

Application Recommendations: Automation Project

Configuration

©AutomationML consortium
Version 1.0.0, April 2016

Contact: www.automationml.org

<AutomationML /> Application Recommendations: Automation Project

Configuration

Table of contents

TaDIE Of CONTENTS ...t e ettt e e e e e s bbb e e e e e e s e e annbbeeeeeaeeseaannteeeeeaeans 3
Iy o) o 10 =PSRN 5
TS o) 8 7= o] =2 PP PPRRPTPP 6
1 [0 o [N L1 1 o] o DO PP 7
O = 7= 13 o PR PRSR 7
S Vol] o1 PP O PP PERPT PPN 7
G T = =T =T ot PRSPPI 8

2 General notes regarding exchange of Automation Project Configuration data 9
2.1 Data exchange WOIKIIOW...........uuuiriieiiii e e e e e e e e s s sa e e e e e e e e e aans 9
2.2 Possibilities of CONfIQUIAION..........cooiiiiiiiiii e 10
2.3 Recommended WOIKFIOW...........uiiiiiiiii et e e e e e e e e e e e e aans 10
2.3.1 Providing an initial PLC project as basis for electrical engineeringccccccccco...... 10

2.3.2 ECAD ENQINEEIING....eiiiititieiitite ettt ettt sb et e et e e e st e e e s anbr e e s anbreeeeeneee 10

A T T = IO = o o [1 L= =T ¢ 1o o 13

3 Automation Project Configuration data structures in AutomationMLccccevveeiiiiiiiiiinnnnn. 14
Tt R = - 1 o oo o =] o S 14
3.1.1 Export from ECAD to AUtomatioNMLcccovvviiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee 14

3.1.2 Import from AutomationML iNtO PLC........ccooiiiiiiiiiiiieiiiieeeiee e 15

3.2 The neutral model: Automation Project Configuration data................eeevvevvieieieiniiinininininin. 15
I A = 7= 11 o3l o [T 1 PP 16

3.2.2 Contents of data eXChangecccccvviviiiiii 17

3.2.3 Automation Project Configuration data exchange data model.............ccccccceeevinnnnee. 17

4 Guideline for the use of the ECAD model in practical applicationsccccoccceeiviieeeiniieeennn 23
5 Modelling of Automation Project Configuration data with AutomationMLcccccvvvvvnininnnns 24
5.1 ROIECIASSLIDIAIY ...ttt ettt et e e e 24
L0t 0t R W 1 1o ¢ F= 11 o] = {0 = o P 26

5.1.2 DeVICEUSEIFOIUETccciiiieiiieiiee ettt e e e e e e et e e e e e e s et e e e e e e e e ennnnneees 27

L0 I 1 [) = R 27

LT I B = [t PP PPPUPTPP 28

L0 I T 0 T T =1 | (T o PSR 29

516 TagTable oo 30

517 TAGUSEIFOIAET ...ttt 31

LTI T Lo T [PSPPSR 31

5.1.9 CommuNICatIONINTEITACEeeiiiiiiiiiiiiiii e 32

5.1.10 TOSYSTEM ittt ettt e e s e e e e e e e e e e e e e 32

5.1.11 COomMMUNICALIONPOIcoiiiiiiiiiiee ettt e e e e e e st e e e e e e e e nnneeee 32

5.2 INterfac@CIasSSLIDIaryocuuei i 33
L35 R I~ Vo PSPPSR 34

L7 1 1 - o o1 PSR 35

5.2.3 Naming and ESCAPINGcceiiiiiieiiiiiee ittt ettt e e 35

6 PractiCal @XAMPIESoooi ittt e e e e e e e e e e e e e e e e anree s 36
6.1 RUNNING EXAMPIE ..eiiiiiiie ittt et e et et e e e sa b et e e e sabe e e e e anbbe e e e snbreeeenneee 36
6.2 Additionally applied role CIASSEScooi i e e e 37

<AutomationML /> Application Recommendations: Automation Project
Confi

nfiguration

6.3 Additionally applied INterface CIaSSESuuuiiiiiiiiiiiieee e e e 37

6.4 SyStEMUNITCIASSLIDIAIY.......eiiiiiiiiee et 37
L O A V1= 111V o T o [PR 39
6.4.2 Digital iINPUEt MOAUIE.........c.eeiiieieee e e e e s e e e e e e e nnnreees 39
6.4.3 Digital OULPUL MOAUIEccoiiiiiiii e 40
6.4.4 Programmable fieldbus CONtrollerooveiiiiiiiiiiieee e 41
6.4.5 Modular fieldDUuSs 1/O SYSTEM......cciiiiiiiiiiie e 42
O G B ST Ko | TP PO PPPPPPPP PPN 43
L o A B 111 PSPPSR 43
L8 T YV - PSPPSR 43
e T N[A1V o 4 PSPPSR 44
6.4.10 Master slave communication NEIWOIKoooiuiiiiiiiiiiiiiee e 44
6.4.11 PC 44

6.5 INSTANCEHIEIAICHYviiiiii e e e e e e e e e e s st rreeeaaeeeaaan 45

<AutomationML /> Application Recommendations: Automation Project

Configuration

List of figures

Figure 1 — Automation Project Configuration between ECAD and PLC t0Ol...........ccccvvvveeeeeviinnnen, 9
Figure 2 — Data exchange WOrKFOWcooiiiiiiiiiiiii e 9
Figure 3 — Example for PLC configuration and graphical placementccccccceeeiiiiiiiieeee e 10
Figure 4 — Example for stations and bus data configurationcccceeriiiieiiiiiee e 11
Figure 5 — Example for symbolic address configuration.............cccccuveeeeeiiiiiiiiieeee e 11
Figure 6 — EXample fOr €O ChECKcoiiiiiieiic e e e e e s srrare e e e e e e e aaan 12
Figure 7 — Example for export from an ECAD 100lcoicuiiiiiiiiiieiiiiee et 12
Figure 8 — Example for import int0 @ PLC..........oiiiiiiiiiiiieie et e et e e e e e senrae e e e e e e e 13
Figure 9 — Example for result of import int0 @& PLCcooiiiiiiiie e 13
Figure 10 — Basic concept for ECAD-PLC data eXChangeccccuvveireeiiiiiciiiieiee e eeivineen e e e 14
Figure 11 — Basic concept for ECAD-export (EPLAN €Xample)ccceeeiiiiiiiiiieiee e ciiniieeee e e e 14
Figure 12 — Basic concept for PLC-import (S7 eXample)cooiiieiiiieiee e 15
Figure 13 — Coupling CAE and PLC ..o 15
Figure 14 — Objects and parameters of the Automation Project Configuration data exchange 18
Figure 15 — Procedure for use of ECAD in AutomationML............ccccceevvviiiiiiiieeeeeeeeeeeee 23
Figure 16 — AutomationProjectConfigurationRoleClassLib in AutomationML Editor view 24
Figure 17 — AutomationProjectConfigurationRoleClassLib as XML representation 26
Figure 18 — AutomationProjectConfigurationinterfaceClassLib in AutomationML Editor view....... 33
Figure 19 — AutomationProjectConfigurationinterfaceClassLib as XML representation 33
Figure 20 — EXample SYSIEMccoo v 36
Figure 21 — Example system schematic representationcccccoveeeeiniiee e 36
Figure 22 — CommunicationROIeCIasSLIb ... 37
Figure 23 — CommunicationinterfaceClassLib...........ccccccviviii 37
Figure 24 — SystemUnitClassLibrary of the examplecccoooiiii 38
Figure 25 — Network card Mmodel.............oooviriiiiiii 39
Figure 26 — Digital input module MOEl ... 39
Figure 27 — Digital output module Modeloooviiiiiiii 40
Figure 28 — Programmabile fieldbus coupler model...........cccccooviiiiii 41
Figure 29 — Modular controller MOTElooiiiiiiii e 42
Figure 30 — SENSOr MOAEL.......ccooiiiiii e 43
FIQUIe 31 — DIVE MOTEL........oiiiiiiiie ittt e b e e 43
Figure 32 —WIre MOAEl.........cooiiiiiee 43
Figure 33 — NetWOIrK MOTEL.........uiiiiiieiiei et 44
Figure 34 — Master slave communication Network modelcccooiiiiiniiiiiiiiie e 44
Figure 35 = PC MOEI ..o 44
Figure 36 — Upper layer hierarchy elementsS...........coouuiiiiiiio e 45
Figure 37 — Modelling elements of tUrNtable...........coooiiiiii e 45
Figure 38 — Modelling elements of control CabinNetcceveiiiiiiii e 46
Figure 39 — Modelling of communication wiring based on wire elements and internal links a7
Figure 40 — Modelling elements Of WIFNGccooiiiiiiii e 48
Figure 41 — Modelling of physical wiring based on wire objects and internal links......................... 48
Figure 42 — Modelling of device assignment t0 NEIWOIKSoouiiiiiiiiiiiiiie e 49
Figure 43 — WagoModularController instance with relevant parameters described by
o] 0T (=S 50

<AutomationML /> Application Recommendations: Automation Project

Configuration

List of tables

Table 1 — Overview of AUOMAtIONML PAItS........ccvviiiiie e e e e e rrrnee e e 7
Table 2 — Definition AULOMALIONPTOJECTvviiiiiiiiie ittt nreee e 26
Table 3 — Definition DeVICEUSEIFOIARTccoiiiiieiie et e et e e 27
Table 4 — DefiNition SUDNEL..... ... i b b aearaeaeaearsearsrsrasasssnssssensnrnrns 27
Table 5 — DEfiNItiON DEVICEuuuiiiee ittt e et ee e e e s s e e e e e e s s e e e e e e e s s st e e e e e e e e e s e s nnnrenneeeaens 28
Table 6 — Definition DEVICEITEM ... e e e e s st e e e e e e s nnraaneeeees 29
Table 7 — Definition TagTable...........ooo et 30
Table 8 — Definition TagUSEIFOIAETueiiii e e e e e e aae e e e 31
Table 9 — DEfiNItioN NOGEuuuiiiiiiiiiiiiii bbb e e e ra b e e e earabasarararsssrsrnsarssssssnsnrnrnrns 31
Table 10 — Definition CommuniCatioNINtEITACEcviviiiiiiiiieie e 32
Table 11 — Definition I0SYSIEMccii e e e e e e s s s e e e e e e e e nnreaneeeees 32
Table 12 — Definition CommuUNICAtIONPOIuuuuiiiiiiiiiiiiiii e 32
I Lo (=T B e = 1 1 o] o N = o SRR 34
Table 14 — Definition CommunicationPortINtErfacecvvuuuiuiuiiiiiiiiiiiiee—. 34
Table 15 — Definition ChaNNEl..........ooiiiiiiiii e e e e e e e e aneeeae s 35

<AutomationML /> Application Recommendations: Automation Project

Configuration

1 Introduction

A very frequently occurring task within the planning process of production and automation systems is
the exchange of automation project configuration information of automation system devices between
ECAD and PLC systems. To avoid multiple engineering in the participating systems ECAD and PLC
systems need an interface for sharing this information.

In case of beginning engineering in the ECAD tool certain rules must be observed to get the hardware
information in the correct location in the PLC tool. In case of beginning engineering in the PLC tool
non placed functions must be placed and operated in the ECAD tool.

This application recommendation describes these workflows and the method of hardware
configuration modelling using AutomationML.

1.1 Basics

The data exchange format AutomationML which is standardising in the IEC 62714 standard is a
neutral, free, and XML-based data format. It has been developed in order to support the data
exchange between engineering tools in a heterogeneous engineering tool landscape.

Due to the different aspects of AutomationML the IEC 62714 consists of different parts.

Table 1 — Overview of AutomationML parts

Part Title Description

Part 1 Architecture and | This part specifies the general AutomationML architecture, the
general modelling of the engineering data, classes, instances, relations,
requirements references, hierarchies, basic AutomationML libraries and

extended AutomationML concepts.

Part 2 Role class This part specifies additional AutomationML libraries.
libraries

Part 3 Geometry and This part specifies the modelling of geometry and kinematics
kinematics information.

Part 4 Logic This part specifies the modelling of logics, sequencing, behaviour

and control related information.

Whitepaper | Communication This Whitepaper describes the modelling of Communication
mechanisms in AutomationML

Whitepaper | AutomationML This Whitepaper describes the integration of eCl@ss in
and eCl@ss AutomationML
integration

Further parts may be added in the future in order to e.g. interconnect further data standards to
AutomationML.

1.2 Scope

This application recommendation proposes a modelling method of automation project configuration
data by means of the engineering data format AutomationML. It will describe the recommended use of
role and interface classes as well as the recommended structures to be considered within the instance
hierarchy of an AutomationML project.

<AutomationML /> Application Recommendations: Automation Project

Configuration

1.3 References

The following documents are referenced in this document and are indispensable for its application. For
dated references, only the edition cited applies. For undated references, the latest edition of the
referenced document (including any amendments) applies.

