="GUID201"></InternalElement>
<InternalElement Name="Robot 2" ID="GUID209" RefBaseSystemUnitPath="GUID202"/>
<InternalElement Name="Conveyor" ID="GUID210" RefBaseSystemUnitPath="GUID203"/>
<RoleRequirements
RefBaseRoleClassPath="AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Group/Interlockin
gTargetGroup"/>
</InternalElement>
<InternalLink Name="Link_InterlockingGroups" RefPartnerSideA="GUID206:Interfacel"
RefPartnerSideB="GUID207:Interface2"/>
</InternalElement>

Figure F.4: XML text of the CAEX file for referencing interlocking information without interlocking
condition

F.5 Referencing interlocking information with interlocking condition

On the second level of detail, a function describing the interlocking condition (modelled as FBD
network) is associated to the interlocking source group. This level extends the first level of detall
described in F.3.

Within the interlocking source group, two additional CAEX Externallnterfaces are modelled: One with
an AML InterfaceClass “InterlockingLogiclnterface” following the rules of 6.2(if the POU is not
referenced in the hierarchy before),and one CAEX Externalinterface with an AML InterfaceClass
“InterlockingVariablelnterface”. This references the unique Boolean variable which describes the
output respectively evaluation result of the interlocking information (see variable “z” in Figure F.5). And
this result represents, whether the manufacturing system is in a safe state or not,indicated by the
value of the attribute “SafeConditionEquals”.

The interlocking information also needs input variables of the objects of the interlocking source group
respectively the safety devices (see variable “a” and “b” in Figure F.5 and Figure F.6). For this, “Light
barrier” and “Emergency stop switch” also get two CAEX Externalinterfaces of the AML

InterfacesClasses “InterlockingLogiclnterface” and “Variablelnterface”.

To link the logical interface “Variablelnterface” to the physical interface of the safety device a CAEX
InternalLink is used. Figure F.7 and Figure F.8 depict this exemplarily for the light barrier.

<AutomationML/> Part 4: AutomationML Logic

CAEX file
, interlocking.aml*

InternalElement
.Robot cell*

InternalElement
»Robot 1*
InternalElement
,Robot 2¢
InternalElement
.Conveyor*

InternalElement
LLight barrier

Interface ,Logic*
RefBaseClassPath:
InterlockingLogiclnterface

Attribute ,refURI*

IEC 61131-XML file
Lsinter1.xml*

Value: file:///inter1.xmi#UUID1

Interface ,Input_a“
RefBaseClassPath:
VariableInterface

Attribute ,refURI*
Value: fle://finter1 xmi#uuipi |

InternalElement
+Emergency Stop Switch*
Interface ,Logic*

RefBaseClassPath:
InterlockingLogicinterface

Attribute ,refURI*

Value: file:///inter1.xmi#UUID1

Interface ,Input_b*
RefBaseClassPath:
Variablelnterface

Attribute ,refURI*
Valus Jifinterl.xmi#UUID12

=

= @
3 8
£ 2
E 8
8

s E

POU1 c)

@} (globallD=UUID1) :
(B FB1

= FB2

5]

Q

=

El

i

(=]

E]

s

©

InternalElement
|| .Interlocking Source Group*
RefBaseRoleClassPath:
InterlockingSourceGroup
L Interface ,Logic*
RefBaseClassPath:
InterlockingLogicinterface
Attribute ,refURI*
Value: file://finterl.xmi#UUID1
Interface ,Condition”
> RefBaseClassPath:
InterlockingVariablelnterface
Attribute ,refURI*
Value: file:///interl.xml#UUID13
Attribute
~SafeConditionEquals”
Value: true
Interface ,, Interface1*
> RefBaseClassPath:
InterlockingConnector
InternalElement (Mirror)
,Light barrier*
InternalElement (Mirror)
.Emergency Stop Switch*
InternalElement
L, .Interlocking Target Group*
RefBaseRoleClassPath:
InterlockingTargetGroup
Interface ,, Interface2*
> RefBaseClassPath:

InterlockingConnector

InternalElement (Mirror)
»Robot1*
InternalElement (Mirror)
»Robot2*

) InternalElement (Mirror)
<—> |nternalLink ,Conveyor*

I 4

Figure F.5 — Referencing interlocking information with interlocking condition

<AutomationML/> Part 4: AutomationML Logic

<InternalElement Name="Robot cell" ID="GUID200">
<InternalElement Name="Robot 1" ID="GUID201"></InternalElement>
<InternalElement Name="Robot 2" ID="GUID202"/>
<InternalElement Name="Conveyor" ID="GUID203"/>
<InternalElement Name="Light barrier" ID="GUID204">
<Externallnterface
Name="Logic"RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaseInterface/Exte
rnalDataConnector/PLCopenXMLInterface/Logicinterface/InterlockingLogiclnterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file:///interl.xmi#UUID1</Value>
</Attribute>
</Externallnterface>
<Externallnterface Name="Input_a"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLInterface/VariableInterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file:///interl.xmi#UUID11</Value>
</Attribute>
</Externallnterface>
</InternalElement>
<InternalElement Name="Emergency Stop Switch" ID="GUID205">
<Externallnterface Name="Logic"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLInterface/Logiclnterface/InterlockingLogiclnterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file:///interl.xmi#UUID1</Value>
</Attribute>
</Externallnterface>
<Externallnterface Name="Input_b"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLInterface/VariableInterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file:///interl.xml#UUID12</Value>
</Attribute>
</Externallnterface>
</InternalElement>
<InternalElement Name="Interlocking Source Group" ID="GUID206">
<Externallnterface Name="Logic"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLInterface/Logicinterface/InterlockingLogiclnterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file:///interl.xmi#UUID1</Value>
</Attribute>
</Externallnterface>
<Externallnterface Name="Condition"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLlInterface/Variablelnterface/InterlockingVariablelnterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file:///interl.xmi#UUID13</Value>
</Attribute>
<Attribute Name="SafeConditionEquals" AttributeDataType="xs:boolean">
<DefaultValue>true</DefaultValue>
<Value>true</Value>
</Attribute>
</Externallnterface>
<Externallnterface Name="Interfacel"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/InterlockingConnec

tor"/>

<AutomationML/> Part 4: AutomationML Logic

<InternalElement Name="Light barrier" ID="GUID207"
RefBaseSystemUnitPath="GUID204"/>
<InternalElement Name="Emergency Stop Switch" ID="GUID208"
RefBaseSystemUnitPath="GUID205"/>
<RoleRequirements
RefBaseRoleClassPath="AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Group/Interlockin
gSourceGroup"/>
</InternalElement>
<InternalElement Name="Interlocking Target Group" ID="GUID207">
<Externallnterface Name="Interface2"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/InterlockingConnec
tor"/>
<InternalElement Name="Robot 1" ID="GUID208"
RefBaseSystemUnitPath="GUID201"></InternalElement>
<InternalElement Name="Robot 2" ID="GUID209" RefBaseSystemUnitPath="GUID202"/>
<InternalElement Name="Conveyor" ID="GUID210" RefBaseSystemUnitPath="GUID203"/>
<RoleRequirements
RefBaseRoleClassPath="AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Group/Interlockin
gTargetGroup"/>
</InternalElement>
<InternalLink Name="Link_InterlockingGroups" RefPartnerSideA="GUID206:Interfacel"
RefPartnerSideB="GUID207:Interface2"/>
</InternalElement>

