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Abstract 

The world of production systems is at a turning point. Increasing importance of customer needs and 
increasing speed of technological progress affect production system owners to increase production 
system flexibility related to product portfolio and resource utilisation [1]. But this increase of flexibility is 
not that easy to reach. New ways of production systems engineering and use are required as 
envisioned in the Industrie 4.0 approach [2] and [3]. 

Industrie 4.0 envisions an increased integration in many direction related to production systems. It 
considers the integration of different life cycle phases of production systems, the integration along the 
different layers of control ranging from field control to company networks, and the integration along the 
engineering chain of production systems, i.e. the chain of engineering activities executed by engineers 
with appropriate engineering tools. 

Increased flexibility requires a higher frequency of engineering activities (design and redesign). Thus, 
engineering gets more important in the production system life cycle as its time and cost share in the 
production system life cycle increases. The integration of engineering activities and their involved tools 
along the engineering chain shall be one mean to reduce engineering time and costs by preventing 
unnecessary replication of engineering activities, increased continuity of engineering tool chains, and 
improved cooperation of engineers (to name only a few expected effects). 

One means to enable the integration of engineering activities and tools along engineering chains of 
production systems and, additionally, to enable the application of engineering data within the use 
phase of a production system is an appropriate date exchange format. Following the roadmap of 
Industrie 4.0 such a data format has to be developed. Within this paper the data exchange format 
AutomationML is considered. The range of data representation of AutomationML is sketched to enable 
a judgement whether AutomationML can be a candidate for implementation of integration within the 
engineering chain of production systems following the Industrie 4.0 approach or not. 
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1 Introduction 

The engineering of production systems is a complex process involving several engineers of several 
engineering disciplines executing several engineering activities and using / creating several 
engineering artefacts required to finally be able to build up, run, and maintain a production system [1]. 

As different investigations have shown, the engineering of production systems involves a huge amount 
of human labour [5]. But several engineering activities need to be repeated within different engineering 
tools as there are no appropriate means for data exchange between these tools [6], [7]. Thus, there 
have to be means for lossless data exchange along the complete engineering tool chain. 

To ensure lossless data exchange different approaches have been considered. Many engineering 
organizations and companies have developed their own software solutions. Facing all these 
approaches three main philosophies to ensure lossless data exchange along the engineering activity 
and tool chain can be named with the “One Tool For All”, the “Best of Breed”, and the “Integration 
Framework” philosophy. Each of them requires different data models, different data exchange 
methodologies and technologies, and different software systems. All of them have their special 
advantages and disadvantages [8]. 

 

Figure 1 - Example for a "Best of Breed" Based 
Engineering Network Figure 2 - Example for an "Integration 

Framework" Based Engineering Network 

Within the “Best of Breed” philosophy (see Figure 1), which is usually applied within engineering 
projects of SMEs and/or projects with more than one company involved as well as within the 
“Integration Framework” philosophy (see Figure 2) existing engineering tools are combined via 
bilateral data exchange or via a centralized data broker. To enable the necessary data exchange 
between the possibly changing engineering tools standardized data exchange formats like 
AutomationML [9] and STEP [10] might be preferable. They have to be able to cover possibly all but at 
least most of the information required and/or produced within the engineering process of production 
systems. 

For such data exchange formats there are a set of (sometimes contradicting) requirements to be 
fulfilled: 

• The data format shall be adaptable to different application cases and flexible with respect to 
extensions and changes. 

• The data representation shall be efficient. 

• The data representation shall be human readable. 

• The data representation shall be based on international standards. 

These requirements will easily lead to an XML based data format [6]. 

Following [11] data exchange between engineering tools requires two sets of levels of standardisation, 
the syntax levels and the semantic levels. At the syntax levels the correct technical representation of 
the data objects within the data exchange format are defined. Thereby, the vocabulary of the data 
exchange is provided. In contrast, at the semantic levels the interpretation of data objects, i.e. their 
meaning within the conceptualisation of objects within the engineering tool chain, are defined. 
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Data exchange formats can be defined in two ways, either they define syntax and semantics together 
as applied in the STEP approach or they define syntax and semantics separately as in the 
AutomationML approach. Since separate definition of semantics enables a greater flexibility and 
adaptability of a data exchange format to application cases this approach seems to be preferable. 

In the following the Automation Mark-up Language (AutomationML) will be described in detail. It will be 
presented 

• which engineering processes and engineering data are covered by AutomationML in the 
current version following the needs of the Industrie 4.0 approach (Section 2), 

• what the general architecture of AutomationML is (Section 4), 

• how the topology of a production system covering its hierarchy of system components and 
devices is represented by AutomationML (Section 5), 

• how model elements of AutomationML can be enriched with semantic identifications (Section 
6), 

• how geometry and kinematics information are modelled by AutomationML (Section 7), 

• how behaviour information are modelled by AutomationML (Section 8), 

• how networks are modelled in AutomationML (Section 9),  

• how additional information can related to system components and devices added to 
AutomationML models (Section 10), and finally 

• what shall be taken into account when using AutomationML for implementing engineering 
chain integration within an Industrie 4.0 approach (Section 11). 

2 Covered Engineering Processes and Engineering Data 

The main target of application AutomationML is developed for is the field of production systems 
engineering and commissioning. Following the consideration of the life cycles of the different systems 
involved within production systems (production system, production technology, product, order) as 
given in [12] the relevant life cycle phases are component and technology development responsible 
for the design and implementation of production system components and devices, the production 
systems engineering executing the detailed design of a production system, and the commissioning of 
the production system including system testing, installation, and ramp-up (see Figure 3) which will be 
called plant planning process in the future. 