Extensible Markup Language (XML) 1.0:2004, W3C Recommendation (available at
<http://www.w3.0rg/TR/2004/REC-xmI-20040204/>)

IEC 62424:2008, Representation of process control engineering - Requests in P&l diagrams and data
exchange between P&ID tools and PCE-CAE tools

Whitepaper AutomationML Part 1 — AutomationML Architecture, October 2014
Whitepaper AutomationML Part 2 —AutomationML Role Libraries, October 2014
Whitepaper AutomationML Part 4 —AutomationML Logic, May 2010
Whitepaper AutomationML— AutomationML Communication, September 2014

Whitepaper AutomationML— AutomationML and eCl@ss Integration, November 2015

<AutomationML /> Application Recommendations: Automation Project

Configuration

2 General notes regarding exchange of Automation Project Configuration
data

ECAD tools and PLC tools have different views of automation system information. Whereas ECAD
tools depict all electrical detail information of devices applied within automation systems in PLC tools
only a logical compilation of the automation devices is used. So in ECAD tools there are defined e.g.
devices with are involved in an automation systems, voltage connectors which are used for power
supply of the devices, and wire types which are used to connect devices. But these are not used in
PLC tools. On the other side in PLC tools there are device and control application specific conditions
defined e.g. baud rates which are used within the communication connections, control code variables
which are associated to control device inputs and outputs, and control application codes. But these
are not needed in ECAD tools. Nevertheless, both types of tools have some information in common.
For example, the wiring of a certain automation device to a PLC defines the address the device can be
accessed within the PLC. This must be considered by development of import and export tools. Figure
1 shows the scope of this application recommendation.

ECAD > AutomationML > PLC-Tool

J L . =
=i i /l' b Best Practice Recommendation: (=<
\\l_ Automation Project Configuration \ gg‘z_-_:'_ﬂ‘_-_r = _‘
i ElEoun
= %=}

Figure 1 — Automation Project Configuration between ECAD and PLC tool

Beyond the named engineering tools for ECAD and PLC programming also other tools can be
interested in the common data set of both tools. For example tools for mechanical engineering
(MCAD) can be interested in the devices to be wired and documentation tools can be interested in the
wiring structure reached. Nevertheless, within this document only ECAD and PLC programming tools
are considered knowing that more engineering tools can benefit from importing the modelled
information.

2.1 Dataexchange workflow

Usually, in a production system engineering process the construction phase in the PLC project will
begin later than in the ECAD system because the completion of the ECAD documents is the base for
the production of the control cabinet. The combination with the software within the plant and the
following commissioning will not take place before all control cabinets are completed.

18.]21.]24.]27.]30.]02.]05. | 08.11.[14.]17.]20.]23.]26.] 29.[02.]05.]08.[11.[14.]17.]20.]23.] 26.]29.|01.]04.]07.[10.[13
ECAD i :

Production Control Cabinet
. PLC

Commissioning

Figure 2 — Data exchange workflow

So the PLC engineer will usually attend later to the project than the ECAD engineer. Nevertheless at
an early point of time (during ECAD engineering) the automation project configuration of the plant
must be defined because the ECAD documents must be generated and the parts must be ordered.

<AutomationML /> Application Recommendations: Automation Project

Configuration

2.2 Possibilities of configuration

ECAD systems normally can handle the components of different PLC manufacturers which have
certain analogies from a point of view of electrical hardware. But additionally there are system specific
/ manufacturer specific parameters. Therefore only the engineering system of the PLC manufacturer
can guarantee a complete and comfortable handling of all parameters of a hardware component. So
the configuration of the PLC system should be done as far as possible within the engineering system
of the PLC manufacturer.

2.3 Recommended workflow
Accordingly to the described criteria in most cases the following workflow is established.

e Engineering the basic device configuration within the PLC project of the PLC programming
tool and exporting it to ECAD tool

e Importing PLC project to ECAD tool, engineering of the ECAD project, and exporting the
ECAD project to PLC programming tool

e Importing ECAD project into PLC programming tool and engineering of the PLC project

2.3.1 Providing an initial PLC project as basis for electrical engineering

If no ECAD project exists so far, the ECAD engineer first of all defines a raw project within the
engineering system of the PLC manufacturer, the PLC programming tool. The ECAD engineer selects
all needed components and defines the bus topology in close cooperation with the PLC engineer who
has to implement the requested functions later on. This close cooperation ensures a high consistency
regarding the selected hardware components. The automation project configuration will be exported
from the engineering system of the PLC manufacturer and imported into the ECAD tool.

2.3.2 ECAD engineering

Based on the existing ECAD project the ECAD engineer executes the complete hardware
construction, sometimes with slight adaptions. During this process the symbolic names for variables,
tags or signals can be defined too. So the PLC configuration is done under the following conditions:

e PLC configuration can be imported from PLC programming system
e Configuration via graphical placement on overview page or navigator

e PLC-device selection carried out from ECAD database

e Drag&Drop on pages from navigator

‘"“E‘H H . H
|

Figure 3 — Example for PLC configuration and graphical placement

<AufomationML/>

Configuration

Application Recommendations: Automation Project

When the PLC configuration is completed the stations and bus-data are engineered. This is

done by manual assignment of cards to CPUs and devices to bus via device properties.

ET1 Steusrung ET1

= AL

| (SPS-Kasten) =EB3-+EBSi1.2
PS-Kasten) =EBAHETA[L.O

%1 (5PS-anschiuss for Bus-kabel, Quelle) =EB3-+ETA1.1
%2 (SPS-Anschiuzs For Bus-kabel, Quells)

Lot (5P Arschiss, SPS-KY (+)) —ERSHERS/1 .2

ET2 Steusrung ET2
ET3 Steusrung ET3
ET4 Steusrung ET4

(SPS-Kasten) ~EB3+ET4/2.2
P5-Kasten) —EB3+EES/9.4
(SPS-Kasten) =FB3+ERS/10.4

[Bus-Konfiguration - EPLARN-DEMG

Filker:

[naster

Master [Slave:

= Siernens SIMATIC 57

= e MPT
: Bl 2 —EBS+ET1-AL:MPI (MPI Master)
=1 = Profibus DP

[l Z: —EB3+ET1-A1:DF (DP Master)

; BIETZ-A1:BK3100
B3-ET3-A0:IMI51-1 Basic
ES-+ET4-A0:IL PB BE DPfY 1

11 4Tnn}
11 im0}
12 {inn}
12 {1n0}

gL
i3

14 410}

F30.0] (SPS5-Anschiuss, DE) =EB3+ET4/2,2
E30.0] (SPS-Anschiuss, DE) =EB3+ERS(10.4
=S -Anschluss, SPS-AV (+9) =EBI+HET2.3
=PS-Anschluss, SPS-AY (+9) <EBI-+HEBS(10.4
S5 Arschiuzs, SPS-AY (-] —EBIHET4/2.3
SPS-ArschiEs, SPS-AY (-1) —EBI-ERS/ 10,4

SPS-ARschiuss, SPS-AY (PEY) —EBIHET4/2,3
4

L SPS-AY (FE))

21 {In1} [E30,1] (SPS-Anschiuzs, DE) =EBI-+ETHE 4

21 {In1} [£30,1] (5P5-Anschiuss, DE) =EDI+EBS/10,5
22 {In1} (SPS-Anschiuss, SPS-AY (+1) =EB3+ET4/2,4
22 ani}) SPS-AV (+1) .5
) 23 {In1} (SP5-Anschiuss, SPS-AY (-)) ~EB3+ET4/2.5
| 23 {In1} (SPS-Anschiuss, SPS-AY () =EB3--ERS/10,5

[

(L

A

24

24 {IN1} (SPS-Anschiuss, SPS-AV (PEY) —EBI+ETH2,5
11} 5

SPS-AV (PEYY

Baugruppen

=1 (L] Sie
=

kréger f Modul:
mens SIMATLC 57

—EBEHETZ-AL (3

1 (SPS-Kasten) =EBS+ETZ/Z.0

PS-kasten) —EBI4+EBSI3.3
(SPS-Kasten) =EBI+ETAI.S
4 DP (SPS-Anschiuss Fir Bus-Kabel, allgemein) =EB3+ETA(1.3
1 24V (SPS-Anschiuss, SPS-KY (+)) =EB3+ET242. 1

CArtikelplatzionng, SPS-Karke) —EBI--ETH DR+ 54)

Figure 4 — Example for stations and bus data configuration

In the next step the tag list is to be engineered, i.e. a list of tags, variables or signals (symbolic

address) of hardware related tags:

[T

14 (SPS-Anschluzs, SPE-KV (+)) =EBIHET2/2.1
1- (SPS-Anschiuss, SPS-KW (-)) =EBI+ETZ/2.1

1PE (SPS-Anschiuss, SPS-KY (PE)) —EB3-+ET2/2, 1
0% (5PS-Anschiuss, SPE-RY (M) —EB3+ET2/2. 1

1 24 (SPS-Anschluss, SPS-RY (+3) =EBA+ETZ/Z.1

2o (SPS-AnEChiugs, SPS-KY (-)) —EBSHETZIZ.1

ZPE (SPS-Anschiuss, SPS-KY (PE)) —EBI+ET2/2,2
CArtikelplatzierung, SPS-Karte) —EB3+ETZ (BR.E.52)
1: =EBA+ETZ A2

o Bl 7 —ERIAETI-AL (3

normally

e el

Figure 5 — Example for symbolic address configuration
Finally a simple error check should be performed, e.g.:
e Double usage of I/O / bus or symbolic addresses
e Missing addresses.

e Simple rules, e.g. slot 3 reserved for IM-module

W s e ek

na

Scheme:

Standard

] V) il]) o]

Description: Cheek vth mediuen functiceainy

Message tet
onfegurstion value S

e PLC bow praperty 2!

Z ples sl us couph
Sk (mcdule) %01 of 2 rack

it 93 and 5ol

Iy

e ——
e AR =
— L —L
ol i € s e —
o Fluid pawer v O z
" o ol e :
m o i s]
mounn Syl mare then once within a P1
o Teplogy == = =
L] Pre-clanning. ~ v

Application Recommendations: Automation Project

Configuration

Figure 6 — Example for error check

Now the ECAD project can be exported to AutomationML dependent from the implementation in the
ECAD tool and imported to the PLC programming tool.

R
Bz fete Bouraum Jearoeen gmicht ifogen [Flejeiamen) Suchen Qpionen Giensrogramme Eemcer e ROE
OFF=BAonRsy ey e ChooRs@es @@rou@ac@ ssE X Wl
RRW N B el W g VB EREEE BRERSREE T FED a8+t e
[; setn L 1
i
& ool
o e
B[oo Doty i
Mesngen s samngasnsn
g | bt m.ub —
BB 14 Sgn g, e o
E | L By T st g o & o il
& W LA At g = = = *
@ B riae| e = N +
B 04 =ERFTI-AM51 Adressen bieckwene shbuchen...
=EHa -
= Rt z
oS : i
’ - i
5
-+
LI L s——— i 1
f——— & : i
B [0 £ S TEST :
el T T e T G
3 = g+ o =
Boum T LR

Figure 7 — Example for export from an ECAD tool

/> Application Recommendations: Automation Project

Configuration

2.3.3 PLC engineering

At a later point in time the PLC programmer will begin the engineering based on the already
developed ECAD project. So at this point of the engineering process the export function of the ECAD
system and the import function of the PLC system should be used to check possible changes and
verify the equality of both configurations.

e -7 EE RSO W

... .
Figure 8 — Example for import into a PLC

] stMATIC 200-Station (Konfigur ation) £7_Prot

| [= % FrofEUS DF
B PRSP
::] PROFINET 10

DOTGOC2A7/05

61 ff] SIMATIC PC Based Corol 3007400
-8 SIMATIC PC Stalice

al i &l
= o s

Steckplziz | [] Bauguroe Bestelrumimer Eddiesse | Addests | Kommeniar |
1

Fi SRS NI T ST O Ed
3
7 S AT B T TR N

PROFIBUS DP-Slayes det SMATIC 57, M7 und C7 %
decertiler Aulban)
Joricken Sie F1, um H4Fe zu erhaten.

Figure 9 — Example for result of import into a PLC

<AutomationML /> Application Recommendations: Automation Project

Configuration

3 Automation Project Configuration data structures in AutomationML

In the following chapter a concept is defined how Automation Project Configuration data can be
represented in AutomationML.

3.1 Basic concept

For using AutomationML as a neutral exchange format for Automation Project Configuration data the
PLC-specific interfaces of the different PLC manufacturers must be decoupled. This guarantees an
independence of the further development of PLC-tools as well as of the further development of ECAD
tools. Furthermore the transformation and implementation should be as easy as possible for ECAD
and PLC-vendors likewise. Therefore already existing models should be used as far as possible.

