<AutemaniomMI¥e
The Glue for Seamless

Automation Engineering

' ‘ AutomationML in a Nutshell

<AufomationML/> AutomationML in a Nutshell

Abstract

The world of production systems is at a turning point. Increasing importance of customer needs and
increasing speed of technological progress affect production system owners to increase production
system flexibility related to product portfolio and resource utilisation [1]. But this increase of flexibility is
not that easy to reach. New ways of production systems engineering and use are required as
envisioned in the Industrie 4.0 approach [2] and [3].

Industrie 4.0 envisions an increased integration in many direction related to production systems. It
considers the integration of different life cycle phases of production systems, the integration along the
different layers of control ranging from field control to company networks, and the integration along the
engineering chain of production systems, i.e. the chain of engineering activities executed by engineers
with appropriate engineering tools.

Increased flexibility requires a higher frequency of engineering activities (design and redesign). Thus,
engineering gets more important in the production system life cycle as its time and cost share in the
production system life cycle increases. The integration of engineering activities and their involved tools
along the engineering chain shall be one mean to reduce engineering time and costs by preventing
unnecessary replication of engineering activities, increased continuity of engineering tool chains, and
improved cooperation of engineers (to name only a few expected effects).

One means to enable the integration of engineering activities and tools along engineering chains of
production systems and, additionally, to enable the application of engineering data within the use
phase of a production system is an appropriate date exchange format. Following the roadmap of
Industrie 4.0 such a data format has to be developed. Within this paper the data exchange format
AutomationML is considered. The range of data representation of AutomationML is sketched to enable
a judgement whether AutomationML can be a candidate for implementation of integration within the
engineering chain of production systems following the Industrie 4.0 approach or not.

©AutomationML consortium
November 1% 2015

Contact: www.automationml.org

' ‘ AutomationML in a Nutshell

<AutomationML/> AutomationML in a Nutshell

Content

1 a1 (0T U1 { o] o [PPSR 6
2 Covered Engineering Processes and Engineering Datacccooeiiiiiie e 7
3 RUNNING EXAMPIE ..ottt e e e et e e e e e e et e e e e e e e s e s anbraaeeeaeeeaeasnreees 11
4 General Architecture of AUOMAtIONIMLc..oiiiiiiiee e 12
5 System Topology and System Element Modellingcoooiiiiiiiiiiiii e 14
6 Integration of ObjeCt SEMANTICScciiiiiiie e e e 21
7 Geometry and KiNematiCS........cooiiiiiii e 24
8 Behaviour MOGEIIING ... e sennnreees 27
9 Modelling Of NEIWOTKScooeie ettt et e e enee e e ee e 29
10 Integration of Further External INformationcoooiiiiiiiii i 35
11 PN o] o[Te=a[0] g TN o 0Tt =TT TSP P PRPPRPRRRt 36
P2 o g o1 013 1o) o 3PS 38
L] G2 = (U] PSP PURTRR 39

<AufomationML/> AutomationML in a Nutshell

1 Introduction

The engineering of production systems is a complex process involving several engineers of several
engineering disciplines executing several engineering activities and using / creating several
engineering artefacts required to finally be able to build up, run, and maintain a production system [1].

As different investigations have shown, the engineering of production systems involves a huge amount
of human labour [5]. But several engineering activities need to be repeated within different engineering
tools as there are no appropriate means for data exchange between these tools [6], [7]. Thus, there
have to be means for lossless data exchange along the complete engineering tool chain.

To ensure lossless data exchange different approaches have been considered. Many engineering
organizations and companies have developed their own software solutions. Facing all these
approaches three main philosophies to ensure lossless data exchange along the engineering activity
and tool chain can be named with the “One Tool For All”’, the “Best of Breed”, and the “Integration
Framework” philosophy. Each of them requires different data models, different data exchange
methodologies and technologies, and different software systems. All of them have their special
advantages and disadvantages [8].

Mechanical Electrical
engineering engineering

Control
engineering

Mechanical
engineering

System
Virtual engineering

Integration
Framework

Control
engineering

System

engineering commissioning

- Virtual

commissioning

Electrical
engineering

Figure 1 - Example for a "Best of Breed" Based
Engineering Network Figure 2 - Example for an "Integration
Framework" Based Engineering Network

Within the “Best of Breed” philosophy (see Figure 1), which is usually applied within engineering
projects of SMEs and/or projects with more than one company involved as well as within the
“Integration Framework” philosophy (see Figure 2) existing engineering tools are combined via
bilateral data exchange or via a centralized data broker. To enable the necessary data exchange
between the possibly changing engineering tools standardized data exchange formats like
AutomationML [9] and STEP [10] might be preferable. They have to be able to cover possibly all but at
least most of the information required and/or produced within the engineering process of production
systems.