 

Figure 3 - Considered Engineering Process 

Focusing on the plant planning process there are different engineering processes described in 
literature [13], these are similar to each other just highlighting different aspects depending on the 
application needs [14]. Figure 4 shows an overview on this process. It consists of the five phase’s 
analysis, basic planning, detailed engineering, system integration, and commissioning and use.  
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The analysis phase is dedicated to collect all requirements on the behaviour of the production system 
emerging from the product to be produced, the process executed for this production, and the 
additional requirements related to economical success, legal issues, environmental protection, etc. 
Therefore, the analysis phase contains the activities requirement engineering and system process 
planning where the requirement engineering collects the requirements and the system process 
engineering details the production process to be executed covering all technical functions and support 
functions needed to execute it. The outputs of the analysis phase are the process description of the 
production process to be executed as well as technical requirements to the production system. 

The basic planning phase is related to the rough design of the production system without considering 
implementation details like using hall layout restrictions. It contains the component selection, the 
detailed system process planning, and the behaviour simulation. The component selection is 
responsible for the identification and selection of production resources to be applied within the 
production process to be executed. Exploiting the selected components the production process is 
detailed mapping the resource processes to the production process needs and adding all necessary 
secondary processes. Now, the detailed process on the selected resources can be simulated to 
initially validate especially economical requirements on the production system. The outputs of the 
basic planning phase are the set of selected plant components and the detailed processes executed 
by them. 

The detailed engineering phase is related to the functional engineering of the production system finally 
leading to a detailed engineering of all production system parts reflecting the factory hall layout 
restrictions. It covers the mechanical, electrical, piping, control, robot, and HMI engineering, the 
process replanning, and the virtual commissioning. The mechanical engineering creates the 
mechanical structure of the production system required to physically execute the production 
processes. Therefore, all physical parts of the production system including the control devices are 
selected and positioned. The electrical engineering is responsible for the electrical wiring as well as 
the engineering of the communication system. It considers the supply of devices with energy and the 
layout of the signal wiring. The communication systems engineering considers the layout of the 
communication system and selects communication system components and technologies. Thereby, 
the electrical engineering finally creates signal lists. The piping engineering develops the hydraulic, 
pneumatic, etc. systems of the production system supplying the system components with an 
appropriate medium including pipes, fittings, and supply units. The control engineering implements the 
necessary control code required to control the behaviour of the production system. Robot 
programming and simulation generates code for the execution of the intended robot behaviour. Robot 
code allows simulating robot cells and testing the code for correctness and the processes for 
feasibility. HMI engineering defines variables serving as interfaces between human operators and 
machines, specifies and implements user interfaces and intervention possibilities in the system 
process. The process replanning is in parallel to all other activities within this phase. In this activity all 
changes are continuously collected and processed to adapt the layout and the processes of the 
production system. Finally, the virtual commissioning comprises all software-based analysis activities 
of control code executed prior to actual commissioning. The outputs of the detailed engineering phase 
are MCAD and ECAD drawings, device lists, wiring lists, installation guidelines, control code, etc., all 
necessary to set up the production system correctly. 

The system integration phase is intended to install parts of the production system based on the 
detailed engineering of the prior phase. Therefore, the necessary parts of the production systems are 
acquired in the brought in parts purchase activity, all components are assembled and installed in the 
correspondingly named activity, the control devices are configured and programs are uploaded to 
controllers, robots, and HMIs, and finally the system components are tested. Thus, the outputs of the 
system integration phase are the set of preinstalled and tested production system components. 

Finally, the commissioning and use phase is related to the final set up of the production system at its 
intended location and its use for product production. Within the final assembly and installation activity 
the preinstalled system components are moved to the final location, installed there, and tested within 
the complete production system. Afterwards, the system is ramped up in the commissioning activity 
and can be used. Parallel to the use are the monitoring and diagnosis and the maintenance activities 
required to ensure the future applicability of the installed production system and to repair it if 
necessary. 
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Figure 4 - Plant Planning Process 
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As visualized in Figure 4 the different engineering activities depend on each other, i.e. require 
engineering results of prior engineering activities. Each of them exploits different engineering tools 
usually optimal tailored to an efficient execution of the necessary work within one engineering 
activities, i.e. the optimal execution of design decisions and creation of required engineering artefacts 
[8]. They are based on their own model type and their own data structure optimised to the tool use and 
software structure. But following the chain of engineering activities it is hard to enable a consistent and 
lossless exchange of engineering data (digital engineering artefacts or parts of them) between the 
engineering tools [6].  

To enable this exchange of engineering data by one data format like AutomationML this format has to 
be able to represent all engineering information which is relevant within at least two of the named 
engineering activities. Summarizing the engineering activities of the five engineering phases named 
above a data exchange format has to cover at least the following information sets. 

• Topology data: This information set covers the hierarchical structure of the production system 
resources ranging from plant level over cell and function levels down to devices and 
mechanical parts [15], the describing attributes of the hierarchy elements, the relations 
between these elements, and the describing attributes of these relations. 

• Mechanical data: This information set includes the mechanical construction of the production 
system reflected by geometry and kinematics. Usually it is given by mechanical drawings 
(MCAD). In addition it contains physical properties like forces, speed, and torsion or chemical 
properties like material information.  

• Electrical, pneumatic, and hydraulic data: This information set represents the complete wiring 
and piping structure of the system developed by electrical construction as electrical drawings 
(ECAD) and piping engineering as piping plans. On the one hand it contains the connected 
components and their characterising properties as well as the connections between 
components their different types, their plugs, and their characteristics. 

  

Figure 5 - Required Information Sets  
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• Function describing data: This information set covers information relevant to characterise the 
function of a production system component. Thus, it contains functional models of controlled 
and uncontrolled behaviour, functional parameters, technological parameters, etc. all relevant 
to appropriately describe the production process as well as other processes executable by the 
component. 

• Process control data: This information set contains all control device related information like 
hardware configuration, control code, control parameters, etc. 

• Generic data: This information set summarizes further organizational, technical, economical, 
and other information like order data, handbooks, and guidelines. 

These information sets are depicted in   

Figure 5. AutomationML is able to represent of all these information sets as presented in the next 
section. 