Figure F.6 — XML text of the CAEX file for referencing interlocking information with interlocking
condition

CAEX file
,» interlocking.aml*

L InternalElement

,Light barrier®

Interface ,PhysOutput” |

> RefBaseClassPath: =
Signalinterface

Interface ,Logic”

—> RefBaseClassPath:
InterlockingLogiclnterface

Attribute ,refURI*
Value: file://linterl.xmi#UUID1

Interface ,Input_a“

—> RefBaseClassPath: €
Variablelnterface

| Attribute ,refURI*
<—> |nternallLink “| Value: file://finterl.xm#UUID11 7

Figure F.7 — Linking logical interface with physical interface (extension to Figure F.5)

<AutomationML/> Part 4: AutomationML Logic

<InternalElement Name="Light barrier" ID="GUID204">
<Externallnterface Name="PhysOutput"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/Communication/Sig
nallnterface"/>
<Externallnterface Name="Logic"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLInterface/LogicInterface/InterlockingLogiclnterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file:///interl.xml#UUID1</Value>
</Attribute>
</Externallnterface>
<Externallnterface Name="Input_a"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLInterface/VariableInterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI">
<Value>file:///interl.xmi#UUID11</Value>
</Attribute>
</Externalinterface>
<InternalLink Name="Link1-LinkLogicPhysicallnterface" RefPartnerSideA="GUID204:PhysOutput"
RefPartnerSideB="GUID204:Input_a"/>
</InternalElement>

Figure F.8 — XML text of the CAEX file for linking logical interface with physical interface (extension to
Figure F.6)

In case the interlocking information is modelled as a POU network - which can either be stored in one
IEC 61131-XML document or distributed throughout several IEC 61131-XML documents — the
provisions of 6.2 apply.

<AutomationML/> Part 4: AutomationML Logic

Annex G Example for the mapping of logic models to IML

G.1 Mapping Examples of Gantt charts

The following examples show the usage of the mapping rules to transform Gantt charts to IML.

G.11 Mapping of activities without predecessor and successor relation

The following Gantt chart example has no predecessor and successor relations among the bars. It will
be translated to a set of activities all being parallel within the resulting SFC. The temporal conditions
will represent its sequence based on global timing.

Type Graphical representation
Handover to Conveyor
Gantt Move to Lift Position []
Chart Lift skid .
L
01 23 45 678 9
InitialStep
CGEEES (U
; |

G rap h I- ; H DO | DA_Handover to Conveyor it posi H D4 DA_Move to Lift Position o D7 DA_Lift skid
C al I M L S-Handoverto Conveyor HSD4 | TA_Handover to Conveyor S-tove o Lt Postton HSD7 TA_Move to Lift Position Sk SD9 TA_Lift skid
re p resen- + TA_Handover to Conveyor + TA_Move to Lift Position + TA_Lift skid
tation as
S FC SyS_Terminal_1 SyS_Terminal_2 SyS_Terminal_3

- true

TerminalStep

Table G.1: Mapping of the Gantt chart example “activities without predecessor and successor

relations”

G.1.2 Mapping of an activity sequence

The following example depicts a Gantt chart with a predecessor/successor sequence among the bars.
It will be translated to a sequence of states and activities within the resulting IML system. The
temporal conditions represent its sequence based on local timing.

Type Graphical representation

Handover to Conveyor
Gantt Move to Lift Position
Chart Lift skid

L
01 23 45 678 9

<AutomationML/> Part 4: AutomationML Logic

InitialStep

true

+

H DO DA_Handover to Conveyor

S_Handover to Conveyor
H SD 4] TA_Handover to Conveyor

+

G rap hi- TA_Handover to Conveyor
Cal IM L H D4 DA_Move to Lift Position
represen- S_Move to Lift Position
tatio n as HSD7 TA_Move to Lift Position
SFC + TA_Move to Lift Position

H D7 DA_Lift skid

S_Lift skid
Hsbo TA_Lift skid

true

1L

TerminalStep

Table G.2: Mapping of the Gantt chart example “activity sequence”
G.1.3 Mapping of an activity sequence with divergences

In this example a simultaneous divergence is introduced to describe multiple successors of one bar in
IML.

Type Graphical representation

Initialise Robot 1

Gantt Execute Manufacturing Robot 1 |
Chart Initialise Robot 2 —

01 23 4 5 67 8 9 10 11 12 13 14 15 16 17 18

InitialStep

+ true

S_InitialiseRobot1

«I DO I DA_InitialiseRobot1 |

~| SD 6 I TA_InitialiseRobot1 |

+ TA_InitialiseRobot1

Graphi- | |
cal IML | [o3 | DA_ExecuteManufacturing —

S_ExecuteManufacturing Robot1l . ‘I Do I DA_InitialiseRobot2 |
represen- Robot1 | [sp 12| TA_ExecuteManufacturing | B IS Relaie ‘ISD“I oA T aein? |

. nitialiseRobof
tation as Robotl =
SFC + TA_ExecuteManufacturingRobotl + TA_InitialiseRobot2
SyS_Terminal_1 SyS_Terminal_2

+ true

TerminalStep

Table G.3: Mapping of the Gantt chart example “activity sequence with divergence”

<AutomationML/> Part 4: AutomationML Logic

G.1.4 Mapping of an activity sequence with convergences

The Gantt chart example includes a convergence with the predecessor sequence among the bars of
the Gantt chart. This results in a simultaneous convergence in the IML.