ECAD > AutomationML neutral model > PLC-Tool

SystomUnitClassLb

SystomUnaClass | Configure Project

L=y [

Figure 10 — Basic concept for ECAD-PLC data exchange
Using a neutral model allows
e definition of PLC-Tool independent roles in AutomationML

e definition of PLC-specific SystemUnitClasses for different ECAD- and PLC-Tools / vendors in
AutomationML

e definition of PLC-specific InterfaceClasses in AutomationML

3.1.1 Export from ECAD to AutomationML

The following figure shows the detailed export of Automation Project Configuration data based on an
EPLAN example:

EPLAN P8 > AutomationML - neutral model >

2 MyRoleClassLib

Create Project I CAEXFH RoleClass: | &
— _JW
Skt
Ty SystomUntCiass
t) 4
1] | Instancotderar v | o [avsystemUnitClassLibl
Uyerchy e— z
= ‘ 3 .
P SystemUnitClass:
Em =)] e SystemUnitClass:
{Commect]
L.

Figure 11 — Basic concept for ECAD-export (EPLAN example)

<AutomationML /> Application Recommendations: Automation Project

Configuration

Export / Import of Automation Project Configuration data from / to AutomationML
Manufacturer independent roles in AutomationML

Neutral SystemUnitClasses in AutomationML

A w DN PR

Topology in AutomationML (neutral model)

3.1.2 Import from AutomationML into PLC

The following figure shows the detailed import of Automation Project Configuration data based on an
S7 example:

AutomationML - neutral model PLC

MyRoleClassLib

RoleClass: | = [H

RoleClass:

MySystemUnitClassLib|

SystemUnitClass:

SystemUnitClass:

Figure 12 — Basic concept for PLC-import (S7 example)
1. Import of ECAD data from AutomationML (neutral model)

2. Import from neutral model into manufacturer specific PLC tool (Example S7)

3.2 The neutral model: Automation Project Configuration data

The aim is to support the engineering workflow between ECAD systems and PLC engineering
systems. Providing standardized interfaces for the data exchange between PLC and ECAD systems
are mandatory. The interfacing to ECAD systems has as further target group all ECAD manufacturers:

| —— = —>
EPLAN| :|

X
——a M PLC
—_ L

-Zx

XML (AML) File

Aucotec

| -2

e L ,
S 8l el wie 5 il

innotec

- x

GEAEGRSE O N U -

etc.

Figure 13 — Coupling CAE and PLC

So we have to consider the different ECAD systems and CAE manufacturer. Therefore the term
“ECAD” stands for the different CAE, E-CAD and E-CAE formats depending on the different existing
ECAD systems. Based on this the implementation of a neutral “proxy ECAD”-format in AutomationML
shall be defined in the following chapter. Furthermore the already existing concepts of the leading
ECAD-Tool manufacturer and PLC manufacturer shall be considered to ensure an “as easy as
possible” implementation of this neutral model for all ECAD and PLC manufacturer.

<AutomationML./> Application Recommendations: Automation Project
Confi

nfiguration

3.2.1 Basic ideas

The Automation Project Configuration data can be modelled by using AutomationML. Therefore the
modelling methodology is based on the concepts of AutomationML topology modelling using CAEX
defined in Part 1 of the AutomationML standard. Additional provisions are added to the basic
definitions to fulfil the special requirements that arise from data exchange with ECAD tools. The
Automation Project Configuration data modelling methodology enables the development of a self-
containing model. No dependencies to other models are mandatory.

For modelling of Automation Project Configuration data a vendor neutral Automation Project
Configuration data structure will be defined. It represents in its base structure a neutral object model of
PLC systems.

The data exchange is based on complete information about the objects. This means that the
Automation Project Configuration data always holds the complete data of the object itself and not only
delta information.

The export/import granularity is at the level of hardware stations as PLC engineering systems always
operate at a station level. The export/import will either support exchange of data referring to one or
more stations (e.g. a complete project) or only parts of a station (e.g. one single module). The
requirement here always is that the “environment, the part lives in, is also part of the data exchange.

Only PLC hardware configuration information of automation devices including some relevant
parameter and symbols/tags related to the hardware objects are in scope of this data exchange.
Additionally information about the networks these hardware configurations are connected to is part of
this exchange format.

Only a subset of all data provided by PLC hardware configuration is relevant for data exchange with
ECAD systems. Due to the electrical view of the plant handled by ECAD tools, these tools can only
deliver a very general subset of information belonging to the PLC hardware objects. Specific
parameter settings are the domain of PLC specific hardware-configuration tools and the specific object
managers. They only can be handled in the manufacturer specific tool.

Besides the standard devices in the PLC hardware catalogues, there are some types of device items
that need additional descriptions. Examples for this are GSD or GSDML descriptions. Devices and
device items like norm slaves or GSDML based I0ODevices can only be instantiated in a PLC
configuration if the appropriate description / package is installed. It is the responsibility of the PLC
programmer to make sure that the correct and up to date device item information (GSD, etc.) is
available. But the AutomationML based ECAD data exchange file can provide information about the
needed device item information.

Some of the ECAD systems are capable to provide that information about a needed description file.
Others also can provide the file itself. Therefore it is allowed to transmit this additional data from the
ECAD system to PLC engineering system. Files are expected to be delivered e.g. as a zip file and are
unpacked into the same directory as the import file. Thus it should be possible to specify and
reference the file in the data exchange file. The user of a PLC system, who is importing the file, can
expect to find some or all needed descriptions in the same directory as the import-file. The reference
to the description file is inserted as separate properties for the module. It is an anchor to the item
description.

3.2.2

<AutomationML /> Application Recommendations: Automation Project

Configuration

Contents of data exchange

An analysis of the already existing proprietary XML-based data exchange files of the leading PLC and
ECAD manufacturers regarding the Automation Project Configuration data showed that all data to be
exchanged can be grouped in three major categories:

1.

HW Data:

These are data concerning parts or devices like a central rack, a slave or a switch. Therefore
mostly the term “device” is used for this group of parts. Within these devices there are sub
devices or device items like racks, CPUs, power supply, I/O Modules, submodules. Therefore
mostly the term “device item” or “subdevice” is used for this group of parts. Additional device
items like routers, switches, hubs, repeaters will be supported by the export format. Devices
are often grouped in a hierarchical “folder” structure.

Symbols / Tags:

Exported and imported are “symbols” and “tags” assigned to a device item. Only hardware
oriented symbols/tags are considered here. The symbols/tags are exported with the controller
target device item (i.e. the CPU) and not with other device items they might refer to (e.g. an
I/0 module). Like devices also the tags are often grouped in “tag tables” and in a hierarchical
“folder” structure.

Networks:

Networks are modelled right below the project as global subnet objects. The link between a
network and the device items are modelled as a reference to the network object. There is no
reference from the network object to the attached device items. The network parameters are
stored at the network object. The parameters concerning a network interface of a given device
item, attached to a network, are stored in a net node object at that device item. The

LT

communication is often regulated using “channels”, “ports” and “interfaces”.

Additionally the “Whitepaper AutomationML Part 5 — AutomationML Communication, September 2014”
already defines an XML based methodology for communication system information exchange among
engineering tools developed by AutomationML e.V. These methods shall also be considered when
modelling Automation Project Configuration data.

3.2.3

Automation Project Configuration data exchange data model

The consideration of all these mentioned and already existing models leads to the following
Automation Project Configuration data Exchange diagram:

<AutomationML /> Application Recommendations: Automation Project

Configuration

AutomationProject

-ProjectName
-ProjectManufacturer
-ProjectSign
-ProjectRevision
-Projectinformation

¢ 90
‘l—

Device DeviceUserFolder
Subnet N
Name -Name “vame
Tvpe -Typeldentifier 1
bl -Comment ’
1
1

*
Deviceltem
1 -Name
* *
-TypeName * *

-DeviceltemType | |
-PositionMumber

_Builtin TagTable TagUserFolder
-Typeldentifier -Name -Name
-FirmwareVersion -AssignToDefault

-PlantDesignation

-Locationldentifier —.

-Comment ? 1
1

-Address[0...n]: Startaddress, Length, 10Type 1

1 1 1
* *
Channel Tag
-Type -Name
-loType 5, [DataType
*

-Number -LogicalAddress
-Length -Comment

1 Communicationinterface

———@{-Label

* 0..1 1
Node

1

_Tvpe *

-NetworkAddress

loSystem

Number CommunicationPort
-Name -Label

7 |

Figure 14 — Objects and parameters of the Automation Project Configuration data exchange

<AutomationML /> Application Recommendations: Automation Project

Configuration

The AutomationML export of Automation Project Configuration data is based on the use of an
InstanceHierarchy covering the exported Automation Project Configuration data. The InternalElements
of this instance hierarchy will reference appropriate elements in RoleClass Libraries, SystemUnitClass
Libraries, and InterfaceClass Libraries.

The objects and parameters shown in the figure above are described as follows. All objects will be
modelled as role classes or interface classes derived from classes defined in Whitepaper
AutomationML Part 5 and completed with additional attributes already used in the tool landscape of
PLC manufacturers. Additional parameters can be defined using eCl@ss integration mechanisms as
described in “Whitepaper AutomationML Part 6 — AutomationML and eCI@ss Integration”.

3.2.3.1 AutomationProject

An AutomationProject object represents the project from which the export arises. It aggregates all
other objects below. The standard parameter for a Project are its “name” (string), the project
manufacturer (string), the project sign (string) of the manufacturer, the project revision number (string),
and a project information (string) hosting a comment to the project.

3.2.3.2 DeviceUserFolder

A DeviceUserFolder supports the structure of a device within a project. The only and one standard
parameter for a DeviceUserFolder is its “name” (string)

3.2.3.3 Subnet

A Subnet object is responsible for storing and managing properties and functionality of networks like
Ethernet, PROFIBUS, MPI, etc. A subnet is defined by the physical availability of all subnet
participants. All subnet participants have different, unambiguous addresses. The standard parameters
of a Subnet object are listed below:

e Name (string):
Name of the Subnet

e Type (string):
The type of the subnet (PROFIBUS, MPI...)

3.2.3.4 Device

A Device object represents a collection in which the individual HW objects of a slave or rack, including
the slave or rack HW item, are brought together. Therefore a Device is a Device ltem container that
serves as a collection of Device Items (in particular hardware items). A Device has to have a unique
name within a project. A device can be:

e a central configuration with some racks within (Automation system station with central and
extension racks)

e afix combination of CPU and some 1/O modules (e.g. C7),
e a PC station where the PC represents a device,
e afield device,
e aswitch
The standard parameters of a Device object are listed below:

e Name (string):
Name of the Device

e Typeldentifier (string):
Identifier of the device type

e Comment (string):
An optional comment for the device.

<AutomationML /> Application Recommendations: Automation Project

Configuration

3.2.3.5 Deviceltem

A Deviceltem is aggregated by a Device and represents an “abstract object class for HW modules
and submodules (CPU, I/O module, rack, etc.). Whereas a Device represents the logical bracket, the
Deviceltems represent more the physical hardware objects.

A Deviceltem can be plugged in another Device Item (e.g. CPU within a rack, sub module within a
module). The relative position to the father object is defined by the PositionNumber.

A Deviceltem can also be built in another Deviceltem. These Deviceltems can model a fix combination
that cannot be broken up (e.g. C7). The standard parameters of a Deviceltem object are listed below:

e Name (string):
Name of the Deviceltem

e TypeName (string):
Additional type information. Not mandatory but useful for user in case of error.

e DeviceltemType (string):
Classification of the Deviceltem (e.g. CPU)
Additional information. Not mandatory but useful for user in case of error.

e PositionNumber (int):
Slot number where this Deviceltem is plugged in.

e Builtin (Boolean):
Flag indicating that this module is a build-in part of another module. This module is
automatically created because it is a fixed part of the other module. If omitted this parameter
defaults to false.

e Typeldentifier (string):
Identifier of the device item type

e FirmwareVersion (string):
Specifies the firmware version of e.g. a CPU and might be needed to identify the module
correctly (sometimes the order number is not sufficient).

e Comment (string):
An optional comment for the module.

e Address (list attribute):
Address information of device item within device. Most modules have address ranges
assigned. There may be e.g. address ranges for input, output channels which are described
by their start value and length. So the Address defines the start, length and IO-type. It is
modelled as list of address parameters with the sub parameters as listed below:

o StartAddress (int):
Start of the Address

o Length (int):
Total width of the module (vendor specific). In the most cases it corresponds to the
width of all channels.

o loType (string):
Input or Output

Note: In addition to the named standard documents attributes can be added enabling the
representation of reference designations following IEC 81346. The following attributes will give two
possible examples.

e PlantDesignation IEC (string):
Plant designation for this device item. The PlantDesignation is a product oriented reference

designation following IEC 81346.

<AutomationML /> Application Recommendations: Automation Project

Configuration

e Locationldentifier IEC (string):
Location designation for this device item. The Locationldentifier is a location oriented
reference designation following IEC 81346.