3 Running Example 

In the following, the modelling of the identified information is presented. To accompany abstract 
presentation of modelling rules, a running example is used for a better understanding. This running 
example is part of a lab size production system hosted at IAF of the Otto-v.-Guericke University 
Magdeburg. It consists of a set of multipurpose machines, turntables, and conveyers and is wired 
using Field IOs to Raspberry Pi based controllers as depicted in Figure 6. 

From this lab size production system only a very small but representative part is used (see Figure 7). It 
comprises one turntable containing at least two devices, an inductive sensor for material detection, 
and a drive for table rotation. Both devices have at least one pin to connect them to a modular Field-IO 
by a wire. This Field-IO is established by a Modbus TCP Ethernet fieldbus coupler used by the 
controller to access physical inputs and outputs. The Field-IO is again connected to a Raspberry Pi 
based controller via an Ethernet cable. The Raspberry Pi based controller is running a PLC program 
controlling the turntable.  
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Figure 6 - Lab Size Production System as Running Example 

 

Figure 7 - Considered Part of the Running Example 

4 General Architecture of AutomationML 

The AutomationML data format has been developed by AutomationML e.V. (see [16]) as solution for 
the data exchange focusing on automation system engineering but able to cover all information 
relevant within the engineering of production systems. It is an open, vendor neutral, XML-based, and 
free data exchange format which enables a domain and company spanning transfer of engineering 
data of production systems in a heterogeneous engineering tool landscape.  

AutomationML stores engineering information following the object oriented paradigm and allows the 
modelling of physical and logical plant components as data objects encapsulating different aspects. 
Objects may constitute a hierarchy, i.e. an object may consist of sub-objects and may itself be a part 
of a larger composition or aggregation. Additionally each object can contain information about object 
describing properties covering geometry, kinematics, and logic (sequencing, behaviour, and control 
information) as well as further properties.  

AutomationML follows a modular structure by integrating and enhancing/adapting different already 
existing XML-based data formats combined under one roof the so called top level format (see Figure 
8).  

These data formats are used on an “as-is” basis within their own specifications and are not branched 
for AutomationML needs. Logically AutomationML is partitioned in: 

• Description of the component topology and networking information including object properties 
expressed as a hierarchy of AutomationML objects and described by means of CAEX 
following IEC 62424 [17], 
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• Description of geometry and kinematics of the different AutomationML objects represented by 
means of COLLADA 1.4.1 and 1.5.0 (ISO/PAS 17506:2012) [18], 

• Description of control related logic data of the different AutomationML objects represented by 
means of PLCopen XML 2.0 and 2.0.1 [19], and 

• Description of relations among AutomationML objects and references to information that is 
stored in documents outside of the top level format using CAEX means. 

 

Figure 8 - Structure of AutomationML Projects 

AutomationML is currently standardized within the IEC standard series IEC 62714 [20]. For a more 
detailed description of AutomationML see [9] and [16]. 

The foundation of AutomationML is the application of CAEX as top level format and the definition of an 
appropriate utilization fulfilling all relevant needs of AutomationML to model engineering information of 
production systems, to integrate the three named data formats CAEX, COLLADA, and PLCopen XML, 
and to enable an extension if necessary in the future. 

CAEX enables an object oriented approach (see Figure 9) where semantics of system objects can be 
specified using roles defined and collected in role class libraries. Interfaces between system objects 
can be specified using interfaces classes defined and collected in interface class libraries. Classes of 
system objects can be specified using system unit classes (SUC) defined and collected in system unit 
class libraries. Finally, the individual project objects are modelled in an instance hierarchy (IH) as a 
hierarchy of internal elements (IE) referencing both system unit classes they are derived from and role 
classes defining their semantics and interface objects used to interlink objects among each other or 
with externally stored information (e.g. COLLADA or PLCopen XML files). For details on this structure 
the authors refer to the different AutomationML whitepapers available at [16].  

Additional and essential features of AutomationML are the separation of syntax and semantics of data 
objects based on the libraries of role classes and system unit classes and referencing to library 
elements out of the instance hierarchy, the provision of identification capabilities for objects based on 
UUIDs, the provision of version information including version identification and version history 
information based on appropriate object attributes, the provision of data source identification 
information based on appropriate object attributes, and the provision of data structuring capabilities 
beyond object hierarchies exploiting the facet and group concept. 
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Figure 9 - AutomationML Topology Description Architecture 

5 System Topology and System Element Modelling 

As named in the last section AutomationML exploits CAEX for modelling the system topology and the 
system elements. Therefore, AutomationML provides four main modelling means. 

The first means comprises role classes collected within role class libraries. A role class describes an 
abstract functionality without defining the underlying technical implementation, thus, it has to be seen 
as an indicator for the semantics of an object. This can be for example the role classes 
MechanicalPart and Device indicating system structure semantics or LogisticalDevice and 
PhysicalDevice representing communication system semantics. AutomationML defines a set of basic 
role classes represented in Figure 10. There are the AutomationMLBaseRoleClassLib with 
fundamental role classes defined in Part 1 of the AutomationML standard [20] and the 
CommunicationRoleClassLib defined in the Part 5 [16]. 
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Figure 10 - AutomationML BaseRoleClass Library and CommunicationRoleClass Library 

Further role classes are defined in Part 2 of the AutomationML standard [16]. Each AutomationML 
user can define new role classes following its use cases and needs for data exchange. AutomationML 
only defines some rules for role class definition.  

Each role class shall have a unique name within the role tree of a role class library. Thereby, it can be 
uniquely referenced by this hierarchy path. The Port role depicted in Figure 11 has the identification 
path AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Port. In addition, each role class has 
to be derived directly or indirectly from AutomationMLBaseRole by using the RefBaseClassPath 
attribute.  

Each role class may have attributes and interfaces. These attributes and interfaces shall enable an 
importer of an engineering tool to interpret and process incoming information correctly. 
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Figure 11 - Port Role Class as Example of Role Definition 

An example of a user defined role class can be a ModbusTCPPhysicalDevice role class with the 
attributes MACaddress and IPAddress as defined in the running example representing a control 
device able to communicate over Modbus TCP. 