Type Graphical representation
Lift skid
Gantt Initialise Robot 1
Chart Execute Manufacturing Robot 1 I
01 23 4 5 6 78 9 1011 12 13 14 15 16 17 18
InitialStep

; true

DO DA_InitialiseRobot1 ‘ _ D7 DA_Lift skid
S_InitialiseRobot1 S_Lift skid
SD 6 TA_InitialiseRobot1 SD9 TA_Lift skid
Graphi- + TA_InitialiseRobotl + TA_Lift skid
cal IML
SyS_ExecuteManufacturing SyS_ExecuteManufacturing
represen- Robot1_1 Robotl_2
tation as
SFC
* true
Do DA_ExecuteManufacturing
S_ExecuteManufacturing Robotl
Robot1 TA_ExecuteManufacturing
SD9
Robotl

1L

TA_ExecuteManufacturingRobot1

TerminalStep

Table G.4: Mapping of the Gantt chart example “activity sequence with convergences”

G.2 Mapping examples of activity-on-node networks

The following examples show the usage of the mapping rules to transform activity-on-node networks
to IML.

G.21 Mapping of an activity sequence

The following example depicts an activity-on-node network with a predecessor/successor sequence
among the nodes. It will be translated to a sequence of states and activities within the resulting IML
system. The temporal conditions represent its sequence based on local timing.

Type Graphical representation

activity- 0 ‘ 0 ‘ 0 0 4 ‘ 4 4 ‘ 3 ‘ 7 7 ‘ 2 ‘ 9 9 ‘ 0 ‘ 9
on-node start —» handover to conveyor [—» move to lift position lift skid > end
network 0 ‘ 0 ‘ 0 0 0 ‘ 4 4 ‘ 0 ‘ 7 7 ‘ 0 ‘ 9 9 ‘ 0 ‘ 9

<AutomationML/> Part 4: AutomationML Logic

InitialStep

true

+

H DO DA_Handover to Conveyor
S_Handover to Conveyor

H SD4] TA_ Handover to Conveyor

+

G r ap h | _ TA_Handover to Conveyor
Cal IML H D4 DA_Move to Lift Position
represen- S_Move to Lift Position
tatio n as HSD7 TA_Move to Lift Position
SFC + TA_Move to Lift Position

H D7 DA_Lift skid

S_Lift skid
Hsbo TA_Lift skid

true

Jr

TerminalStep

Table G.5: Mapping of the activity-on-node network example “activity sequence”
To achieve the transformation, the following elements are necessary:

One state (named “InitialStep”) representing the initial node of the activity-on-node network
followed by an initial state transition with condition “true”.

One state transition for each arrow of the activity-on-node network.

One state for each node of the activity-on-node network (“S_Handover to Conveyor”, “S_Move
to Lift Position”, “S_Lift skid”) and two actions associated to it, including information about start
and end points of the node.

One state (named “TerminalStep”) representing the terminal node of the activity-on-node
network.

G.2.2 Mapping of an activity sequence with divergences and convergences

The following example depicts an activity-on-node network with activities with more than one
successor (“initialise robot 1”) and more than one predecessor (“end”).

Type Graphical representation
6 ‘ 2 ‘ 8
lift skid
- 0 0 0 0 6 6 15 0 15
activity- ‘ ‘ ‘ ‘ J’ 13 ‘ 7 ‘ 15 L ‘ ‘
on-node start > initialise robot 1 end
network 0 ‘ 0 ‘ 0 0 ‘ 0 ‘ 6 9 ‘ Y ‘ - 15 ‘ 0 ‘ 15
execute manufacturing
robot 1
6 ‘ 0 ‘ 15

<AutomationML/> Part 4: AutomationML Logic

InitialStep

+ true

H DO DA_InitialiseRobot1
S_InitialiseRobotl
H SD 6 TA_InitialiseRobot1
+ TA_InitialiseRobot1
Graphi- | | _
Il po DA LiftSkid | | DA_ExecuteManufacturing
Cal I M L S LiftSkid — S_ExecuteManufacturing DE Robotl
represen- IH sb 2 TA_LiftSkid Robotl | [sp o TAExecuteManufacturing
RobotlInitialiseRobotl

tation as e ,
SFC TA_LiftSkid TA_ExecuteManufacturingRobot1

SyS_Terminal_1 SyS_Terminal_2

+ true

TerminalStep

Table G.6: Mapping of the activity-on-node network example “activity sequence with divergences and
convergences”

To achieve the transformation, the following elements are necessary:

One state (named “InitialStep”) representing the initial node of the activity-on-node network
followed by an initial state transition with condition “true”.

One state transition for each arrow of the activity-on-node network.
One simultaneous divergence for all synchronisation states.

One state for each node of the activity-on-node network (“S_lInitialiseRobot1”, “S_LiftSkid”,
“S_ExecuteManufacturingRobot1”) and two actions associated to it, including information
about start and end points of the node.

One synchronization state for each predecessor state (named “SyS_Terminal_1" and
“SyS_Terminal_27).

One simultaneous convergence for all synchronisation states.

One state (named “TerminalStep”) representing the terminal node of the activity-on-node
network.

<AutomationML/> Part 4: AutomationML Logic

G.2.3 Mapping of a complex activity sequence with divergences and convergences

Figure G.9 shows an example of an activity-on-node network. Predecessor and successor relations
are depicted for example in “execute manufacturing robot 1”7, which is a successor activity of “lift skid”
as well as of “initialise robot 1” and a predecessor of the activities “postprocess robot 1” and “execute
manufacturing robot 2”.

0 ‘ 4 ‘ 4 4 ‘ 2 ‘ 7 7 ‘ 2 ‘ 9 23 ‘ 4 ‘ 27 27 ‘ 7 ‘ 34
handover to conveyor 1 —» move to lift position lift skid ™ lower skid m» move to conveyor2 h
0 ‘ 0 ‘ 4 4 ‘ 0 ‘ 7 7 ‘ 0 ‘ 9 23 ‘ 0 ‘ 27 27 ‘ 0 ‘ 34
0 ‘) ‘ 0 ‘
o ngm e = Lo | &
execute manufacturing i
0 ‘ 0 ‘ 0 robot 1 » postprocess robot 1 i< end
0 ‘ 6 ‘ 6 J—> 9 ‘ 0 ‘ 18 30 ‘ 12 ‘ 34 34 ‘ 0 ‘ 34
initialise robot 1 L
earliest . |earliest
2rest duration| “2e 3 ‘ 3 ‘ 9 6 ‘ 4 ‘ 10 18 ‘ 5 ‘ 23 ||| = ‘ 3 ‘ 26
activity initialise robot 2 executer?ba;uzfacturmg —» postprocess robot 2
latest latest
e buffer end 14 ‘ 8 ‘ 18 18 ‘ 0 ‘ 23 31 ‘ 8 ‘ 34

Figure G.9: Example of an activity-on-node network

The graphical representation of the resulting IML system of the transformation is depicted Figure G.10.
The predecessor/successor relation between “execute manufacturing robot 1” and “lift skid” results in
a predecessor/successor relation between “S_ExecuteManufacturingRobot1” and “S_Lift Skid” with an
intermediate synchronization step to ensure the synchronization with the other predecessor of
“execute manufacturing robot 1”. This additional step has no effect on the timing behaviour of the IML,
besides that of storing the successor information of “execute manufacturing robot 1”. The additional
steps “SyS_Terminal_1”, “SyS_Terminal_2”, and “SyS_Terminal_3” result from the definition of the
terminal step.