3.2.3.6 TagTable

A TagTable supports the structuring of tags. The standard parameters of a TagTable object are listed
below:

e Name (string):
Name of the TagTable

e AssignToDefault (Boolean):
While importing if the TagTable has an attribute 'AssignToDefault' with 'True' value, then all
the Tags inside will be imported to an existing default TagTable. In this case the name of the
TagTable is ignored by the importing tool. By default, False value is assumed for
'‘AssignToDefault' attribute if it does not exist while importing.

3.2.3.7 TagUserFolder

The TagUserFolder supports the structuring of TagTables within a Deviceltem. The only and one
standard parameter for a TagUserFolder is its “name” (string).

3.23.8 Tag

A Tag represents the symbolic name of an I/O date. It provides the logical view on the Channel of a
module and is referenced by the associated channel directly.

Tags can only be aggregated by a Tag Table of a CPU. The CPU is represented by a concrete Device
Item. The standard parameters of a Tag object are listed below:

e Name (string):
Name of the Tag

e DataType (string):
Type of the data (e.g. bool, byte word)

e LogicalAddress (string):
Logical Address specifies the address of the tag.

e Comment (string):
An optional comment specified for the tag

Tags without assigned channels and channels without assigned tags are possible (incomplete
engineering)
3.2.3.9 Channel

A Channel is part of an 10 module and represents the process interface (e.g. digital or analogue
input/output). A channel is part of the Deviceltem which represents the IO module and can only be
used in a Deviceltem. The channel refers to tags using a link. The standard parameters of a channel
object are listed below:

e Type (string):
Analog or Digital

e loType (string):
Input or Output

e Number (int):
Number of the channel, starting with 0

e Length (int):
Width of the channel (e.g. bit, byte word)

A channel references with a LinkToTag to the associated Tags which are stored at a CPU Deviceltem.

<AutomationML /> Application Recommendations: Automation Project

Configuration

3.2.3.10 Communicationinterface

A Communicationinterface is a special type of a Deviceltem acting as a connection point of a device to
a network (e.g. network card). The standard parameters of a Communicationinterface object are listed
below:

e Label (string):
Name printed on the item e.g. unique identifier.

3.2.3.11 Node

A Node specifies all the interface related networking information of a network node. (e.g. logical
address, subnet mask). A Node belongs to the Communicationinterface (Deviceltem). The parameters
of a node are bus specific characteristics. It is a topology object of a physical connection (cable, glass
fibre) between two network stations. Depending on the node type a node can contain different node
type specific parameters. The standard parameters of a node object are listed below:

e Type (string):
The Type of the Network (e.g. Ethernet, MPI...).

o NetworkAddress (string):
Network address of this device item. The format depends on the Node type, e.g. a TCP/IP
address for an IP network.

Here an example for PROFINET specific attributes:

e DeviceNumber (string):
The device number can be used to identify an IO device (if applicable for the Node type).

e SubnetMask (string):
Subnet mask used by this item (if applicable for the Node type).

3.2.3.12 CommunicationPort

A CommunicationPort is the physical connection to the network (e.g. Ethernet Port). It is a topology
object of a physical connection (cable, glass fibre) between two network stations. The standard
parameters of a CommunicationPort object are listed below:

e Label (string):
Name printed on the device item e.g. unique identifier.

Ports are aggregated on an Interface which implicitly defines the relationship between the logical (=
Interface) and physical (= Port) network connectivity. This aggregation need not be explicitly modelled
in AutomationML because it is available via the derivation of Interface and Port from Deviceltem that
already defines a generic Deviceltem to Deviceltem aggregation.

3.2.3.13 loSystem

An loSystem object is responsible for representing a master — slave relationship typically found in
fieldbus systems. Although this relationship depends on a subnet connection between the interfaces,
the object model does not enforce this (incomplete engineering). The parent object of the l10System
object is the interface that acts as the master. All interfaces that act as slaves for this master are linked
to the loSystem object. Please note that the master interface and the slave interfaces are different
object instances although they share the same class in the object model. The standard parameters of
an loSystem object are listed below:

e Name (string):
Name of the IOSystem

e Number (int):
Number of the I0OSystem.

<AutomationML /> Application Recommendations: Automation Project

Configuration

4 Guideline for the use of the ECAD model in practical applications
To use the previously described method for modelling ECAD in AutomationML four steps are required.

In a first step the ECAD RoleClassLib must be generated or imported i.e. the appropriate
RoleClassLib has to be defined. This RoleClass Lib contains the derivation of the ECAD Roles from
the generic communication model of AutomationML.

Next the Interfaces must be generated or imported, i.e. the appropriate InterfaceClassLib has to be
defined. This InterfaceClassLib contains the derivation of the ECAD Roles from the generic
communication model of AutomationML.

In step 3 the SystemUnitClasses for the engineering domain must be identified and modelled as
templates for further use. Here the structure of the Devices, Deviceltems... can be modelled especially
with respect to the relevant properties to be considered. Therefore, appropriate <InternalElement>’s
and attributes are added.

Finally, the defined structure can be used to model a practical system in the InstanceHierarchy.

This procedure is depicted in the following figure:

: Derivation of ECAD Roles :
i Derivation of ECAD Interfaces j
: Derivation of SystemUnitClasses :
: Building a practical system in Instance Hierarchy :

Figure 15 — Procedure for use of ECAD in AutomationML

<AutomationML /> Application Recommendations: Automation Project

Configuration

5 Modelling of Automation Project Configuration data with AutomationML

5.1 RoleClassLibrary

Basement of the modelling are the required role classes. Facing the required model elements there
are role classes especially required for Automation Project Configuration data modelling derived from
role classes used for communication system modelling defined in AutomationML Whitepaper —
Communication or derived from AutomationML basic roles defined in AutomationML Whitepaper —
Architecture and general requirements.

The following figures represent the defined role class library.
~ | [AutomationProjectConfigurationRoleClassLib
[RT] AutomationProject { Class Structure)
[R[] DeviceUserFolder { Class Structure]
Subnet { Class LogicalNetwork)
@ Device { Class PhysicalDevice)
@ Deviceltem { Class PhysicalDevice }
[E TagTable { Class Variablelist }
[E TagUserFolder { Class VarizbleList }
A [E Node { Class LogicalDevice }
~ | =9, Node-interfaces
»o0 LogicalEndPoint_1 { Class LogicalEndPeint }
@ Communicationinterface { Class Deviceltem }
A IoSystem { Class LogicalDevice }
A | =9, IoSystem-Interfaces
«0 LogicalEndPoint_1 { Class LogicalEndPeint }
A [j CommunicationPort { Class Deviceltem }
A +9, CommunicationPort-Interfaces

«0 CommunicationPortinterface { Class CommunicationPorilnterface }

Figure 16 — AutomationProjectConfigurationRoleClassLib in AutomationML Editor view

<RoleClassLib Name="AutomationProjectConfigurationRoleClassLib">
<Description>Automation Markup Language Automation Project Configuration Data Class Library</Description>
<Version>0.9</Version>
<RoleClass Name="AutomationProject"
RefBaseClassPath="AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Structure">
<Attribute Name="ProjectManufacturer" AttributeDataType="xs:string">
<Description>manufacturer of the project</Description>
</Attribute>
<Attribute Name="ProjectSign" AttributeDataType="xs:string">
<Description>unique identification of the project</Description>
</Attribute>
<Attribute Name="ProjectRevision" AttributeDataType="xs:string">
<Description>revision number of the project</Description>
</Attribute>
<Attribute Name="Projectinformation" AttributeDataType="xs:string">
<Description>commenting information of the project</Description>
</Attribute>
</RoleClass>
<RoleClass Name="DeviceUserFolder"
RefBaseClassPath="AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Structure"></RoleClass>

<AutomationML /> Application Recommendations: Automation Project

Configuration

<RoleClass Name="Subnet" RefBaseClassPath="CommunicationRoleClassLib/LogicalNetwork">
<Attribute Name="Type" AttributeDataType="xs:string">
<Description>type of the subnet</Description>
</Attribute>
</RoleClass>
<RoleClass Name="Device" RefBaseClassPath="CommunicationRoleClassLib/PhysicalDevice">
<Attribute Name="Typeldentifier" AttributeDataType="xs:string">
<Description>identifier of the device type</Description>
</Attribute>
<Attribute Name="Comment" AttributeDataType="xs:string">
<Description>optional comment for the device</Description>
</Attribute>
</RoleClass>
<RoleClass Name="Deviceltem" RefBaseClassPath="CommunicationRoleClassLib/PhysicalDevice">
<Attribute Name="TypeName" AttributeDataType="xs:string">
<Description>additional type information</Description>
</Attribute>
<Attribute Name="DeviceltemType" AttributeDataType="xs:string">
<Description>classification of the Deviceltem</Description>
</Attribute>
<Attribute Name="PositionNumber" AttributeDataType="xs:int">
<Description>slot number where this Deviceltem is plugged in</Description>
</Attribute>
<Attribute Name="Builtin" AttributeDataType="xs:boolean">
<Description>define that this module is a build-in part of another module</Description>
<DefaultValue>false</DefaultValue>
</Attribute>
<Attribute Name="Typeldentifier" AttributeDataType="xs:string">
<Description>identifier of the Deviceltem type</Description>
<DefaultValue>not applicable</DefaultValue>
</Attribute>
<Attribute Name="FirmwareVersion" AttributeDataType="xs:string">
<Description>the firmware version of e.g. a CPU to identify the module correctly</Description>
</Attribute>
<Attribute Name="PlantDesignation IEC " AttributeDataType="xs:string">
<Description>plant designation for this device item</Description>
</Attribute>
<Attribute Name="Locationldentifier IEC " AttributeDataType="xs:string">
<Description>location designation for this device item</Description>
</Attribute>
<Attribute Name="Comment" AttributeDataType="xs:string">
<Description>optional comment for the device</Description>
</Attribute>
<Attribute Name="Address">
<RefSemantic CorrespondingAttributePath="OrderedListType" />
<Attribute Name="1">
<Attribute Name="StartAddress" AttributeDataType="xs:string">
<Description>start of the address</Description>
</Attribute>
<Attribute Name="Length" AttributeDataType="xs:string">
<Description>total width of all of the channels on the device item</Description>
</Attribute>
<Attribute Name="loType" AttributeDataType="xs:string">
<Description>direction IN or OUT</Description>
</Attribute>
</Attribute>
</Attribute>
</RoleClass>
<RoleClass Name="TagTable" RefBaseClassPath="CommunicationRoleClassLib/PhysicalDevice/VariableList" />
<Attribute Name="AssignedToDefault" AttributeDataType="xs:boolean" />
</RoleClass>
<RoleClass Name="TagUserFolder" RefBaseClassPath="CommunicationRoleClassLib/PhysicalDevice/VariableList" />
<RoleClass Name="Node" RefBaseClassPath="CommunicationRoleClassLib/LogicalDevice">
<Attribute Name="Type" AttributeDataType="xs:string">
<Description>type of the network</Description>
</Attribute>
<Attribute Name="NetworkAddress" AttributeDataType="xs:string">
<Description>network address of this device item</Description>
</Attribute>
<Externallnterface Name="LogicalEndPoint"
RefBaseClassPath="CommunicationinterfaceClassLib/LogicalEndPoint"
ID="e3a58527-d133-49de-b2f4-23954fd5c13d" />

<AutomationML /> Application Recommendations: Automation Project

Configuration

</RoleClass>
<RoleClass Name="CommunicationInterface"
RefBaseClassPath="AutomationProjectConfigurationRoleClassLib/Deviceltem">
<Attribute Name="Label" AttributeDataType="xs:string">
<Description>name printed on the item</Description>
</Attribute>
</RoleClass>
<RoleClass Name="loSystem" RefBaseClassPath="CommunicationRoleClassLib/LogicalDevice">
<Attribute Name="Number" AttributeDataType="xs:integer">
<Description>unique number of the I0System</Description>
</Attribute>
<Externallnterface Name="LogicalEndPoint"
RefBaseClassPath="CommunicationinterfaceClassLib/LogicalEndPoint"
ID="e6f2f4f0-e73c-4077-8856-785c50c3e008" />
</RoleClass>
<RoleClass Name="CommunicationPort" RefBaseClassPath="AutomationProjectConfigurationRoleClassLib/Deviceltem">
<Attribute Name="Label" AttributeDataType="xs:string">
<Description>name printed on the Port</Description>
</Attribute>
<Externallnterface Name="CommunicationPortInterface"

RefBaseClassPath="AutomationProjectConfigurationinterfaceClassLib/CommunicationPortInterface"
ID="3d5aa531-e435-4a8bh-b4e7-49326359842f">
<Attribute Name="Label" AttributeDataType="xs:string" />
</Externallnterface>
</RoleClass>
</RoleClassLib>

Figure 17 — AutomationProjectConfigurationRoleClassLib as XML representation

5.1.1 AutomationProject

An “AutomationProject” is derived from a “Structure” according to AutomationML Whitepaper -
Architecture and general requirements. It is defined as follows.