The second modelling means are the interface classes. An interface class describes an abstract 
relation an element can have to other elements or to information not covered within the CAEX based 
model (see geometry and kinematics modelling and behaviour modelling). This can be for example the 
interfaces SignalInterface and PhysicalEndPoint indicating provided interfaces for signal processing of 
cable plugging or ExternalDataConnector representing the association to externally stored information. 
AutomationML defines a set of basic interfaces represented in Figure 12. There are the 
AutomationMLInterfaceClassLib with fundamental interfaces defined in Part 1 [20] of the 
AutomationML standard and the CommunicationInterfaceClassLib defined in the upcoming Part 5 [16]. 

Each AutomationML user can define new interface classes following its use cases and needs for data 
exchange. AutomationML only defines some rules for interface class definition: 

Each interface class shall have a unique name within the interface class tree of an interface class 
library. Thereby, it can be uniquely referenced by this hierarchy path. The COLLADAInterface 
interface class depicted in Figure 13 has the identification path 
AutomationMLInterfaceClassLib/AutomationMLBaseInterface/ExternalDataConnector/COLLADA.........
Interface. In addition, each interface class has to be derived directly or indirectly from 
AutomationMLBaseInterface by using the RefBaseClassPath attribute.  

Each interface class may have attributes. These attributes have to be used and filled with values in 
each occurrence of an instance of the interface class. 

An example of a user defined interface class can be a ModbusTCPSocket interface class as defined in 
the running example representing the plugging position for an Ethernet cable within a control device 
able to communicate over Modbus TCP. 
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Figure 12 - AutomationML InterfaceClass Library and CommunicationInterfaceClass Library 

Figure 13 - COLLADAInterface Class as Example for Interface Definition 

The third modelling means are system unit classes. System unit classes can be considered as 
reusable system components or as templates for system modelling depending on the point of view. 
Usually they reflect either a vendor dependent library of components or devices or a set of templates 
used within an engineering tool to structure discipline dependent model information. 
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Within the AutomationML standard there is no basic AutomationML system unit class library defined. 
Thus, the definition of system unit class libraries is up to the user of AutomationML. AutomationML 
only defines some rules for system unit class definition.  

Each system unit class shall have a unique name similar to role classes and interface classes. It shall 
have at least one role class assigned to it giving the system unit class a semantic by using the 
SupportedRoleClass sub-element.  

Each system unit class may have sub-objects of the type InternalElement, attributes, and interfaces 
representing the structure of the modelled class of objects, its properties, and its possible 
associations. In addition, each system unit class may be derived from another system unit class by 
using the RefBaseClassPath attribute. In this case it inherits all supported role classes, sub-elements, 
interfaces, and attributes from the parent element. 

An example of a user defined system unit class library is given in Figure 14 and an example of a user 
defined system unit class Motor representing a drive class is given in Figure 15. 

 

Figure 14 - Example System Unit Class Library 

 

Figure 15 - Motor System Unit Class as Example for System Unit Class Definition 
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All modelling concepts may have attributes. Attributes are seen as properties which can be assigned 
to role classes, interface classes, system unit classes, and internal elements.  

AutomationML defines some rules for attribute definition. Each attribute shall have a unique name 
within its parent element. It may have a DataType and a Unit attribute and sub-elements for 
description, default value, value, and semantic referencing. An example of a user defined attribute is 
given in Figure 16.  

 

Figure 16 - Herstellerartikelnummer Attribute as Example for Attribute Definition 

The most important modelling means is the InstanceHierarchy with its integrated hierarchy of 
InternalElements. It represents the actual engineering data to be modelled by CAEX following an 
object oriented and hierarchical structure.  

The workhorse of the representation of actual engineering data is the InternalElement. It is the 
representative of an object in the production system to be modelled. Depending on the level of 
abstraction it can represent physical components like the complete plant, functional component as 
machines and turntables, a device as a drive or a controller, or just a mechanical part as a conveyer 
belt or a wire. Also, it can represent logical components like a PLC program, a product description, or 
an order. 

 

Figure 17 - Simplified Structure of an InstanceHierarchy 
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InternalElements in the InstanceHierarchy are generally user defined. They can contain attributes and 
interface instances derived from interface classes of any interface class library. They can reference a 
system unit class from an arbitrary system unit class library by using the RefBaseSystemUnitPath 
attribute. This reference will identify the corresponding system unit class as the parent class the 
InternalElement is derived from and, thereby, name the system unit class as template for the 
InternalElement. This will lead to the fact that the InternalElement shall have the same substructure, 
interfaces, and attributes as defined in the system unit class. In addition, the InternalElement shall 
reference at least one (but possible more than one) role class from an arbitrary role class library. 
Therefore, the RoleRequirements and the SupportedRoleClass sub-objects shall be applied. The 
referenced role class will define the semantics of the InternalElement. The structure an 
InternalElement is depicted in Figure 17. 

An example InstanceHierarchy modelling the running example is given in Figure 19. Here the 
hierarchy of physical and logical entities can be found ranging from the highest InternalElement 
FlexibleManufacturingSystem over InternalElements representing the turntable (Drehtisch1), the IO 
fieldbus coupler (WagoIOA) and the controller (PIBasedControllerA) down to InternalElements 
representing the control application (MyPIProgram), control devices (myMotor) or wires 
(IOKabel_Motor_DO1_DrathB). 

An example of an InternalElement is given in Figure 18. It depicts the wire connecting the drive with 
the field IO. This InternalElement has several attributes like Polzahl representing the number of leads 
in the wire and min. zulässige Kabeaußentemperatur representing the minimal acceptable 
temperature of the wire surface. In addition it has two interfaces representing both end points of the 
wire.  

 

Figure 18 - IOKabel_Motor_DO1_DrathB as Example for an InternalElement 
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Figure 19 - InstanceHierarchy of the Example (Extract) 

6 Integration of Object Semantics 

A critical point during the import of data within engineering tools is the mapping of the incoming data to 
the data model of the importing tool. Therefore, it has to be decided for each datum, which semantics 
the datum has related to the importing tool. 
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Within the import process of AutomationML based data the exchanged data are given within the 
InstanceHierarchy either as InternalElements or as attributes.  