AddData elements are not displayed in Figure G.10.

<AutomationML/> Part 4: AutomationML Logic

InitialStep

GEEES true

I DO | DA_Handover to conveyor 1 I DO DA_lInitialiseRobot1
S_Handover to conveyor 1 S_| otl
— SD 4 | TA_Handover to conveyor 1 — SD6 TA_InitialiseRobot1
‘@GEEmm— TA_Handover to conveyor 1 L] TA_InitialiseRobot1

I DO DA_Move to Lift Position
S_Move to Lift Position P
|{sp3| TA_Move toLift Position S 2 ooy
I SD4 TA_InitialiseRobot2
@B T/ Move to Lift Position
GEEND TA_|nitialiseRobot2
— DO DA_Lift skid
S._Lift skid
— SD2 TA_Lift skid
O TA_|ift skid
SyS_ExecuteManufacturing SyS_ExecuteManufacturing
Robotl_1 Robotl_2
GEE— ue
| [bo DA_ExecuteManutacturing
S_ExecuteManufacturing Robot1
Robotl TA_ExecuteManutacturng |
29 Robotl
@D T/ ExecuteManufacturingRobotl
— DO DA_PostProcessRobotl .
S_PostProcessRobotl Sys_| T Sys_| S ;fac""" kY
— SD 4 TA_PostProcessRobot1 — -
E—— TA_PostProcessRobotl
GEE— tue
| [po DA_ExecuteManutacturing
S_ExecuteManufacturing Robot2
Robot2 TA_ExecuteManufacturing |
= Robot2

SyS_Terminal_1

GEENNS T/ _ExecuteManufacturingRobot2

— DO DA_PostprocessRobot2
S | ot2
—{SD3 TA_PostprocessRobot2
E—— TA_PostprocessRobot2

SyS_Terminal_2

S_LowerSkid

Do

DA_LowerSkid

SD 4

TA_LowerSkid

G T/ | owerSkid

S_Move to end of conveyor 2

Do

DA_Move to conveyor 2

Sb7

TA_Move to conveyor 2

+ TA_Move to conveyor 2

SyS_Terminal_3

—

TerminalStep

Figure G.10. Timing behaviour of the SFC derived from an activity-on-node network

G.3 Mapping examples of timing diagrams

The following examples show the use of the mapping rules to transform timing diagrams and parts of
timing diagrams to SFCs.

<AutomationML/> Part 4: AutomationML Logic

G.3.1 Example transformation internal signal

The first example handles the transition from a state change to the subsequent state. To accomplish
an executable SFC the additional signal “Signal_Motor1_1” has to be introduced, which is normally not
displayed in the diagram, see Table G.7.

Type Graphical representation
Resource State T % |
Uses
Timing Fast fl_Time_Signal_i O Signal_Motor1_1
diagram Motor1 — —— — % — ac=ee-
Slow run Motor1_1 Motor1_2

" Motor1 0

Graphi- STtig‘pe—O —{SD 0] Signal_Time 0 _| MotorL 0 D0 | Motor1_Slow_run

cal IML -

represen- -+ [Signal_Time_0 = true] 1 [signal_Time 1 = true]

tation as - _ :

SFC Time. -[sp1 [Signal Time 1| vorors_1 [zgl gotorl_sIow_run_to_Fast_run
ignal_Motorl_1

— [Signal_Motorl_1 = true]

—|DO | Motorl_Fast_run
Motorl_2

Table G.7: Mapping of the timing diagram example ‘“transition from a state change to the subsequent
state”

To achieve the transformation, the following elements are necessary:

One activity representing the additional signal with the name “Signal_Motor1_1". This action
has got a delay of “1” for the duration of the state change from “Slow_run” to “Fast_run”.

One transition that is activated by the signal as successor for the state representing the
resource state change from “Slow_run” to “Fast_run”, i. e. when “Signal_Motor1_1" becomes
“true”.

One new SFC state with an associated action, indicating the new status of the resource. In
this case the resource has entered its resource state “Fast_run”.

<AutomationML/> Part 4: AutomationML Logic

G.3.2 Example External Signals

The next example handles two external signals, which are fired with a delay of three seconds.

Type Graphical representation
I | Uses Signal_Motor1_1 |
Resource State 0 1| |2 |3 /
Signal_Time_0 Signal_Time_1
imi Fast_run % -ime
Timing = -
| Motor1_0 | | Motor1_1 | | Motor1_2 | | Motor1_3 |
INIT
—I— true
_I SD O | Signal_Time_0 | —| DO ‘ Motorl_Slow_run
Time_Step_0 Motorl_0
Graphi— —— [Signal_Time_0 = true] —— [Signal_Time_0 = true]
cal IML . —} Sbs | Signal_Time_1 —I DO | Motorl_Slow_run_to_Fast_run |
represen- Time_Step_1 Motor1_1
. —I SD1 | Signal_Motorl_1 |
tation as
SFC —1— [Signal_Time_1 = true] —— [Signal_Motor1_1 = true]
—| DO | Motorl_Fast_run |
Motorl_2
—— [Signal_Time_1 = true]
IHDO Motorl_Fast_run_to_Slow_run
Motorl_3

Table G.8: Mapping of the timing diagram example “two external signals fired with delay of three
seconds”

For this example the following SFC elements are needed:

One activity for each external signal within the timeline representing the signal with the names
“Signal_Time_0”" and “Signal_Time_1". The first action has got a delay of “0” and the second
of “3” representing the delay between both signals.

A transition after each of the two states associated to the signals within the timeline. These
transitions are activated by the corresponding time signal.

One transition as predecessor for each state representing the state change within a resource
state flow that is triggered by the time signals. These transitions are activated by the
corresponding time signal.

One new SFC state for each signal within the resource state flow with the names “Motor1_1"
and “Motor1_3".

The associated actions that represent the new status of the resource, in this example the state
change from “Slow_run” to “Fast_run” for the first signal and the state change form “Fast_run”
to “Slow_run” for the second signal with the names “Motor1_Fast_run_to_Slow_run” and
“Motor1_Slow_run_to_Fast_run”.