Table 2 — Definition AutomationProject

Role class name | AutomationProject
— The role class “AutomationProject” shall be used in order to represent the project from

Description ;)
which the export arises.

Parent Class AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Structure

Pl o ElzmeEnt AutomationProjectConfigurationRoleClassLib/AutomationProject

reference

The attribute “ProjectName” shall define the
“ProjectName” name o:]the prct))ject. rellod b
. b Note: This attribute is modelled by the
(AttributeDataType="xs:string") standard attribute Name of the relevant CAEX
object.

“ProjectManufacturer” The attribute “ProjectManufacturer” shall
(AttributeDataType="xs:string”) define the manufacturer of the project.

Attributes - -
“ProjectSign” The attribute “ProjectSign” shall define the
(AttributeDataType:”Xs:String") unique identification of the project.
“ProjectRevision” The attribute “ProjectRevision” shall define
(AttributeDataType:"Xs:String”) the revision number of the project.
“Projectinformation” The attribute “Projectinformation” shall define
(AttributeDataType="xs:string”) commenting information of the project.

<AutomationML /> Application Recommendations: Automation Project

Configuration

5.1.2 DeviceUserFolder

A “DeviceUserFolder” is derived from a “Structure” according to AutomationML Whitepaper -
Architecture and general requirements. It is defined as follows.

Table 3 — Definition DeviceUserFolder

Role class name DeviceUserFolder

The role class “DeviceUserFolder” shall be used in order to support the structure of a

RESE e device within a project.

Parent Class AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Structure

PEt HOr [BlEEm! AutomationProjectConfigurationRoleClassLib/DeviceUserFolder

reference

The attribute “Name” shall define the name of
“N » the DeviceUserFolder.
. ame
Attributes (AttributeDataType="xs:string’) Note: This attribute is modelled by the
yp ' 9 standard attribute Name of the relevant CAEX
object.
5.1.3 Subnet

A “Subnet” is derived from a “LogicalNetwork” according to AutomationML Whitepaper -
Communication. It is defined as follows.

Table 4 — Definition Subnet

Role class name Subnet

The role class “Subnet” shall be used in order to represent storing and managing of

DS e properties and functionality of networks.

Parent Class CommunicationRoleClassLib/LogicalNetwork

et or [BlerEm AutomationProjectConfigurationRoleClassLib/Subnet

reference
The attribute “Name” shall define the name of
“N » the subnet.
ame hi ibute i delled by th
: Iy cratrinm® Note: This attribute is modelled by the
Attributes (AttributeDataType="xs:string") standard attribute Name of the relevant CAEX
object.
“Type” The attribute “Type” shall define the identifier
(AttributeDataType="xs:string”) of the type of the subnet

Note: Each SystemUnitClass or InternalElement having the role Subnet shall have at least one
internal element with the role LogicalConnection coming from the role class library
CommunicationRoleClassLib defined in AutomationML Whitepaper — Communication which contains
an interface derived from the interface class logicalEndPoint coming from the interface class library
CommunicationinterfaceClassLib defined in AutomationML Whitepaper — Communication. The
interface shall be applied to link node elements and loSystem elements to a subnet.

<AutomationML /> Application Recommendations: Automation Project

Configuration

5.1.4 Device

A “Device” is derived from a “PhysicalDevice” according to AutomationML Whitepaper -
Communication. It is defined as follows.

Table 5 — Definition Device

Role class name Device

The role class “Device” shall be used in order to represent a collection in which the

Description individual HW objects of a slave or rack, including the slave or rack HW item, are brought
together.
Parent Class CommunicationRoleClassLib/PhysicalDevice

et fel [Elerient AutomationProjectConfigurationRoleClassLib/Device

reference
The attribute “Name” shall define the name of
“Name” the device.
. ey Note: This attribute is modelled by the
(AttributeDataType="xs:string”) standard attribute Name of the relevant CAEX
object.
Attributes —
“Typeldentifier” The attribute “Typeldentifier” shall define the
(AttributeDataType="xs:string”) identifier of the device type
“Comment” The attribute “Comment” shall define an
(AttributeDataType="xs:string”) optional comment for the device

Note: The attribute “Typeldentifier” shall have a prefix which describes the semantic of the following
identifier separated by “:” The following prefixes are allowed: “OrderNumber”, “GSD”, "System’,
,CSP+"

Examples:

Typeldentifier = “OrderNumber:3RK1 200-0CEQ0-0AA2”
Typeldentifier = “GSD:SIEM8139. GSD/DAP”
Typeldentifier = "System:Rack.Generic”

Typeldentifier = “CSP+:AJ65VBTCE2-8T”

Application Recommendations: Automation Project
Configuration

<AutomationML/>

5.1.5 Deviceltem

A “Deviceltem” is derived from a “PhysicalDevice” according to AutomationML Whitepaper -
Communication. It is defined as follows.

Table 6 — Definition Deviceltem

Role class name

Deviceltem

Description

The role class “Deviceltem” shall be used in order to represent an “abstract” object class

for HW modules and submodules.

Parent Class

CommunicationRoleClassLib/PhysicalDevice

Path for Element

AutomationProjectConfigurationRoleClassLib/Deviceltem

reference
The attribute “Name” shall define the name of

“ » the device.
Name hi ibute i delled by th

. g Note: This attribute is modelled by the
(AttributeDataType="xs:string") standard attribute Name of the relevant CAEX

object.

“TypeName” The Attribute “TypeName” shall define
(AttributeDataType="xs:string”) additional type information.
“DeviceltemType” The attribute “_DeviceltemTy_pe” shall define

) e the classification of the Deviceltem (e.g.
(AttributeDataType="xs:string") CPU, HeadModule, Accessory).
“PositionNumber” The attribute “PositionNu_mber” _shaII de_fine

. . the slot number where this Deviceltem is
(AttributeDataType="xs:int”") plugged in.
“Builtin” The attribute “Builtin” shall define that this
(AttributeDataType="xs:boolean”) module is a build-in part of another module.
“Typeldentifier” The attribute “Typeldentifier” shall define the
(AttributeDataType="xs:string") identifier of the Deviceltem type.
“FirmwareVersion” The gttribute “Firr_nwareVersion“ shall _defin_e

i e the firmware version of e.g. a CPU to identify

Attributes (AttributeDataType="xs:string") the module correctly.

“Comment”
(AttributeDataType="xs:string”)

The attribute “Comment” shall define an
optional comment for the device

“StartAddress”

(AttributeDataType="xs:int")

The attribute “StartAddress”
shall define the start of the
address.

“Address”

“Length”
(OrderedListType)[0
n]

g

(AttributeDataType="xs:int")

The optional attribute
“Length” shall define the total
width of all of the channels
on the device item.

“loType”

ng’)

(AttributeDataType="xs:stri

The attribute “loType” shall
specify the direction IN or
OUT.

“PlantDesignation IEC”
(AttributeDataType=" xs:string” and
RefSemantic=" IEC81346")

The attribute “PlantDesignation IEC” shall
define the plant designation for this device
item

“Locationldentifier IEC”
(AttributeDataType=" xs:string” and
RefSemantic=" IEC81346”)

The attribute “Locationldentifier IEC” shall
define the location designation for this device
item

Note: The Address attribute is a finite list of variable length.

case dependent.

The number of list elements is application

<AutomationML /> Application Recommendations: Automation Project

Configuration

Note: The attributes PlantDesignation and Locationldentifier are examples of reference designations
following IEC 81346 and are not mandatory for the role class.

Note: The attribute “Typeldentifier” shall have a prefix which describes the semantic of the following
identifier separated by “:” The following prefixes are allowed: “OrderNumber”, “GSD”, "System",
“CSP+”,

Examples:

Typeldentifier = “OrderNumber:3RK1 200-0CE00-0AA2”
Typeldentifier = “GSD:SIEM8139.GSD/DAP”
Typeldentifier = "System:Rack.Generic

Typeldentifier = “CSP+:AJ65VBTCE2-8T”

5.1.6 TagTable

A “TagTable” is derived from a “VariableList” according to AutomationML Whitepaper -
Communication. It is defined as follows.

Table 7 — Definition TagTable

Role class name | TagTable

Description The role class “TagTable” shall be used in order to support the structure of tags

Parent Class CommunicationRoleClassLib/PhysicalDevice/VariableList

et or [BlerEm AutomationProjectConfigurationRoleClassLib/TagTable

reference
The attribute “Name” shall define the name of
“N » the TagTable.
ame hi ibute i delled by th
: T Note: This attribute is modelled by the
. (AttributeDataType="xs:string") standard attribute Name of the relevant CAEX
Attributes object.

The Attribute “AssignToDefault” shall define if
the Tags inside will be imported to an existing
default TagTable.

“AssignToDefault”
(AttributeDataType="xs:boolean”)

Note: While importing if the TagTable has an attribute with 'True' value, then all the Tags inside will be
imported to an existing default TagTable. In this case the Name of the TagTable is ignored by the
importing tool. By default, False value is assumed for 'AssignToDefault' attribute if it does not exist
while importing.

<AutomationML /> Application Recommendations: Automation Project

Configuration

5.1.7 TagUserFolder

A “TagUserFolder” is derived from a “VariableList” according to AutomationML Whitepaper -
Communication. It is defined as follows.

Table 8 — Definition TagUserFolder

Role class name | TagUserFolder

The role class “TagUserFolder” shall be used in order to support the structure TagTables

DI P within a Deviceltem.

Parent Class CommunicationRoleClassLib/PhysicalDevice/VariableList

PEt HOr [BlEEm! AutomationProjectConfigurationRoleClassLib/TagUserFolder

reference

The attribute “Name” shall define the name of
“N » the TagUserFolder.
. ame
Attributes (AttributeDataType="xs:string’) Note: This attribute is modelled by the
yp ' 9 standard attribute Name of the relevant CAEX
object.
5.1.8 Node

A “Node” is derived from a “logicalDevice” according to AutomationML Whitepaper - Communication.
It is defined as follows.

Table 9 — Definition Node

Role class name Node

The role class “Node” shall be used in order to specify all the interface related networking

DIl e information of a network node.

Parent Class CommunicationRoleClassLib/logicalDevice

et or [BlerEm AutomationProjectConfigurationRoleClassLib/Node

reference
“Type” The attribute “Type” shall define the type of
(AttributeDataType="xs:string”) the network.

Attributes
“NetworkAddress” The attribute “NetworkAddress” shall define
(AttributeDataType="xs:string”) the network address of this device item.
“LogicalEndPoint”

Interfaces (RefBaseClassePath=" This interface shall be used to link the node
CommunicationinterfaceClassLib/LogicalE | to a subnet.
ndPoint”)

<AutomationML/>

Application Recommendations: Automation Project
Configuration

5.1.9

Communicationinterface

A “Communicationinterface” is derived from a “Deviceltem” according to AutomationML Whitepaper
- Communication. It is defined as follows.

Table 10 — Definition Communicationinterface

Role class name

Communicationlnterface

Description

The role class “Communicationinterface” shall be used in order to define the connection
point of a device to a network.

Parent Class

AutomationProjectConfigurationRoleClassLib/Deviceltem

Path for Element

AutomationProjectConfigurationRoleClassLib/Communicationinterface

reference
TS “Label” The attribute “Label” shall define the name
(AttributeDataType="xs:string") printed on the item.
5.1.10 loSystem

An “loSystem” is derived from LogicalDevice. It is defined as follows.

Table 11 — Definition loSystem

Role class name

loSystem

Description

The role class “loSystem” shall be used in order to model the master — slave relationship
typically found in fieldbus systems.

Parent Class

CommunicationRoleClassLib/LogicalDevice

Path for Element

AutomationProjectConfigurationRoleClassLib/IOSystem

reference
Attributes “Number’ (AttributeDataType="xs:int") Th_e attribute “Number” shall define the
unique number of the loSystem.
“LogicalEndPoint”
IniEraees (RefBaseClassePath= This interface shall be used to link the

CommunicationinterfaceClassLib/LogicalE
ndPoint”)

loSystem to a subnet.

5.1.11 CommunicationPort

A “CommunicationPort” is derived from a PhysicalEndpoint. It is defined as follows.

Table 12 — Definition CommunicationPort

Role class name

CommunicationPort

Description

The role class “CommunicationPort” shall be used in order to model the device item
applied to physically establish the connection to the network.