To identify the semantics of InternalElements AutomationML provides two main mechanisms: 
referencing of role classes and referencing of system unit classes. For referencing of role classes with 
the sub-objects RoleRequirements and SupportedRoleClass two means are provided. They can 
contain the complete role class name including the role class path. For the representation of 
semantics of an attribute the RefSemantic sub-attribute of an attribute can be exploited. It is given for 
each AutomationML attribute. Figure 20 recapitulates all these means for semantics representation. 

 

Figure 20 - Means for Semantic Integration in InternalElements and Attributes 

AutomationML will not define semantics of production system components itself. Instead it integrates 
existing semantic definitions as given for example in the eCl@ss classification standard [21]. 

eCl@ss is a hierarchical semantic system for grouping materials, products and services according to a 
logical structure with a level of detail that corresponds to the product-specific properties that can be 
described using standard conform properties. eCl@ss classifies materials, products, and services 
enabling a unique identification of production system component classes like devices types or 
installation material types. For each class standardized properties are defined useable to specify the 
individual characteristics of the class instances. 

Key element of the eCl@ss specification is the IRDI (International Registration Data Identifier) which is 
based on the international standards ISO/IEC 11179-6, ISO 29002, and ISO 6532. The IRDI provides 
a unique identification code for each attribute and each class of objects. 

To reference the semantics of an attribute AutomationML will exploit the referencing of the IRDI of 
eCl@ss properties. Therefore, the attribute CorrespondingAttributePath of the CAEX schema element 
RefSemantic shall be assembled as the string “ECLASS: ” + IRDI of the eCl@ss property defining the 
semantics of the AutomationML attribute. 

Figure 21 depicts an example for the use of RefSemantic to specify the semantics of an 
AutomationML attribute. Here, the attribute max. Versorgungsspannung representing the maximal 
applicable supply voltage for an inductive sensor is given. This attribute is semantically defined by the 
IRDI 0173-1#02-AAC962#006. 

The semantic representation of InternalElements is more complicated. It applies the role class 
concept. The classification of the classification standard of interest (in this case eCl@ss) is modelled 
as an AutomationML user defined role class library. Thereby, on the one hand the hierarchical 
structure of the classification shall be preserved and on the other hand each derived role classes shall 
have three attributes applicable to identify the class. These attributes will contain information on the 
version of the classification standard, the identification of the class, and the class IRDI. An example of 
such a role class library for the running example is given in Figure 22. 
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Figure 21 - Example of Semantic Representation for Attributes 

 

Figure 22 - Example Role Class Library for Semantics Representation 

The developed role classes are then referenced by InternalElements using the RoleRequirements and 
the SupportedRoleClass sub-objects. An example for a drive of the running example is given in Figure 
23. It presents the indication of the InternalElement myMotor as an IEC DC drive with the class 
identification 27-02-25-01. 
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Figure 23 - Example for Semantics Representation for InternalElements 

7 Geometry and Kinematics 

As named above AutomationML exploits the international standard COLLADA 1.4.1 and 1.5.0 for the 
representation of geometry and kinematics information which is standardized as ISO/PAS 17506:2012 
[18]. Therefore, AutomationML has developed a two stage process. At first, relevant geometries and 
kinematics are modelled as COLLADA files. At second, these files and the data objects within them 
are referenced out of the CAEX file. 

COLLADA stands for COLLAborative Design Activity. It has been developed by the KHRONOS 
association under the leadership of Sony as an intermediate format within the scope of digital content 
creation in the gaming industry. It is designed to enable the representation of 3D objects within 3D 
scenes covering all relevant visual, kinematic, and dynamic properties needed for object animation. 

COLLADA [26] is an XML-based data format with a modular structure enabling the definition of 
libraries of visual and kinematic elements. It can contain libraries for representation of geometries, 
materials, lights, cameras, visual scenes, kinematic models, kinematic scenes, and others. An 
example of a COLLADA file is given in Figure 24. The left upper picture represents an original 
conveyer of the running example while the left lower picture is the corresponding model. The right 
picture represents the COLLADA file of this model. 

The most important feature enabling the integration of COLLADA files in AutomationML projects is the 
availability of an unique identification of objects within a COLLADA file. Several data objects within a 
COLLADA file have a unique identification (ID) like geometries, visual scenes, kinematic models and 
kinematic scenes. 

For referencing those objects AutomationML has defined a special interface class within the 
AutomationMLInterfaceClassLib named COLLADAInterface which shall be applied to derive the 
needed interfaces for geometry integration. This interface class (as presented in Figure 25) itself is 
derived from the interface class ExternalDataConnector and has, thereby, an attribute refURI. This 
attribute can be applied to reference into a COLLADA file pointing to an ID of an object modelled in the 
COLLADA file. Therefore, the value of the refURI attribute shall contain a string structured like 
file:///filename.dae#ID. The attribute refType is applied to define the way an object is embedded within 
a scene of a model enabling the modelling of attachments of objects like a work piece which is 
attached to a conveyer belt and is moved when the belt is moving. 
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Figure 24 - Example COLLADA File (Extract) 

 

Figure 25 - Definition of COLLADAInterface Interface Class 

An example of the integration of a geometry in an AutomationML project is depicted in Figure 26. It 
shows how a system unit class Motor can be enriched by its geometry representation.  