<AutomationML/> Part 4: AutomationML Logic

G.3.3

Example Signal Between two Resource States Flows

The last example handles the transformation of a signal fired by one resource state and consumed by

another.
Type Graphical representation
1 2
Resource State | | |
Fast_run Motort._1 e
Motert | B
Timing | Sowrun. ——
di agram Signal_Motor1_1
Gripper1_0
i | Open =¥ = _
Gripper1 .
| Close | T
INIT
—I— true
Time Sien _I SDO ‘ Signal_Time_0 | Motorl._ —I DO ‘ Motorl_Slow_run | Gripper —IDO ‘ Gripperl_Open
. 0 0 10
Graphi-
cal IML —l— [Signal_Time_0 = true] —— [Signal_Time_0 = true] —— [Signal_Motorl_1 = true]
represen- Motor. HPO Motorl_Slow_run_to_Fast_run Gripper DO Gripperl_Open_to_Close
tation as - -
SFC 1 IHSD1 Signal_Motorl_1 11
—I— [Signal_Motorl_1 = true] AL L
Motorl ﬁ DO ‘ Motorl_Fast_run | .
o
40

Table G.9: Mapping of the timing diagram example “signal fired by one resource state and consumed

by another”

For this example the following SFC elements are needed:

One activity for the signal within the firing resource state flow for “Motor1” with the name
“Signal_Motor1_1".

A transition after the state associated to the signal within the resource state flow for “Motor1”.
This transition is activated by the signal “Signal_Motor1_1".

One ftransition as predecessor for the state representing the state change from “Open” to
“Close” within a resource state flow for “Gripper1”. The transition is activated by the signal
“Signal_Motor1_1".

One new SFC state within the resource state flow of “Gripper1” with the name “Gripper1_1".

The associated action that represents the new status of the resource, in this example the state
change from “Open” to “Close” with the name “Gripper1_Open_to_Close”.

<AutomationML/> Part 4: AutomationML Logic

G.4 Mapping examples of state charts

The following examples show the usage of the mapping rules to transform state charts to SFCs.
G.4.1 Mapping of a simple cyclic state chart

The first example represents the cyclic execution of a PLC program, see Table G.10.

Type Graphical representation
[Outputs set
Read | nput SetOutputs
State
chart
[Inputs read] [Program executed]
ExecutePr
ogram
InitialStep_noName
_‘ [TRUE]
G rap h | _ State_ReadInput
cal IML
represen- [Input read]
tation as
S FC State_ExecuteProgram
+ [Program
executed]
State_SetOutputs
+ [Outputs set]

Table G.10: Mapping of the state chart example “simple cyclic state chart”
To achieve the transformation, the following elements are necessary:

One state (named “InitialStep_noName”) representing the initial state of the state chart
followed by an initial state transition with condition “true”.

One state transition for each state transition of the state chart (“Inputs read”, “Program
executed” and “Outputs set”).

One state for each state of the state chart (“State_Readlnput’, “State ExecuteProgram”,
“State_SetOutputs”).

One convergence between the initial state transition, the state transition for “Outputs set” and
the state “State_Readlnput”, that represents the closing of the cycle.

<AutomationML/> Part 4: AutomationML Logic

G.4.2 Mapping of a state chart with states with different predecessors and
successors

The second example enriches the first example by additional elements including interrupt handling,
see Table G.11.

Type Graphical representation

; [Outputs set]

‘ ReadInput ‘ (setoutputs \
state [Inputs read] [Program executed]

chart [ExecutePr
ogram

[Interrupt handled] [Interrupt]

InitialStep_noName

[TRUE]
]

State_ReadInput

Graphi-
cal IML [Input read]

represen-
tation as
S FC State_ExecuteProgram

[Program
executed] [Interrupt]

State_SetOutputs State_InterruptHandling

+ [Outputs set] + [Interrupt handled]

Table G.11: Mapping of the state chart example “states with different predecessors and successors”

To achieve the transformation, the following elements are necessary in addition to G.4.1:

One state (named “State_ InterruptHandling”) representing the state chart state
“InterruptHandling”.

Two state transitions representing the state chart state transitions “Interrupt handled” and
“Interrupt”.

One convergence between the state transitions for “Input read”, “Interrupt handled” and the

state “State_ExecuteProgram”, which represents the predecessor and successor relations of
the state and the state transitions.

One divergence between the state “State ExecuteProgram” and the state transitions for
“Program executed” and “Interrupt’, which represents the predecessor and successor
relations of the state and the state transitions.

<AutomationML/> Part 4: AutomationML Logic

G.4.3 Mapping of a state chart with actions

The third example enriches the first example by an action associated to the state transition “Inputs
read” and an action within the state “ExecuteProgram”, see Table G.12.

Type Graphical representation
; [Outputs set]
{Readlnpu{j‘) \‘\/’SEIOLIIDLIIS\/\\
.
state |
c h art [Inputs read] Action SetLineCountzero [Program ‘execuled]

///'

ExecuteProgram

DoAction IncrementLineCount

InitialStep_noName

; [true]

State_ReadInput

+

[Input read]
Graphi-
cal IML StateForActivity i i iti
ro p resen. SetlinaCountrara —| N | Action_SetLineCountzero_ofStateTransition
tation as
SFC [true]

+

State_ExecuteProgram —| N |Action_lncrementLineCount_ofState_ExecuteProgram

[Program
executed]

+

State_SetOutputs

[Outputs set]

+

Table G.12: Mapping of the state chart example “state chart with actions”
To achieve the transformation, the following elements are necessary in addition to G.4.1:

One state (named “StateForActivity_SetLineCountzero”) with an associated action (named
“Action_SetLineCountzero_ofStateTransition”), representing the state chart action
“SetLineCountzero” at the state transition “Input read”.

One state (named “State_ExecuteProgram”) with an associated action (named
“Action_IncrementLineCount_ofState ExecuteProgram”), representing the action
“IncrementLineCount” within the state chart state “ExecuteProgram”.

<AutomationML/> Part 4: AutomationML Logic

G.4.4 Mapping of a state chart with a condition connector

The fourth example enriches the first example by a condition connector and an interrupt handling,
which is executed, when a certain condition is reached, see Table G.11.

Type Graphical representation

[Outputs set
ReadInput

[Program executed]

[Inputs read]

State
chart
[Nolnterrupt]
[Interrupt] [Interrupt handled]
InterruptHa
ndling
InitialStep_noName
; [true]
State_ReadInput
+ [Input read]
Condition_C
Graphi-
cal IML
represen- GEEES [Nointerrupt] + [Interrupt]
tation as
SFC

State_InterruptHandling

+ [InterruptHandled]

State_ExecuteProgram

+ [Program executed]

State_SetOutputs

+ [Outputs set]

Table G.13: Mapping of the state chart example “simple cyclic state chart”

<AutomationML/> Part 4: AutomationML Logic

To achieve the transformation, the following elements are necessary in addition to G.4.1:

One state (named “Condition_C”) followed by a divergence, representing the condition
connector and its successor relations.