Parent Class

AutomationProjectConfigurationRoleClassLib/PhysicalEndpoint

Path for Element

AutomationProjectConfigurationRoleClassLib/CommunicationPort

reference

TS “Label” The attribute “Label” shall define the name
(AttributeDataType="xs:string”) printed on the Port.
“CommunicationPortInterface”

Interfaces (RefBaseClassePath=" This interface shall be used to link the Port

AutomationProjectConfigurationinterfaceCla | to wires.

ssLib/CommunicationPortinterface”)

<AutomationML /> Application Recommendations: Automation Project

Configuration

5.2 InterfaceClassLibrary

Second main basement of the modelling are the required interface classes. Facing the required model
elements there are interface classes especially required for Automation Project Configuration data
modelling derived from interface classes used from communication system modelling defined in
AutomationML Whitepaper — Communication or derived from AutomationML basic interface classes
defined in AutomationML Whitepaper — Architecture and general requirements

The following figures represent the interface class library.
[i§ AutomationProjectConfigurationinterfaceClassLib
o Tag { Class Variablelnterface }
0 CommunicationPortinterface { Class PhysicalEndPoint }

«o Channel { Class Signallnterface }

Figure 18 — AutomationProjectConfigurationinterfaceClassLib in AutomationML Editor view

<InterfaceClassLib Name="AutomationProjectConfigurationinterfaceClassLib">
<Version>0.9</Version>
<InterfaceClass Name="Tag" RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/
ExternalDataConnector/PLCopenXMLlInterface/VariableInterface">
<Attribute Name="DataType" AttributeDataType="xs:string">
<Description>the type of the data (e.g. bool, byte, word)</Description>
</Attribute>
<Attribute Name="LogicalAddress" AttributeDataType="xs:string">
<Description>address of the tag</Description>
</Attribute>
<Attribute Name="Comment" AttributeDataType="xs:string">
<Description>optional comment for the device</Description>
</Attribute>
</InterfaceClass>
<InterfaceClass Name="CommunicationPortInterface"
RefBaseClassPath="CommunicationInterfaceClassLib/PhysicalEndPoint">
</InterfaceClass>
<InterfaceClass Name="Channel" RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/
Communication/Signalinterface">
<Attribute Name="Type" AttributeDataType="xs:string">
<Description>analog or digital type of the channel</Description>
</Attribute>
<Attribute Name="loType" AttributeDataType="xs:string">
<Description>direction IN or OUT</Description>
</Attribute>
<Attribute Name="Number" AttributeDataType="xs:int">
<Description>number of the channel starting with 0</Description>
</Attribute>
<Attribute Name="Length" AttributeDataType="xs:integer">
<Description>total width of the channel</Description>
</Attribute>
</InterfaceClass>
</InterfaceClassLib>

Figure 19 — AutomationProjectConfigurationinterfaceClassLib as XML representation

<AutomationML /> Application Recommendations: Automation Project

Configuration

521 Tag

A “Tag” is derived from a “Variablelnterface” according to AutomationML Whitepaper - Logic. It is
defined as follows.

Table 13 — Definition Tag

Role class name | Tag

The Interface class “Tag” shall be used in order to represent the symbolic name of an 1/0

RESE e date. Tags shall only be used within a TagTable.

Parent Class Variablelnterface

Path for Element

AutomationProjectConfigurationinterfaceClassLib/Tag
reference

The attribute “Name” shall define the name of
.) the tag.

Name) . .
(AttributeDataType="xs:string”) Note: This attribute is modelled by the
standard attribute Name of the relevant CAEX
object.

“DataType” The attribute “DataType” shall define the type
(AttributeDataType="xs:string”) of the data (e.g. BOOL, BYTE, WORD).

The attribute “Logical Address” shall specify
the address of the tag.

Note: The exporting ECAD tool defines the
Attributes language mnemonic of the attribute. The
importing PLC tool may change this
mnemonic.

The exporting PLC tool may follow the
international mnemonic. The importing ECAD
tool doesn’t change this mnemonic.
Therefore in case of round trip engineering

the use of the international or independent
mnemonic in all participating tools is

“LogicalAddress”
(AttributeDataType="xs:string”)

recommended.
“Comment” The attribute “Comment” shall define an
(AttributeDataType="xs:string”) optional comment for the device

Tags without assigned channels and channels without assigned tags are possible (incomplete
engineering)

5.2.1.1 CommunicationPortInterface

A “CommunicationPortinterface” is derived from a “PhysicalEndPoint” according to AutomationML
Whitepaper - Communication. It is defined as follows.

Table 14 — Definition CommunicationPortInterface

Role class name CommunicationPortIinterface

The interface class “CommunicationPortinterface” shall be used in order to define the

DIESET [physical connection to the network.

Parent Class PhysicalEndPoint

Path for Element
reference

<AutomationML /> Application Recommendations: Automation Project

Configuration

5.2.2 Channel

A “Channel” is derived from a “Signallnterface” according to AutomationML Whitepaper - Architecture
and general requirements. It is defined as follows.

Table 15 — Definition Channel

Role class name | Channel
. The role class “Channel” shall be used in order to define the process interface. A channel

Description s .
shall only be used within a Deviceltem.

Parent Class Signallnterface

Path for Element

reference
“Type” The attribute “Type” shall define the analog

. hyeeatrina® or digital type of the channel (e.g. “Digital”,

(AttributeDataType="xs:string”) “Analog”).
“loType” The attribute “loType” shall specify the

Attributes (AttributeDataType="xs:string”) direction (e.g."Input”, “Output”).
“Number” The attribute “Number” shall specify the
(AttributeDataType="xs:int”) number of the channel starting with 0.
“Length” The attribute “Length” shall define the total
(AttributeDataType="xs:int”) width of the channel.

A channel references with an Internal Link the associated Tags which are stored at a CPU
Deviceltem.

5.2.3 Naming and Escaping
For all CAEX-Path Expressions the CAEX naming and escaping rules are defined as follows:

¢ In a name within a path contains the characters “[“ and “]” these characters have to be
escaped by replacing them with “\[* and “\]”
(e.g.: ,R1/R1.[1]/R1.1.1“ => [R1])/[R1.\[1\]]/[R1.1.1]).

T T)

e If one of the characters “@”, “.”, “.” or “/” appears in the value of a path each part of the path
must be enclosed by square brackets (“[“ and “I’). Example: RefPartnerSideA="[4EA36EBO-
8159-4829-8F4B-A829F3320E27]:[My.Tag]"

e Values of name attributes are not affected.

“wn

e Semantics of the operators “@” and “.” is not applied and must not be supported.

<AutomationML /> Application Recommendations: Automation Project

Configuration

6 Practical examples

In this chapter practical examples for representation of Automation Project Configuration structures in
AutomationML are shown to give a better understanding for the method displayed above.

6.1 Running example

The running example is established by parts of a lab size production system hosted at Otto-von-
Guericke University Magdeburg. This production system contains a set of turntables, conveyers and
multipurpose machines required to manufacture products. These transport systems and machines
contain sensors and actors which are wired to control devices set up by intelligent field bus couplers
from different vendors. The fieldbus couples are connected via Ethernet based communication to PC
systems This structure is depicted in Figure 20.

PC as
Modbus Master

Figure 20 — Example system

Out of the example system only a small portion is considered in the example. This small portion
contains a drive and an inductive sensor contained in a turntable. They are wired to an intelligent
WagoFieldlO containing four input and output sub-devices as well as an intelligent fieldbus head. The
fieldbus head is connected by an Ethernet cable and a Modbus TCP communication to the PC. Here
the PC will act as Master in the Modbus communication. This structure is depicted in Figure 21.

PC as
Modbus Master

e,

Control
Device

NetworkConnection

Sensor
Pin 1

Jurntable

WagolOBK750-841 I0Wire_Drive_DO1

WagolOOutput750<530_1

WagolOlnput750-437_1 10Wire_Sensor_DI1

WagolOInput750-437_2 \agolOOutput750-530_2

Figure 21 — Example system schematic representation

<AutomationML /> Application Recommendations: Automation Project

Configuration

6.2 Additionally applied role classes

Following AutomationML Whitepaper — Communication for Automation Project Configuration
modelling the following role classes will be applied in addition to the role classes defined in clause 5.1.

The following Figure shows the CommunicationRoleClassLib defined in AutomationML Whitepaper —
Communication to be used.
« [CommunicationRoleClassLib
- PhysicalDevice { Class: AutomationMLBaseRole}
PhysicalEndpointlist {Class: AutomationMLBaseRcle}
PhysicalConnection {Class: AutomationMLBaseRole}
PhysicalMetwork {Class: AutomationMLBaseRole}
- LogicalDevice {Class: AutomationMLBaseRole}
LegicalEndpointlist {Class: AutomationMLBaseRole}
LegicalConnection {Class: AutomationMLBaseRaole}
LogicalNetwork {Class: AutomationMLBaseRole}
CommunicationPackage {Class: AutomationMLBaseRole}

Figure 22 — CommunicationRoleClassLib

Out of this role class library the role classes LogicalConnection and PhysicalConnection need to be
applied. They are used to indicate elements modelling the communication between network nodes or
I0systems within a subnet (LogicalConnection) and the physical wiring between Channels
(PhysicalConnection).

6.3 Additionally applied interface classes

Following AutomationML Whitepaper — Communication for Automation Project Configuration
modelling the following interface classes will be applied.

The following Figure shows the CommunicationinterfaceClassLib defined in AutomationML
Whitepaper — Communication to be used.

+ [CommunicationinterfaceClassLib
+o PhysicalEndPoint {Class: Communication}
0 LogicalEndPoint {Class: Communication}
«p DatagrammObject {Class: Communication}
Figure 23 — CommunicationinterfaceClassLib

Out of this interface class library the interface classes LogicalEndPoint and PhysicalEndPoint need to
be applied. They are used to model the linking points modelling the communication between network
nodes or |0Osystems within a subnet (LogicalEndPoint) and the physical wiring between Channels
(PhysicalEndPoint).

6.4 SystemUnitClassLibrary

The SystemUnitClassLibrary to the described model is based on the definition of the necessary
devices and connection elements relevant for the Automation Project Configuration. For the example
these are:

(1) the network card applied in the field bus coupler and the PC,

(2) the digital input module,

(3) the digital output module,

(4) the programmable fieldbus controller including a network card (1),

(5) the modular fieldbus 1/O system containing a programmable fieldbus controller (4), two digital
input modules (2) and two digital output modules (3) ,

Application Recommendations: Automation Project

Configuration

(6) the sensor,
(7) the drive,
(8) the wire,
(9) the network,
(10)the master slave communication network, and
(11)the PC including a network card (1).
The elements of the SystemUnitClassLibrary are depicted in Figure 24.

IZ‘ ff ExampleAutomationProjectConfigurationSystemUnitClassLib

E @ MetworkCard { Class }

E [5if WagelOlnput750-437 { Class)
E [5f WagolOOutput?50-530 { Class }
E 5] WagolOBKT750-841 { Class }

E @ WagoModularController { Class }

E @ Sensor { Class }
E @ Drive { Class }
E [5u] Wire { Class }
E@ Metwork { Class }
E [l MasterSlaveNetwork { Class }
E [PC{ Class }
Figure 24 — SystemUnitClassLibrary of the example

In the following the different system unit classes are described in more detail.

Application Recommendations: Automation Project
Configuration

<AutomationML/>

6.4.1 Network card

The SystemUnitClass NetworkCard provides a model of generic network cards applicable within the
PC as well as the Fieldbus coupler. It contains internal elements for the network node, the 10System,
and the Port with relevant attributes and interfaces as defined in Chapter 5.1. It has the role
Communicationinterface and, therefore, a set of attributes defined in Section 5.1.9. The model is
depicted in the following figure.

<@ TypeName

< DeviceltemType
<y PositionMumber
<> Builtin

< Typeldentifier
<y FirmwareVersion

<> PlantDesignation IEC

S

. NetwarkCard { Class }

- m NetwarkNode { Class Role Mode }

-

NetworkNode-Interfaces

<> Type
<Ay MetworkAddress

«0 Networkdssigment { Class LogicalEndPoint }

<y Locationldentifier IEC
qp Comment
<y Address
R
oy StartAddress

@ Length

<@y TypeName

<y DeviceltemType
<y PositionNumber
<qy Builtln

<y Typeldentifier

¢y FirmwareVersion

¢y PlantDesignation IEC

AutomationProjectConfigurationRoleClassLib/Nod @ oType
utomationFroje: onngurationholellassLi f’ oce @ Locationldentifier IEC

| [I]] 10System { Class Role loSystem } @ Label =
<gy Comment

- [0System-Interfaces

~) ¢gy Address
«o MasterSlaveAssigment { Class LogicalEndPoint }
~ e 1

AutomationProjectConfigurationRoleClassLib/ToSysts
utomationProjectConfigurationRoleClassLib/loSystem @ StatAddress

- m CommunicationPort { Class Role CommunicationPort }

<> Length
A CommunicationPort-Interfaces
o o > [eType
o CommunicationPortInterface { Class CommunicationPortInterface } Label
<R Label

AutomationProjectCanfigurationRoleClassLib/CommunicationPort

AutomationPrajectCanfigurationRoleClassLib/CommunicationInterface

Figure 25 — Network card model

6.4.2 Digital input module

The SystemUnitClass WagolOlnput750-437 provides a model of an 8 digit binary input module
applicable to model a modular field-10. It contains a set of 8 channel interfaces for each input pin. In
addition it has the role Deviceltem and therefore the attributes defined in Section 0. The model is
depicted in the following figure.