Naturally, an InstanceHierarchy may contain more than one InternalElement with a geometry assigned 
to. To enable the proper positioning of these geometries within the overall set of geometries each 
InternalElement may have an attribute usable to specify the position of the assigned geometry related 
to the coordinate system of the parent InternalElement. This frame attribute depicted in Figure 27 
enables the specification of the offset of the geometry in the Cartesian directions x, y, z as well as its 
rotation around these axes. 
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Figure 26 - Example of Geometry Integration 

 

Figure 27 - Example of a Frame Attribute 
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8 Behaviour Modelling 

Similar to the modelling of geometry and kinematics AutomationML exploits for behaviour 
representation an additional XML-based data format named PLCopen XML [19] developed by the 
PLCopen association. AutomationML has developed a two stage process for behaviour modelling and 
integration as well. At first, relevant behaviour is modelled as PLCopen XML files. At second, these 
files and the data objects within them are referenced from the CAEX file. 

PLCopen is a vendor and product independent worldwide association aiming at resolving topics 
related to control programming to support the use of international standards in this field. It especially 
promotes the use of IEC 61131-3 standard for industrial control programming. With PLCopen XML the 
PLCopen has developed a data format applicable as an open interface between all different kinds of 
software environments providing the ability to transfer PLC programming project information to other 
platforms. AutomationML exploits version 2.01 of the PLCopen XML schema published in May 2009. 
This version covers most of the IEC 61131-3 2nd edition. 

A PLCopen XML file is structured in a way representing all essential parts of an IEC 61131 PLC 
programming project. It covers tool information, the developed program code preserving the program 
structure, and PLC hardware information. Most relevant for AutomationML is the representation of 
Program Organisation Units (POUs) as represented in Figure 28. Each POU describes one structural 
unit of an PLC program containing the source code of the program in one of the five IEC 61131 
programming languages and the variable declaration for this program. Each of these parts may have a 
global identifier applicable to uniquely reference the element. 

 

Figure 28 - Example PLCopen XML File 

As AutomationML intends to cover the complete engineering process of a production system different 
levels of behaviour modelling have to be considered. As presented in Figure 29 they range from 
abstract process planning modelled as sequences with Gantt or PERT Charts over sequencing and 
interlocking of field device signals modelled by Impulse Diagrams and Logic Networks down to 
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detailed code representation as PLCopen programs or detailed component behaviour modelling based 
on the automaton approach following Harels State Charts [22]. 

AutomationML has decided not to apply all of the IEC 61131 programming languages for behaviour 
representation. As most of the relevant model types represent discrete event dynamic systems it was 
decided to represent sequencing models by Sequential Function Charts (SFC). Thus, AutomationML 
has defined transformation rules mapping the modelling means of the named model types to SFC 
model elements. For details see [9], [16], and [22]. For the representation of Logic Networks Function 
Block Diagrams (FBD) shall be applied. Both, SFC and FBD models can be expressed by PLCopen 
XML.  

 

Figure 29 - Model Types Reflected by AutomationML Logic Description 

For referencing PLCopen file content AutomationML has defined a special interface class within the 
AutomationMLInterfaceClassLib named PLCopenXMLInterface which shall be applied to derive the 
needed interfaces for behaviour integration. This interface class (as presented in Figure 30) is also 
derived from the interface class ExternalDataConnector and has, thereby, an attribute refURI. This 
attribute can be applied to reference into a PLCopen XML file pointing to a globalID of either a 
complete POU or a variable applied within this POU. Therefore, the value of the refURI attribute shall 
contain a string structured like file:///filename.xml#globalID.  

 

Figure 30 - Definition of PLCopenXMLInterface Interface Class 
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An example of the integration of a behaviour model in an AutomationML project is depicted in Figure 
31. It shows how a system unit class Motor can be enriched by its behaviour representation.  

 

Figure 31 - Example of Behaviour Integration 

9 Modelling of Networks 

Production systems can contain several types of networks like wiring and piping networks, 
communication networks, or transportation networks. All of these networks have in common that they 
can be represented by a graph based structure. Thus, AutomationML has developed a methodology 
for modelling graph based structures and has applied this methodology to different types of networks 
[24]. 

A graph G = (V (G), E (G)) is defined by two non empty sets: vertex set V (G) and edge set E (G). 

These sets have the property that E (G) ⊆ V (G) x V (G) holds, i.e. the vertices are linked by the edges 
[25]. If information is added to the objects of a graph it can be seen as labels of the related objects. 
Labels can have different forms, for example real numbers or even text boxes. For the development of 
graph models labels are one of the most important characteristics. For labelled graphs the definition 
above has to be extended. A labelled graph LG = (V (G), E (G), L1, L2) is a graph with two additional 
mappings L1, L2. For the mappings holds that there are annotation sets A1 and A2 with L1: V(G)  
A1 is a mapping of the vertex set into the annotation set 1 and L2: E(G)  A2 is a mapping of the 
edge set into the annotation set 2. 

Starting point for modelling graphs is the definition of transformation rules to map the graph objects 
vertex and edge to AutomationML objects by means of CAEX. Thus, an InternalElement is generated 
as representative of the entire graph. Characteristics and additional information describing the graph, 
i.e. labels, can be attached to this element by means of attributes. Then the elements of the vertex set 
and edge set are created as child objects of the parent object graph. First of all, all vertices of the 
graph and their associated labels are transformed into the form of an InternalElement and its 
attributes. Afterwards, edges are transformed in a similar way. For greater clarity it is suggested that 
the edge objects are created as child objects of an additional InternalElement for the edge set. To 
express relations between vertices and edges interfaces are used. Therefore, all InternalElements 
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representing vertices have as much interfaces as they have incident edges and all InternalElements 
representing edges usually have two interfaces. Interfaces of incident edges and vertices can then be 
linked by internal links. An example is given in Figure 32. 

 

Figure 32 - Example of a Graph Model in AutomationML 

At first, AutomationML has applied this methodology to model communication networks. Therefore, all 
relevant objects to be modelled in a graph based structure have been identified, relevant role and 
interface classes have been defined, and a modelling methodology has been proposed (see Part 5 
[16]). 