One state transition (named “Nolnterrupt”) representing the state transition for the branch with
no interrupt after reading the inputs.

One state transition for “Interrupt” followed by a state (named “State_InterruptHandling”) and a
state transition for “InterruptHandled”, representing the state transition for the branch with
interrupts after reading the inputs, the state chart state “InterruptHandling” and the state
transition “Interrupt handled”.

One convergence after the state transitions for “Nolnterrupt” and “InterruptHandled”,
representing the convergence of the two interrupt branches.

G.4.5 Mapping of a state chart with simple hierarchy

In the fifth example the state “CyclicBehaviour” is refined hierarchically by composite states, the states
of the first example, see Table G.14.

Type Graphical representation
[Stop] A/[Start]
State / CyclicBehaviour \
Chal’t [Outputs set]
[Inputs read] [Program executed]
\ ExecutePr
\\ ogram /
SFC1 - Main SFC2 - Cyclic Behaviour
InitialStep_noName InitialStep_noName
_| - trye | —t {rue
Graphi-
State
— State_ReadInput
cal IML Programming - P
represen-
tation as —1— [Start] = [Input read]
SFC State_ o) State_
CyclicBehaviour T+ ExecuteProgram
K 1 [Program
[Stop] == executed]
contains addData
element with State_SetOutputs
reference to SFC2
| [j_[Outputs sef]

Table G.14: Mapping of the state chart example “simple hierarchy”

<AutomationML/> Part 4: AutomationML Logic

To achieve the transformation, the following elements are necessary in addition to G.4.1:

G.4.6

One initial state (named “InitialStep_noName”) followed by an initial state condition with
condition “true”, representing the initial state and its state condition of the higher level state

chart.

One state (named “State_Programming”), representing the state “Programming” of the higher

level state chart.

Two state transitions for “Start” and “Stop”, representing the deep transitions from the higher
level state chart to the sub state chart.

One state (named “State_CyclicBehaviour”), which contains an addData element with a
reference to the sub state chart, representing the state “CyclicBehaviour”.

Mapping of a state chart with a complex hierarchy and connectors

The sixth example enriches the fifth example by a sub state chart for the state “Programming”, which
refines the state hierarchically by composite states and includes a condition connector and a historical
connector, see Table G.15.

Type Graphical representation
/ Programming \
[Program change necessary]
[Editing finished][Program incorrect] [Program correct]
State ’\@ [Program compiled]
chart [stop]

CyclicBehaviour \

[Outputs set]
ReadInput

[Inputs read] [Program executed]

ExecutePr
ogram /

[Start]

<AutomationML/> Part 4: AutomationML Logic

SFC1 - Main SFC2 - Cyclic Behaviour

InitialStep_noName InitialStep_noName

_] — true et true
State_ CD

) State_Readlnput
Programming

contains addData
=t [Start]| element with == [INput read]
p reference to SFC3 Stat
tate_ ate_
CyclicBehaviour Lﬂ_[| ExecuteProgram

Program
ﬂ—[Stop] contains addData T Lxecguted]

element with
reference to SFC2 | State_SetOutputs

[Outputs set]
Graphi- SFC3 - Programming
cal IML
represen' InitialStep_noName] CP(r:(I)i?l;_eif\:ieo_u ;
tation as Y
SFC 1 I -1 true et [Stop]
History_
State_EditProgram Programming
et [Editing finished]
State_
CompileProgram
e=t= [Program compiled]
Condition_32_
Programming
[Program
j— incarrect] ~T— [Program correct]
State_
UploadProgram
—t— [Program change _]| [Star]
necessary]

Table G.15: Mapping of the state chart example “complex hierarchy and connectors”
To achieve the transformation, the following elements are necessary in addition to G.4.5:
One additional sub state chart for the state “Programming” with the following elements:

One initial state (named “InitialStep_noName”) followed by an initial state condition
with condition “true”, representing the initial state and its state condition.

One state for each state of the sub state chart (named “State EditProgram”,
“State_CompileProgram”, “State_UploadProgram”).

One state transition for each state transition of the sub state chart for “Editing
finished”, “Program compiled”, “Program incorrect”, “Program correct’, Program
change necessary”, “Start” and “Stop”.

One state (named “Condition_32_Programming”) followed by a divergence,
representing the condition connector and its successor relations.

One state (named “History_Programming”), representing the history connector.

<AutomationML/> Part 4: AutomationML Logic

= One divergence between the state “State_UploadProgram” and the state transitions
for “Program change necessary’ and “Start”’, representing the predecessor and
successor relations of the state and the state transitions.

= One state (named “Proxy_State_CyclicBehaviour’) representing the inter level
transition from the sub state chart “Programming” to the state “State_CyclicBehaviour”
of the higher level state chart.

= One state (named “State_Programming”), which contains an addData element with a
reference to the sub state chart, representing the state “Programming”.