<Ay TypeMame
¢Ay DeviceltemType
¢y PositionNumber

<Ry Builtln
Y WagolCInput750-437 { Class }

i WagolOInput750-437-Interfaces

<Ry Typeldentifier

¢Ry FirmwareVersion

0 Channel0 { Class Channel} 0 ACBO .)
«A: PlantDesignation IEC
+o Channell { Class Channel} D ACBO . -
¢gy Locationldentifier [EC
oo Channel2 { Class Channel} 0 A€ BO
¢gy Comment
«0 Channel3 { Class Channel} 0ACBO
) <gy Address
«0 Channeld { Class Channel} 0 A©BO
~lems 1
+o Channeld { Class Channel} 0 A©BOD
¢Rs StartAddress
oo Channel6 { Class Channel} 0 A©BO
¢R: Length
«0 Channel? { Class Channel} 0A©SBO
<Ry IoType

AutomationProjectConfigurationRoleClassLib/Deviceltem

Figure 26 — Digital input module model

<AutomationML /> Application Recommendations: Automation Project
Confi

nfiguration

6.4.3 Digital output module

The SystemUnitClass WagolOOutput750-530 provides a model of an 8 digit binary output module
applicable to model a modular field-1O. It contains a set of 8 channel interfaces for each output pin. In
addition it has the role Deviceltem and therefore the attributes defined in Section 0. The model is
depicted in the following figure.

<Ry TypeMame
¢py DevicelternType
<Ry Positionhumber
<Ry Builtln
(a | WagolOOutput730-530 { Class } «p: Typeldentifier
o N WagolOOutput?30-530-Interfaces <Ry FirmwareVersion
o «0 Channell { Class Channel} 0A® B0 «gy PlantDesignation JEC
«0 Channell { Class Channel} 0ASBO «gy Locationldentifier IEC
«o Channel? { Class Channel} 0ACBO ¢y Comment
0 Channel3 { Class Channel} 0ASBO) <@y Address
«o Channeld { Class Channel} 0AS B0 AT S
0 Channel5 { Class Channel} 0ASBO ¢Ry StartAddress
0 Channel® { Class Channel} 0ASBO <f> Length
+0 Channel7 { Class Channel} 0ACBO < loType

AutomationProjectConfigurationRoleClassLib/Deviceltem

Figure 27 — Digital output module model

<AutomationML /> Application Recommendations: Automation Project

Configuration

6.4.4 Programmable fieldbus controller

The SystemUnitClass WagolOBK750-841 provides a model of a programmable fieldbus coupler
applicable to model a modular field-10. It contains InternalElements to model the TagUserFolders and
the TagTables required for structuring the tags relevant within the Field-10. They contain Tag
interfaces. In addition the SystemUnitClass contains an InternalElement modelling the NetworkCard
as defined in Chapter 5.1. Finally the SystemUnitClass has the role Deviceltem and therefore the
attributes defined in Section 0. The model is depicted in the following figure.

a | [5u] WagolOBKT50-841 { Class } «q: TypeMame
4 [iIf] TagUserFolder_Inputs { Class Rol UserFolder } <Ry DeviceltemType
4 [If] TagTable InputSubdevicel { Class RoleTagTable) *}.cm AssignToDefault ¢R: PositionMurnber

" TagTable_InputSubdevicel-Interfaces ¢Rs Builtln
«0 1agl{ClassTag} 0ACBO
«0 lagl{ClassTag} DACEBO

wo Tag2{ClassTag} DASBO

«q: Typeldentifier
<Ry FirmwareVersion

¢R: PlantDesignation IEC

«0 Tag3{ClassTag} 0ACBO ¢ Locationldentifier [EC
«0 Tagd{ClassTag} 0ACBO «g: Comment
+0 Tag5{ClassTag} 0ACBO ~| <gs Address
oo Tagf{ClassTag} 0ACTBO a1
«0 Tag7 {ClassTag} 0ACBO ¢y StartAddress
w [If] TagTable InputSubdevice? { Class Role TagTable } <R» Length
4 [If] TagUserfolder_Qutputs { Class Role TagUserFolder } R loType

w [If] TagTable_OutputSubdevicel { Class Role TagTable)
- E TagTable_OutputSubdevice2 { Class Role TagTable }

- E MetworkCard { Class NetworkCard Role }
AutomationProjectConfigurationReoleClassLib/Deviceltem

Figure 28 — Programmable fieldbus coupler model

<AutomationML /> Application Recommendations: Automation Project

Configuration

6.4.5 Modular fieldbus I/0 system

The SystemUnitClass WagoModularController models the modular fieldbus 1/0 system of the example
with 2 input modules and 2 output modules. It contains InternalElements derived from the
SystemUnitClasses WagolOBK750-841, WagolOInput750-437, and WagolOOutput750-530 to model
the modular structure of the modular fieldbus 1/0 system. Within the SystemUnitClass related Channel
and Tag interfaces are connected by using internal links. Thereby, the assignment of a variable to a
physical input is modelled. Finally, the SystemUnitClass has the role Device and, therefore, the
attributes defined in Section 5.1.4. The model is depicted in the following figure.

4 | [su) WagoMeodularController { Class | gy Typeldentifier
i E WagolOBKT750-841 { Class WagelOBK750-841 Role Deviceltem } ¢fy Comment
i E TagUserFolder_Inputs { Class Role TagUserFolder }
i E TagTable_InputSubdevicel { Class Role TagTable }

i TagTable_InputSubdevicel-Interfaces
«0 1agl{ClassTag} 0ACE2

«0 lagl{ClassTag} DACB2

o0 lagZ {ClassTag}] 0ACB2

o0 Tag3 {ClassTag}] 0ACB2

«0 lagd{ClassTag} 0ACB?2

o0 Tag3{ClassTag} 0ACB2

o0 Taghb{ClassTag} 0ACB2

«0 lag/ {ClassTag} 0ACB?2
- |E| TagTable_InputSubdevice? { Class Role TagTable }
w [if] TagUserFolder_Qutputs { Class Role TaglUserFolder }
w [If] MetworkCard { Class MetworkCard Role }
4 | [IEf] WagolOInput730-437_1 { Class WagolOlnput730-437 Role Deviceltem }
i WagolClnput/50-437_1-Interfaces
«0 Channell { Class Channel} 2 AQBOD
Channell { Class Channel } 2AQBO0
Channel2 { Class Channel } 2AQRBO
Channel3 { Class Channel } 2AQRBO
Channeld { Class Channel } 2 A B0

Channels { Class Channel } 2 A B0

6 & 8 &6 8 &

Channeld { Class Channel } 2AS B0

«o Channel? { Class Channel } 2AS B0
w | [If] WagelClnput750-437_2 { Class WagolClnput750-437 Role Deviceltem }
w | [If] WagelOOutput750-530_1 { Class WagolOOutput?50-530 Role Deviceltem |
w | [If] WagelOOutput750-530_2 { Class WagolOOutput?50-530 Role Deviceltem }
AutomationProjectConfigurationRoleClassLib/Device

Figure 29 — Modular controller model

<AutomationML /> Application Recommendations: Automation Project

Configuration

6.4.6 Sensor

The SystemUnitClass Sensor models the applied sensor within the example system. It contains one
Channel interface to model the physical output to the sensor and one Tag interface to model the
logical value of the sensor state. The SystemUnitClass has the role Device and, therefore, the
attributes defined in Section 5.1.4. In addition the SystemUnitClass has the role Sensor from the
AutomationMLCSRoleClassLib from AutomationML Part 2 to identify it is a sensor. The model is
depicted in the following figure.

& @ Sensor { Class Ry Typeldentifier

- Sensor-Interfaces <Ay Comment

o Finl { Class Channel }

«o Varl {Class Tag)
AutomationProjectConfigurationRoleClassLib/Device
AutomationMLCSRoleClassLib/ControlEquipment/Sensor

Figure 30 — Sensor model

6.4.7 Drive

The SystemUnitClass Drive models the applied actor within the example system. It contains one
Channel interface to model the physical input to the actor and one Tag interface to model the logical
value of the actor state. The SystemUnitClass has the role Device and, therefore, the attributes
defined in Section 5.1.4. In addition the SystemUnitClass has the role Actuator from the
AutomationMLCSRoleClassLib from AutomationML Part 2 to identify it is an actuator device. The
model is depicted in the following figure.

a [5 Drive { Class] «r Typeldentifier

™ Drive-Interfaces Ry Comment

+o Pinl { Class Channel }

g Varl [Class Tag }
AutomationProjectConfigurationRoleClassLiby/Device
AutomationMLCSReleClassLib/ControlEquipment/Actuator

Figure 31 — Drive model

6.4.8 Wire
The SystemUnitClass Wire models the necessary wiring connections between the different channel
interfaces following AutomationML Whitepaper — Communication. Therefore it contains two

PhysicalEndPoint interfaces and has the role class PhysicalConnection. The model is depicted in the
following figure.

i Wire { Class }
i Wire-Interfaces
oo PhysicalEndPeint { Class PhysicalEndPoint }
oo PhysicalEndPeint { Class PhysicalEndPoint }
CommunicationRoleClassLib/PhysicalConnection

Figure 32 — Wire model

<AutomationML /> Application Recommendations: Automation Project

Configuration

6.4.9 Network

The SystemUnitClass Network models the ModbusTCP communication network as an Ethernet
network. Following AutomationML Whitepaper — Communication it contains one LogicalEndPoint
interfaces applied to assign the different network nodes to the network by linking the related
interfaces. The SystemUnitClass has the role class SubNet and, thereby, the related interfaces
defined in Section 5.1.3. The model is depicted in the following figure.

4 | [5if) Netwaork { Class } Ay Type

& |E| MetworkConnections { Class Role LogicalConnection }
" MetworkConnections-Interfaces
0o LogicalEndPointl { Class LogicalEndPoint }
AutomationProjectConfigurationRoleClassLib/Subnet

Figure 33 — Network model

6.4.10 Master slave communication network

The SystemUnitClass MasterSlaveNetwork models the Master-Slave relation of the ModbusTCP
communication network. Following AutomationML Whitepaper — Communication it contains one
LogicalEndPoint interfaces applied to assign the different IOSystem elements to the network by linking
the related interfaces. The SystemUnitClass has the role class SubNet and, thereby, the related
interfaces defined in Section 5.1.3. The model is depicted in the following figure.

& MasterslaveMetwork { Class } A Type

& E MasteSlaveConnections { Class Role LegicalConnection }
"~ MasteSlaveConnections-Interfaces
«o LogicalEndPointl { Class LogicalEndPoint }
AutomationProjectConfigurationRoleClassLib/Subnet

Figure 34 — Master slave communication network model

6.4.11 PC

The SystemUnitClass PC models the PC acting as Modbus TCP master. In contains an Internal
Element modelling the network card following the definition above. In addition it has the role Device
and, therefore, the attributes defined in Section 5.1.4. The model is depicted in the following figure.

. PC {Class } <Ay Typeldentifier

— E MetworkCard { Class NetworkCard Role } <> Comment

AutomationProjectConfigurationRoleClassLib/Device

Figure 35 — PC model

<AutomationML /> Application Recommendations: Automation Project

Configuration

6.5 InstanceHierarchy
Applying the SystemUnitClasses described in the last Section the instance hierarchy can be modelled.

Therefore the relevant modelling elements need to be embedded in the expected hierarchy of the
manufacturing system structure applied. In the running example this system structure is based on the
ISA 95 hierarchy of elements of a production system. Thus it models the hierarchy of an enterprise
with sites which contain manufacturing areas in which different production lines exist consisting of
work cells and units. All these layers are indicated by roles defined in the role class library
AutomationMLExtendedRoleClassLib defined in AutomationML Part 2. In addition there are modelling
elements for the enclosure and the wiring following the AutomationML whitepaper “Communication”.
The structure is depicted in Figure 36.