Each communication network is considered on two layers: a logical layer and a physical layer. The 
logical layer consists of control application building blocks providing different functionalities of the 
control process and forming logical devices. In general, these logical devices (control application 
parts) have to exchange information of different types which can be seen as connection points to the 
logical devices and end points of the information exchange between logical devices. The information 
exchange itself is executed by different logical connections. The logical network can contain different 
objects with different describing properties. While logical devices can have unique identifiers, cycle 
times, and storage foot print (to name only a few examples), logical end points can have a data type, 
and logical connections may have a required transmission rate. In any case these describing 
properties can be considered as attributes of the objects of interest. 

Looking at the physical layer physical devices can be found. They have physical endpoints 
representing network interfaces like plugs and sockets and are connected via physical connections to 
a communication system. Compared to the logical layer view there are additional physical entities 
representing infrastructure components of the network (like switches etc.). Similar to the logical 
network the physical network objects can have different describing properties. While physical devices 
can have processor capacity or identifiers, physical end points may have an address or a maximal 
data rate, and physical connections can have a possible transmission rate, a wire type, or a 
documentation number. In any case these de-scribing properties can be considered as attributes of 
the objects of interest again. 

Both layers need to be combined to get the complete network description. Therefore, logical devices 
are hosted by physical devices. In addition, physical interfaces and logical interfaces are mapped. 
Thereby, each logical connection is mapped virtually to a set of physical connections implementing it. 
It is not strictly necessary that there is a unique chain of physical connections representing this 
implementation like it is not given in some communication technologies. The resulting structure is 
represented in Figure 33. 
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Figure 33 - Communication System Structure Represented by AutomationML 

Within communication systems communication datagrams (known as Protocol Data Units / PDU) are 
exchanged between control application parts. Hence, they belong to a logical connection. Each PDU 
contains control information (sensor and actuator signals, status, alarms, etc.) modelled in 
AutomationML based on interfaces of PLCopenXMLInterface type (see above). Thus, each logical 
connection has to contain PDU objects exchanged via this connection. Each of the PDU objects is 
linked to a PLCopenXMLInterface or a SignalInterface modelling the exchanged information. 

Basis of the method for communication system modelling within AutomationML is the definition of an 
AutomationML role class library and an AutomationML interface class library and the derivation of 
relevant role classes and interface classes for the special application cases from them. The 
AutomationML communication role class library will contain roles dedicated to identify 
InternalElements as physical devices, physical connections, and physical networks as well as 
InternalElements as logical devices, logical connections, logical networks, and communication 
packages. The AutomationML interface class library contains interface classes for physical end points, 
logical end points, and communication datagram objects. Both libraries are depicted in the upper part 
of Figure 34 named CommunicationRoleClassLib and CommunicationInterfaceClassLib. 

Exploiting these basic role and interface classes special classes can be derived identifying devices 
and connections related to special applications and communication technologies. Thereby, role class 
libraries and interface class libraries for special purposes have to be developed. An example is given 
in the lower part of Figure 34 named ModbusTCPRoleClassLib and ModbusTCPInterfaceClassLib. 
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Figure 34 - Basic Role Classes and Interface Classes and Derived Special Classes for 
Communication System Modelling 

The defined application case dependent role and interface class libraries can be applied for definition 
of usually applied physical devices and connections as well as logical devices and connections by 
defining appropriate system unit classes within related system unit class libraries. For the purpose of 
unique identification of the semantics of the different defined system unit classes the defined role 
classes are used and referenced.  

Each physical device is equipped with as much physical end point objects as physical ports are 
available which are integrated in an Endpointlist. Each logical device is equipped with as much logical 
end point objects as logical application access points are provided. Also, they are integrated in a 
Endpointlist.  

Each physical connection object is equipped with as much physical end point objects as the 
connection can connect at physical devices. Usually, in case of physical wiring there are two end point 
objects. Each logical connection object is equipped with as much logical end point objects as the 
connection can connect at logical devices. In case of master slave communication there are two end 
point objects, in case of multicast communication there can be more than two end point objects.  

For representation of special properties of the different system unit classes appropriate attributes 
should be applied.  

For representation of a PDU appropriate system unit classes are defined having a role class derived 
from the CommunicationPackage role class. Within this system unit class an interface is derived from 
an interface class DatagrammObject for each information object transmitted and to be modelled. To 
model PDU related properties as well as datagram object properties attributes are used. The system 
unit class library of the running example is given in Figure 35. 

Based on the developed system unit class libraries the communication system of interest can be 
modelled. Therefore, all necessary physical and logical devices are instantiated as InternalElements in 
an appropriate InstanceHierarchy. Especially the hierarchical structure of the modelled system has to 
be reflected / preserved. This is especially valid for the integration of logical devices within physical 
devices as shown in Figure 36 for the logical device MyPIProgram within the physical device 
PIBasedController1.  
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Figure 35 - System Unit Class Library for the Running Example 

After defining all devices the relevant attributes of the devices have to be completed and filled with 
values. 

If the devices have been completed they can be connected by connections. Therefore, in the 
InstanceHierarchy of the network two InternalElements are instantiated implementing role classes 
derived from the role classes PhysicalNetwork and LogicalNetwork. They are containers for all 
physical and logical connection objects. For each physical connection one InternalElement with a role 
class derived from the role class PhysicalConnection is instantiated. It is completed by appropriate 
attributes and their values. For each logical connection one InternalElement with a role class derived 
from the role class LogicalConnection is instantiated. Also, this InternalElement is completed by 
appropriate attributes and their values. 

If all necessary devices and connections are instantiated they are connected by exploiting 
InternalLinks. Therefore, for each logical device and each logical connection, which are 
interconnected, the related logical end points are interrelated by an internal link object. Also for each 
physical device and each physical connection, which are interconnected, the related physical end 
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points are interrelated by an internal link object. To map also the logical end points to physical end 
points implementing the related connections internal link objects are used. For the running example 
the resulting structure is depicted in Figure 37. 