<AutomationML/> Part 4: AutomationML Logic

Annex H XML representation of AML libraries

H.1 AutomationMLBaseRoleClassLib

<CAEXFile xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="CAEX_ClassModel_V2.15.xsd"
FileName="AutomationMLBaseRoleClassLib.am|" SchemaVersion="2.15">
<Additionallnformation AutomationMLVersion="2.0"/>
<Additionallnformation>
<WriterHeader>
<WriterName>AutomationML e.V.</WriterName>
<WriterID>AutomationML e.V.</WriterID>
<WriterVendor>AutomationML e.V.</WriterVendor>
<WriterVendorURL>www.automationml.org</WriterVendorURL>
<WriterVersion>1.0</WriterVersion>
<WriterRelease>1.0.0</WriterRelease>
<LastWritingDate Time>2013-03-01</LastWritingDateTime>
<WriterProjectTitle>Automation Markup Language Standard
Libraries</WriterProjectTitle>
<WriterProjectID>Automation Markup Language Standard Libraries</WriterProjectID>
</WriterHeader>
</Additionallnformation>
<ExternalReference Path="AutomationMLInterfaceClassLib.aml"
Alias="AutomationMLInterfaceClassLib"/>
<RoleClassLib Name="AutomationMLBaseRoleClassLib">
<Description>Automation Markup Language Base Role Class Library - Part 1 Content
extended with Part 3 and Part 4 Content</Description>
<Version>2.2.2</Version>
<RoleClass Name="AutomationMLBaseRole">
<RoleClass Name="Group" RefBaseClassPath="AutomationMLBaseRole">
<Attribute Name="AssociatedFacet" AttributeDataType="xs:string"/>
<RoleClass Name="InterlockingSourceGroup" RefBaseClassPath="Group"/>
<RoleClass Name="InterlockingTargetGroup" RefBaseClassPath="Group"/>
</RoleClass>
<RoleClass Name="Facet" RefBaseClassPath="AutomationMLBaseRole"/>
<RoleClass Name="Port" RefBaseClassPath="AutomationMLBaseRole">
<Attribute Name="Direction" AttributeDataType="xs:string"/>
<Attribute Name="Cardinality">
<Attribute Name="MinOccur" AttributeDataType="xs:unsignedInt"/>
<Attribute Name="MaxOccur" AttributeDataType="xs:unsignedInt"/>
</Attribute>
<Attribute Name="Category" AttributeDataType="xs:string"/>
<Externallnterface Name="ConnectionPoint" ID="9942bd9c-c19d-44e4-a197-
11b9edf264e7"
RefBaseClassPath="AutomationMLInterfaceClassLib@AutomationMLInterfaceClassLib/AutomationM
LBaselnterface/PortConnector"/>
</RoleClass>
<RoleClass Name="Resource" RefBaseClassPath="AutomationMLBaseRole"/>
<RoleClass Name="Product" RefBaseClassPath="AutomationMLBaseRole"/>
<RoleClass Name="Process" RefBaseClassPath="AutomationMLBaseRole"/>
<RoleClass Name="Structure" RefBaseClassPath="AutomationMLBaseRole">
<RoleClass Name="ProductStructure" RefBaseClassPath="Structure"/>
<RoleClass Name="ProcessStructure" RefBaseClassPath="Structure"/>
<RoleClass Name="ResourceStructure" RefBaseClassPath="Structure"/>
</RoleClass>
<RoleClass Name="PropertySet" RefBaseClassPath="AutomationMLBaseRole"/>
<RoleClass Name="Frame" RefBaseClassPath="AutomationMLBaseRole"/>
<RoleClass Name="LogicObject" RefBaseClassPath="AutomationMLBaseRole"/>

<AutomationML/> Part 4: AutomationML Logic

</RoleClass>
</RoleClassLib>
</CAEXFile>

H.2 AutomationMLInterfaceClassLib

<CAEXFile xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="CAEX_ClassModel_V2.15.xsd"
FileName="AutomationMLInterfaceClassLib.am|" SchemaVersion="2.15">
<Additionallnformation AutomationMLVersion="2.0"/>
<Additionallnformation>
<WriterHeader>
<WriterName>AutomationML e.V.</WriterName>
<WriterID>AutomationML e.V.</WriterID>
<WriterVendor>AutomationML e.V.</WriterVendor>
<WriterVendorURL>www.automationml.org</WriterVendorURL>
<WriterVersion>1.0</WriterVersion>
<WriterRelease>1.0.0</WriterRelease>
<LastWritingDateTime>2013-03-01</LastWritingDateTime>
<WriterProjectTitle>Automation Markup Language Standard
Libraries</WriterProjectTitle>
<WriterProjectID>Automation Markup Language Standard Libraries</WriterProjectID>
</WriterHeader>
</Additionallnformation>
<InterfaceClassLib Name="AutomationMLInterfaceClassLib">
<Description>Standard Automation Markup Language Interface Class Library - Part 1
Content extended with Part 3 and Part 4 Content</Description>
<Version>2.2.2</Version>
<InterfaceClass Name="AutomationMLBaselnterface">
<InterfaceClass Name="Order" RefBaseClassPath="AutomationMLBaselnterface">
<Attribute Name="Direction" AttributeDataType="xs:string"/>
</InterfaceClass>
<InterfaceClass Name="PortConnector"
RefBaseClassPath="AutomationMLBaselnterface"/>
<InterfaceClass Name="InterlockingConnector"
RefBaseClassPath="AutomationMLBaselnterface"/>
<InterfaceClass Name="PPRConnector"
RefBaseClassPath="AutomationMLBaselnterface"/>
<InterfaceClass Name="ExternalDataConnector"
RefBaseClassPath="AutomationMLBaselnterface">
<Attribute Name="refURI" AttributeDataType="xs:anyURI"/>
<InterfaceClass Name="COLLADAInterface"
RefBaseClassPath="ExternalDataConnector">
<Attribute Name="refType" AttributeDataType="xs:string"/>
<Attribute Name="target" AttributeDataType="xs:token"/>
</InterfaceClass>
<InterfaceClass Name="PLCopenXMLInterface"
RefBaseClassPath="ExternalDataConnector">
<InterfaceClass Name="Logiclnterface"
RefBaseClassPath="PLCopenXMLInterface">
<InterfaceClass Name="SequencingLogiclnterface"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLInterface/Logicinterface"/>
<InterfaceClass Name="BehaviourLogiclnterface"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLInterface/Logicinterface"/>
<InterfaceClass Name="SequencingBehaviourLogiclnterface"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn

<AutomationML/> Part 4: AutomationML Logic

ector/PLCopenXMLlInterface/Logiclnterface"/>
<InterfaceClass Name="InterlockingLogiclnterface"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLlInterface/Logiclnterface"/>
</InterfaceClass>
<InterfaceClass Name="LogicObijectinterface"
RefBaseClassPath="PLCopenXMLlInterface"/>
<InterfaceClass Name="VariableInterface"
RefBaseClassPath="PLCopenXMLInterface">
<InterfaceClass Name="InterlockingVariablelnterface"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConn
ector/PLCopenXMLlInterface/Variablelnterface">
<Attribute Name="SafeConditionEquals"
AttributeDataType="xs:boolean">
<DefaultValue>true</DefaultValue>
</Attribute>
</InterfaceClass>
</InterfaceClass>
</InterfaceClass>
</InterfaceClass>
<InterfaceClass Name="Communication"
RefBaseClassPath="AutomationMLBaselnterface">
<InterfaceClass Name="Signallnterface" RefBaseClassPath="Communication"/>
</InterfaceClass>
<InterfaceClass Name="Attachmentinterface"
RefBaseClassPath="AutomationMLBaselnterface"/>
</InterfaceClass>
</InterfaceClassLib>
</CAEXFile>