Nk [AFExampleSystem
i m Otto-von-Guericke-University { Class Role Enterprize }
- E Gebaeudeld ! Class Role Site)
a [IE] Raumd4s { Class Role Area}
a |[if] FlexibleManufacturingSystem { Class Reole ProductionLine }
& E Baszeline { Class Role WorkCell }
- @ turntabled { Class Role Unit }
+ [if] controlcabinet { Class Role ControlCabinet }
» [If] IOWiring { Class Role PhysicalMetwork }

Figure 36 — Upper layer hierarchy elements

Within the defined hierarchy the control devices are embedded. In case of the running example there
are a sensor and a drive InternalElement instantiated from the relevant system unit classes as
depicted in Figure 37.

a E Baseline { Class Role WorkCell }
i |E| turntablel { Class Role Unit }
A |E| Sensor { Class Sensor Role Device }
A Sensor-Interfaces

«0 Pinl{Class Channel}

«0 Varl { Class Tag }
AutomationProjectConfigurationRoleClassLib/Device
AutomaticnMLCSRoleClassLib/ContralEquipment/Sensor

A |E| Crive { Class Drive Role Device }
A Drive-Interfaces

«o Pinl{Class Channel}

«0 Varl { Class Tag }
AutomationProjectConfigurationRoleClassLib/Device
AutomatienMLCSReoleClassLib/ControlEquipment/Actuator

AutomaticnMLExtendedRoleClassLib/Unit

AutomationMLExtendedRoleClassLib/ WorkCell

Figure 37 — Modelling elements of turntable

<AutomationML /> Application Recommendations: Automation Project

Configuration

The modelling elements of the control devices within the control cabinet are integrated in the
corresponding InternalElement. Therefore, on the one hand, the system unit classes
WagoModularController, PC, Network, and MasterSlaveNetwork are instantiated as Internal Elements.
On the other hand an InternalElement with the role PhysicalNetwork is modelled containing instances
of the system unit class Wire to model the Ethernet wiring following AutomationML whitepaper
“Communication”. This structure is depicted in Figure 38.

" |E| controlcabinet { Class Role ControlCabinet }
- E WagoModularController { Class WagoMeodularController Role Device }
- E ControlPC { Class PC Role Device }
- E EthernetMetwork | Class Metwork Rele Subnet }
- E Modbushletwork { Class MasterSlaveMNetwork Role Subnet }
" @ EthernetWiring { Class Role PhysicalMetwork }
"™ E EthernetWire { Class Wire Role }
™ EthernetWire-Interfaces
0 PhysicalEndPointl { Class PhysicalEndPoint }
0 PhysicalEndPointZ { Class PhysicalEndPoint }
CommunicationRoleClassLib/PhysicalConnection

Figure 38 — Modelling elements of control cabinet

The wire objects are connected to the CommunicationPort objects of the PC and WagolOBK750-841
objects. Therefore, the related interfaces of the CommunicationPortinterface type and
PhysicalEndPoint type are linked by an internal link. Figure 39 depicts this link for the case of the
WagolOBK750-841 linked to the EthernetWire.

<AutomationML /> Application Recommendations: Automation Project

Configuration

4 | [1f] controlcabinet { Class Rele ControlCabinet }
a [1E] WagoModularController { Class WagoModularController Role Device }
& [If] WagoIOBK750-841 { Class WagolOBK750-841 Role Deviceltem }
w [IE] TagUserFolder_Inputs { Class Role TagUserFolder }
- m TagUserFolder_Outputs { Class Role TagUserFolder }
a [IE] MetworkCard { Class NetworkCard Role }
« [If] MetworkMode { Class Role Mode)
w | [1f] [O5ystem { Class Role IoSystem }
- [if] CommunicationPort { Class Rele CommunicationPort }
" CommunicationPort-Interfaces
«o CommunicationPortinterface { Class CommunicationPortinterface }
AutomationProjectConfigurationRaoleClassLib/Communicationinterface
v [If] WagolOInput750-437_1 { Class WagolOlnput750-437 Role Deviceltem }
w | [If] WagolOInput750-437_2 { Class WagolOInput750-437 Role Deviceltem }
v [If] WagolOOutput750-530_1 { Class WagolOOutput750-530 Role Deviceltem }
w | [If] WagolOOutput?50-530_2 { Class WagolOOutput750-530 Role Deviceltem }
v [If] ControlPC { Class PC Role Device }
a [If] EthernetMNetwork { Class Network Role Subnet }
a |[if] MetworkConnections { Class Role LogicalConnection }
" MetworkConnections-Interfaces
«o LogicalEndPaointl { Class LogicalEndPoint }
a [If] ModbusNetwork { Class MasterSlaveNetwork Rele Subnet }
a |[if] MasteSlaveConnections { Class Role LogicalConnection }
& MasteSlaveConnections-Interfaces
«o LogicalEndPaointl { Class LogicalEndPoint }
a [If] EthernetWiring { Class Role }
a [if] EthernsetWire { Class Wire Role }

& Ethernetwire-Interfaces

g PhysicalEndPointl { Class PhysicalEndPoint }
=0 PhysicalEndPoint2 { Class PhysicalEndPoint }
CommunicationRoleClassLib/PhysicalConnection

Figure 39 — Modelling of communication wiring based on wire elements and internal links

In addition to the Ethernet Wiring also the physical wiring of the control devices need to be modelled.
Therefore, the system unit class Wire is instantiated two times with the InternalElement IOWiring as
depicted in Figure 40. These wire objects are connected by linking the interfaces of the interface class
PhysicalEndPoint on the one hand to the channel interfaces of the sensor and actor InternalElements
as given in Figure 41 and on the other hand to the channel interfaces within the WagolOBK750-841

InternalElement.

<AufomafiDan_/> Application Recommendations: Automation Project

Configuration

& m IOWiring { Class Role PhysicalNetwork }
ﬂ [if] SensorWire { Class Wire Role }
& w9, SensorWire-Interfaces
e PhysicalEndPointl { Class PhysicalEndPoint }
=0 PhysicalEndPaoint2 { Class PhysicalEndPoint }
CommunicationRoleClassLib/PhysicalCannection
- ||E| DriveWire { Class Wire Role }
4 %9, DriveWire-Interfaces
«0 PhysicalEndPointl { Class PhysicalEndPoint }
0 PhysicalEndPoint2 { Class PhysicalEndPoint }

CommunicationRoleClassLib/PhysicalCannection

Figure 40 — Modelling elements of wiring

" @ Bazzline [Class Role Worklell
& E turntabled { Class Role Unit }
& El Senzor { Class Senzor Role Device §
& | =9, SensorInterfaoes

e Pinl [Class Channel }

e Warl [Class Tag;
AutomationProjeciConfigurationRaoleClassLibDevice
ERl| AutomationMLCSRoleClazsliby/ControlEquipment/Senzor
a [If] Drive { Class Drive Role Device }
& | =@, Drive-Imerfaces

o Pinl [Class Channel

«a Varl [Class Tag }
AutomationProjectConfigurationRioleClasslib/Device
Eqf] AutomaticnMLCSRoleClasslib/ControlBquipment/Actuatar
[iR] AutomationhLExtendedRoleClassLib/Unit
[7 AuvtomationMLExendedRoleClazsLlib WaorkCell
w [I£] controlcabinet { Olass Role ControlCabinet }
& @ 10Wiring [Class Role FhyzicalMetwork b
" E SenzorWire { Class Wire Role }
& | %, SencorWire-Interfaces
g PhysicalEndPointl { Class PhysicalEndPoint }
wg PhysicalEndPoint? { Class PhysicalEndPoint }

E CommunicationfoleClassLib/PhysicalConnection
a [iE] DirrveWire { Class 'Wire Role
a | £, DriveWire-Interfaces

o PhysicalEndPointl { Class PhysicalEndPoint } --------------------

«o PhysicalEndPoint2 { Class PhysicalEndPoint }
ERl] CommunicationfoleClazsLib/PhysicalConnection
[fR CommunicationRoleClazsLib/PhysicalNetwork

Figure 41 — Modelling of physical wiring based on wire objects and internal links

<AutomationML /> Application Recommendations: Automation Project

Configuration

Finally the different devices need to be assigned to the different subnets and IOSystems. This is done
by modelling InternalLinks between the Interfaces of the type logicalEndPoint within the
InternalElements NetworkNode or IOSystem on the one side and Network or MasterSlaveNetwork on
the other side. This structure is depicted in Figure 42.

& E controlcabinet { Class Role ControlCabinet
i E WagoModularController { Class WagoModularController Role Device }
a | [IE] WagolOBK750-841 { Class WagolOBK750-841 Role Deviceltem }
w [[If] TagUserFolder_Inputs { Class Rele TagUserFolder }
w [If] TagUserFolder_Outputs { Class Reole TagUserFolder }
a [[If] MetworkCard { Class MNetworkCard Rele)
w | [If] NetworkMode { Class Role Node }
a |[if] IOsystem { Class Role [oSystem }
A [OSystem-Interfaces

«o MasterSlaveAssigment { Class LogicalEndPoint }

- @ CommunicationPort { Class Rele CommunicationPort }
AutomationProjectConfigurationRoleClassLib/Communicationinterface
w | [If] WagolOInput750-437_1 { Class WagolOlInput750-437 Role Deviceltem }
- E WagolOInput750-437_2 { Class WagolOInput750-437 Role Deviceltem }
» | [If] WagolOOutput750-530_1 { Class WagolOOutput750-530 Role Deviceltem }
- E WagolOOutput750-530_2 { Class WagolOOutput750-530 Role Deviceltem }
a [1£] ControlPC { Class PC Role Device }
a [[IE] MetworkCard { Class MetworkCard Role |
v [If] NetworkMode { Class Role Node }
a | [IE] IOSystem { Class Role loSystem }
A [OSystem-Interfaces

o MasterSlavefssigment { Class LogicalEndPaoint }

w [I£] CommunicationPort { Class Role CommunicationPort }
AutomationProjectConfigurationRoleClassLib/Communicationinterface
- |E| EthernetMetwork { Class MNetwork Role Subnet }
a [IE] ModbusMetwork { Class MasterSlaveMetwork Role Subnet
" @ MasteSlaveConnections { Class Role LogicalConnection }

" MasteSlaveConnections-Interfaces

#0 LogicalEndPointl { Class LogicalEndPoint }

Figure 42 — Modelling of device assignment to networks

<AutomationML /> Application Recommendations: Automation Project

Configuration

All instantiated elements of the model may get attribute values. For example the
WagoModularController instance will get values for the attributes Typeldentifier and Comment. Its sub-
element WagolOBK750-841 will get values for the attributes TypeName, DeviceType,
PositionNumber, Builtin, and others. And, the ChannelO interface within the WagolOInput750-437_1
InternalElement will have values for the attributes DataType, LogicalAddress, and Comment. This
example (and further given attribute values) are depicted in Figure 43. It shall be recognised, that,
following AutomationML part 1 — Architecture, not all attributes of the SystemUnitClass referenced by
an InternalElement by RefBaseSystemUnitPath or RoleClasses referenced by SupportedRoleClass
and/or RoleRequirement need to be provided with a value. Not used attributes can be deleted in the
InstanceHierarchy.

Name Value
Typeldentifier ModularPLC
Comment Ethemet basiertes Steusrungsgerét von Wage mit 16 Dl und 16 DO
Name Value
TypeN y
+][] WagoModularController { Class roller Role Device } ypehame 750-841
a [lf] WagelOBK750-841 { Class WagolOBK750-841 Role Deviceltem } DeviceltemType SPS - Programmierbarer Feldbuscontroller ETHERNET TCP/IP
+ | [IE] TagUserFolder_Inputs { Class Role TagUserFolder) PositionNumber | 1
+ |[Tf] TagUserfolder_Qutputs { Class Role TagUserFolder } Lot s Builtin 5
PositionNumber | 3
“« |[TE] NetworkCard { Class NetworkCard Role } ———— | S
eldentifier o
+ | [E] NetworkNode { Class Role Node Builtin ey ve OrderNo 4711-1
Label :
| [If] 10System { Class Role IoSystem } \ = X1 FirmwareVersion | 12117
Lme icationPort { Class Role C icationBort) PlantDesignation | —FMS=BKL
| 7§ CommunicationPort-Interfaces Locationldentifier | +0yGU+GL0+445+ FMS+CCO1+WC-+BK
+o CommunicationPortlnterface { Class CommunicatidgPortinterface }
SR AutomationProjectConfigy RoleClassLib/Communi ikterface Name Value
« | [[E] WagolOlnput?50-437_1 { Class WagolOlnput750-437 Role Devicelter } Type Ethemet
Name Value Netvorkadd
o | 29, WagolOlnput750-437_1-Interfaces PosiionNumber |1 etworkAddress 18216801
0 Channel0 { Class Channel } Buitiin e — —_
0 Channell { Class Channel } Lot —
-
o Channel? { Class Channel } TypeName 750-437
w0 Channel3 [Class Channel } DeviceltemType 8-Kanal-Digitaleingangsklemme
+0 Channel4 { Class Channel } Name Value PositionNumber n
o Channels { Class Channel } DI Boolean
LogicalAdd Buildn 0
«o Channel { Class Channel } ogicaliddress %IX0.0
0 ChannelT { Class Channel } Comment First Bit Typeldentifier Order-No 4711-2
+ [lf] WagolOInput750-437 2 { Class WagolOlnput750-437 Role Deviceltem } PlantDesignation SN
+ | [[£] W2galOOutput750-530_1 { Class WagelOOutput750-530 Role Deviceltem } . -
ocationldentifier
+ | [[E] W2golOOutput750-530_2 { Class Wagel0Output750-530 Role Deviceltem } STl Bl oSk L il
Address.1.StartAddress 0
Address.1Length 4
Address.1IoType 1

Figure 43 — WagoModularController instance with relevant parameters described by attributes