 

Figure 36 - Example of the Communication System Hierarchy of the Running Example 
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Figure 37 - Internal Links Within the Running Example 

To model PDUs an InternalElement is created with a role derived from the role class 
CommunicationPackage for each communication package transmitted via a logical connection within 
the related InternalElement. Within this InternalElement an Interface is derived from the interface class 
DatagrammObject for each information object transmitted and to be modelled. To model PDU related 
properties as well as datagram object properties attributes for the corresponding InternalElements and 
interfaces are integrated. The interfaces of the type DatagrammObject are connected by internal links 
with the interfaces of PLCopenXMLinterface type or SignalInterface type representing the exchanged 
information on sender and receiver side. 

10 Integration of Further External Information 

AutomationML possesses with its interfaces a modelling mean which can be used to associate 
externally stored information to modelled objects. This is applied in case of geometry and kinematics 
information as well as behaviour information by pointing to COLLADA and PLCopen XML files. For 
this purpose appropriate interface classes are derived from a generic interface class 
ExternalDataConnector.  

This interface class or more specifically derivations of it can be exploited to model new interfaces 
classes integrating externally stored information, e.g. technically data sheets, figures, manuals, etc.  

An example of an approach integrating additional information to a modelled object is the use of a 
DocumentationInterface derived from ExternalDataConnector which contains, in general, the attribute 
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refURI pointing to the external document and an attribute MIMEType specifying the document type 
according to the MIME standard (Multipurpose Internet Mail Extensions). Depending on the number of 
documents which has to be assigned to an object InternalElements are created as child elements. 
Additionally, a role class library is modelled defining specific semantics, e.g. role classes for 
specifications, technical data sheets, figures, manuals, etc. One or more of these role classes are 
assigned to the corresponding InternalElement.  

By this means, additional information sets can be modelled as InternalElements with role defined 
semantics and a DocumentationInterface which references to a document as well as identification of 
the document type. 

These technologies can be applied to several data formats of interest [23]. An example for the 
integration of manuals as part of the additional data facets available in PDF format is given in Figure 
38. 

Currently the AutomationML association is working on the detailed specification of mechanisms to 
associate externally stored information to modelled objects. 

 

 

Figure 38 - Example of Integration of a pdf Document in AutomationML 

11 Application Process 

The AutomationML specification only defines the representation of information based on the 
application of CAEX, COLLADA, and PLCopen XML. Nevertheless, the use of AutomationML enforces 
an application process, which is more or less implicitly defined. This process is based on a general 
view on data exchange and consists of two main phases covering at first the identification of the data 
set to be exchanged and at second the modelling of the identified data set. 
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Figure 39 - Necessary Data Model Mapping for AutomationML Application  

Foundation of the application of AutomationML is the general view on the data exchange between two 
or more engineering tools (see Figure 39). Each engineering tool involved within an engineering 
process has usually its own data model adapted to the tool purpose. Thus, it is likely, that the data 
models of the involved tools will differ. To enable a data exchange the sending tool has to write its 
data into the data exchange format and has to transform of its data model to the data exchange 
format. The receiving tool has to interpret the received file against the background of its own data 
model. Thus, export and import in combination will set up a mapping of the data models of the 
involved tools. Before using AutomationML this data mapping and the modelling of involved data have 
to be clarified. 

Hence, the first activity of the application of AutomationML is the detailed investigation of the 
engineering process to be supported by the use of AutomationML. Within this investigation the 
engineering activities to be covered, the artefacts to be exchanged, and the tools to be used have to 
be considered. It has to be decided which data shall be exchanged and how this data interrelate, i.e. 
which dependencies are relevant among the different data points. Thereby, a kind of an overall model 
of the exchanged data is established. For each tool it has to be decided which elements of the tool 
internal data model are related to which entity of the developed overall data model. 

Having these data models and mappings defined the representation of the overall data model by 
AutomationML can be developed. This process starts (as depicted in Figure 40) with the identification 
of main object types from the semantics point of view and their possible relations. Thereby, the role 
classes within the role class libraries and the interface classes within the interface class libraries are 
defined and enriched with descriptive properties represented by attributes. The next step is the 
identification of reusable objects respectively components of the application domain. These 
components are represented by system unit classes within system unit class libraries with all relevant 
sub-structures, interfaces, attributes, etc. They can be recognized within exporters and importers of 
engineering tools for a faster information mapping. If all these library definitions are finished, the 
modelling of the data to be exchanged can be done. 

Clearly, the development of the libraries is usually executed only once while modelling of data to be 
exchanged is done several times within the development process. Nevertheless, it is conceivable, that 
the libraries are developed incrementally in parallel to the engineering process they are applied within. 
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Figure 40 - Phases of Implicit AutomationML Application Process 

12 Conclusions 

Within this paper the current state of development of the data exchange format AutomationML has 
been presented. Within the last 10 years from the initiation of the development of AutomationML by 
nine companies and research entities a widely applicable data exchange format has been developed 
able to cover the needs of production systems engineering. It is able to represent the engineering 
results of the production system structure definition, the mechanical, electrical, piping, control, etc. 
engineering, the virtual commissioning, and, finally, the installation and commissioning. Thus, it is 
applicable to engineering tool integration in heterogeneous tool landscapes as required in Industrie 4.0 
approaches. 

Today with more than 30 members the AutomationML association expedites the standardisation 
process of AutomationML and develops application guidelines for several specialised application 
cases. On the one hand, these cases cover the exchange of special engineering information. On the 
other hand, structures and procedures of engineering embedding engineering data exchange 
scenarios are investigated. Related to special engineering information, for example, the modelling of 
the configuration of automation device networks, the modelling of production processes and the 
utilization of resources within them to create products, and the definition of specialised role libraries for 
transportation system elements are considered. Related to data exchange scenarios the current focus 
is on the use of OPC UA to exchange AutomationML modelled data, the integration of AutomationML 
modelled data in data management systems, and the identification of requirements emerging from 
different types of engineering network structures following water fall or spiral like engineering 
processes. 

The further development of AutomationML towards an optimal adjustment of the data format and its 
usability towards a complete fulfilment of the requirements of engineering chain integration in Industrie 
4.0 is the main aim of the AutomationML members. Each company and each research entity 
interested in joining this process is welcome. 
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