<AutomationML/> Part 4: AutomationML Logic

Annex | XML representation of schemata

.1 AML_addData

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:aml="http://www.AutomationML.org/AutomationML_PLCopen"
targetNamespace="http://www.AutomationML.org/AutomationML_PLCopen"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<xs:complexType name="addDataBaseObject">
<xs:attribute name="ID" type="xs:string" use="required"/>
</xs:complexType>
<xs:element name="AML">
<xs:annotation>
<xs:documentation>It comprises all of the additional, AML specific logic
information.</xs:documentation>
</xs:annotation>
<xs:.complexType>
<xs:sequence>
<xs:element name="Time" minOccurs="0">
<xs:complexType>
<xs:complexContent>
<xs:extension base="aml:addDataBaseObject">
<xs:sequence>
<xs:element name="Duration" minOccurs="0">
<xs:complexType>
<xs:complexContent>
<xs:extension base="aml:addDataBaseObject">
<xs:attribute name="Value"
type="xs:decimal" use="required"/>
<xs:attribute name="Unit" type="xs:string"
use="optional/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="EarliestStart" minOccurs="0">
<xs:complexType>
<xs:complexContent>
<xs:extension base="aml:addDataBaseObject">
<xs:attribute name="Value"
type="xs:decimal" use="required"/>
<xs:attribute name="Unit" type="xs:string"
use="optional"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="LatestStart" minOccurs="0">
<xs:complexType>
<xs:complexContent>
<xs:extension base="aml:addDataBaseObject">
<xs:attribute name="Value"
type="xs:decimal" use="required"/>
<xs:attribute name="Unit" type="xs:string"
use="optional"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<AutomationML/> Part 4: AutomationML Logic

</xs:element>
<xs:element name="EarliestEnd" minOccurs="0">
<xs:complexType>
<xs:complexContent>
<xs:extension base="aml:addDataBaseObject">
<xs:attribute name="Value"
type="xs:decimal" use="required"/>
<xs:attribute name="Unit" type="xs:string"
use="optional"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="LatestEnd" minOccurs="0">
<xs:complexType>
<xs:complexContent>
<xs:extension base="aml:addDataBaseObject">
<xs:attribute name="Value"
type="xs:decimal" use="required"/>
<xs:attribute name="Unit" type="xs:string"
use="optional/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="Delay" minOccurs="0">
<xs:complexType>
<xs:complexContent>
<xs:extension base="aml:addDataBaseObject">
<xs:attribute name="Value"
type="xs:decimal" use="required"/>
<xs:attribute name="Unit" type="xs:string"
use="optional/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="ChartType" minOccurs="0">
<xs:complexType>
<xs:complexContent>
<xs:extension base="aml:addDataBaseObject">
<xs:attribute name="ChartType" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="StateChart"/>
<xs:enumerationvalue="TimingDiagram"/>
<xs:enumeration value="GanttChart"/>
<xs:enumeration value="ActivityOnNodeNetwork"/>
<xs:enumeration value="SequentialFunctionChart"/>
<xs:enumeration value="FunctionBlockDiagram"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>

<AutomationML/> Part 4: AutomationML Logic

</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="ResourceStateChangeDefinition" minOccurs="0"
maxOccurs="unbounded">
<xs:complexType>
<xs:complexContent>
<xs:extension base="aml:addDataBaseObject">
<xs:attribute name="DefinitionName" type="xs:string"
use="required"/>
<xs:attribute name="Duration" type="xs:decimal" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="InterruptibleAction" minOccurs="0">
<xs:complexType>
<xs:complexContent>
<xs:extension base="aml:addDataBaseObject">
<xs:attribute name="Value" type="xs:boolean" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="StateChartSubCharts" minOccurs="0"
maxOccurs="unbounded">
<xs:complexType>
<xs:complexContent>
<xs:extension base="aml:addDataBaseObject">
<xs:attribute name="POURef" type="xs:string" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="StateChartStateType" minOccurs="0">
<xs:complexType>
<xs:complexContent>
<xs:extension base="aml:addDataBaseObject">
<xs:attribute name="StateChartStateType" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="HigherLevelState"/>
<xs:enumeration value="HistoryConnector"/>
<xs:enumeration value="ConditionConnector"/>
<xs:enumeration value="StateForActivity"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="StateChartActionType" minOccurs="0">
<xs:complexType>
<xs:complexContent>
<xs:extension base="aml:addDataBaseObject">
<xs:attribute name="StateChartActionType" use="required">

<AutomationML/> Part 4: AutomationML Logic

<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="DoAction"/>
<xs:enumeration value="ExitAction"/>
<xs:enumeration value="EntryAction"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="TimingDiagramResourceGroup" minOccurs="0">
<xs:complexType>
<xs:complexContent>
<xs:extension base="aml:addDataBaseObject">
<xs:attribute name="Name" type="xs:string" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="TimingDiagramPLCVariable" minOccurs="0">
<xs:complexType>
<xs:complexContent>
<xs:extension base="aml:addDataBaseObject">
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="DataType" type="xs:string" use="optional"/>
<xs:attribute name="Address" type="xs:string" use="optional"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="StateStatus" minOccurs="0" maxOccurs="1">
<xs:complexType>
<xs:complexContent>
<xs:extension base="aml:addDataBaseObject">
<xs:attribute name="Current" type="xs:boolean" use="required"/>
<xs:attribute name="Terminal" type="xs:boolean" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="ActionStatus" minOccurs="0" maxOccurs="1">
<xs:complexType>
<xs:complexContent>
<xs:extension base="aml:addDataBaseObject">
<xs:attribute name="Initial" type="xs:boolean" use="required"/>
<xs:attribute name="Current" type="xs:boolean" use="required"/>
<xs:attribute name="Terminal" type="xs:boolean" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="Unit" minOccurs="0" maxOccurs="1">
<xs:complexType>
<xs:complexContent>
<xs:extension base="aml:addDataBaseObject">
<xs:attribute name="Name" type="xs:string" use="required"/>

<AutomationML/> Part 4: AutomationML Logic

</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

1.2 MathMLinIEC61131-XML

<xs:schema xmins:xs="http://www.w3.0rg/2001/XMLSchema"
xmlins:formula="http://www.AutomationML.org/iec62714-4Ed1/AutomationML_PLCopen"
targetNamespace="http://www.AutomationML.org/iec62714-4Ed1/AutomationML_PLCopen"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<xs:element name="formula">
<xs:annotation>
<xs:documentation>Root element for the variable mappings for MathML usage within
IEC 61131-XML.</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="variable" minOccurs="0">
<xs:complexType>
<xs:attribute name="refMathMLVariable" type="xs:string" use="optional"/>
<xs:attribute name="refGloballD" type="xs:ID" use="required"/>
<xs:attribute name="direction" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="In"/>
<xs:enumeration value="Out"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="Name" type="xs:string" use="required"/>
<xs:attribute name="ID" type="xs:ID" use="required"/>
</xs:complexType>
</xs:element>
</xs:schema>

Part 4: AutomationML Logic

Bibliography