For such data exchange formats there are a set of (sometimes contradicting) requirements to be
fulfilled:

e The data format shall be adaptable to different application cases and flexible with respect to
extensions and changes.

e The data representation shall be efficient.
The data representation shall be human readable.
The data representation shall be based on international standards.

These requirements will easily lead to an XML based data format [6].

Following [11] data exchange between engineering tools requires two sets of levels of standardisation,
the syntax levels and the semantic levels. At the syntax levels the correct technical representation of
the data objects within the data exchange format are defined. Thereby, the vocabulary of the data
exchange is provided. In contrast, at the semantic levels the interpretation of data objects, i.e. their
meaning within the conceptualisation of objects within the engineering tool chain, are defined.

6 =

<AutomationML/> AutomationML in a Nutshell

Data exchange formats can be defined in two ways, either they define syntax and semantics together
as applied in the STEP approach or they define syntax and semantics separately as in the
AutomationML approach. Since separate definition of semantics enables a greater flexibility and
adaptability of a data exchange format to application cases this approach seems to be preferable.

In the following the Automation Mark-up Language (AutomationML) will be described in detail. It will be
presented

e which engineering processes and engineering data are covered by AutomationML in the
current version following the needs of the Industrie 4.0 approach (Section 2),

e what the general architecture of AutomationML is (Section 4),

e how the topology of a production system covering its hierarchy of system components and
devices is represented by AutomationML (Section 5),

¢ how model elements of AutomationML can be enriched with semantic identifications (Section

6),

how geometry and kinematics information are modelled by AutomationML (Section 7),

how behaviour information are modelled by AutomationML (Section 8),

how networks are modelled in AutomationML (Section 9),

how additional information can related to system components and devices added to

AutomationML models (Section 10), and finally

e what shall be taken into account when using AutomationML for implementing engineering
chain integration within an Industrie 4.0 approach (Section 11).

2 Covered Engineering Processes and Engineering Data

The main target of application AutomationML is developed for is the field of production systems
engineering and commissioning. Following the consideration of the life cycles of the different systems
involved within production systems (production system, production technology, product, order) as
given in [12] the relevant life cycle phases are component and technology development responsible
for the design and implementation of production system components and devices, the production
systems engineering executing the detailed design of a production system, and the commissioning of
the production system including system testing, installation, and ramp-up (see Figure 3) which will be
called plant planning process in the future.

» Product use by
Sales >

> customers
4

Product line
development
Component and Production Maintenance
technology system and decompo- Decomposition
development engineering sition planning

System use for | |
production — -

Marketing

i

Product line
management

Product
development

¥

Commissioning Maintenance

Figure 3 - Considered Engineering Process

Focusing on the plant planning process there are different engineering processes described in
literature [13], these are similar to each other just highlighting different aspects depending on the
application needs [14]. Figure 4 shows an overview on this process. It consists of the five phase’s
analysis, basic planning, detailed engineering, system integration, and commissioning and use.

7 =

<AufomationML/> AutomationML in a Nutshell

The analysis phase is dedicated to collect all requirements on the behaviour of the production system
emerging from the product to be produced, the process executed for this production, and the
additional requirements related to economical success, legal issues, environmental protection, etc.
Therefore, the analysis phase contains the activities requirement engineering and system process
planning where the requirement engineering collects the requirements and the system process
engineering details the production process to be executed covering all technical functions and support
functions needed to execute it. The outputs of the analysis phase are the process description of the
production process to be executed as well as technical requirements to the production system.

The basic planning phase is related to the rough design of the production system without considering
implementation details like using hall layout restrictions. It contains the component selection, the
detailed system process planning, and the behaviour simulation. The component selection is
responsible for the identification and selection of production resources to be applied within the
production process to be executed. Exploiting the selected components the production process is
detailed mapping the resource processes to the production process needs and adding all necessary
secondary processes. Now, the detailed process on the selected resources can be simulated to
initially validate especially economical requirements on the production system. The outputs of the
basic planning phase are the set of selected plant components and the detailed processes executed
by them.

The detailed engineering phase is related to the functional engineering of the production system finally
leading to a detailed engineering of all production system parts reflecting the factory hall layout
restrictions. It covers the mechanical, electrical, piping, control, robot, and HMI engineering, the
process replanning, and the virtual commissioning. The mechanical engineering creates the
mechanical structure of the production system required to physically execute the production
processes. Therefore, all physical parts of the production system including the control devices are
selected and positioned. The electrical engineering is responsible for the electrical wiring as well as
the engineering of the communication system. It considers the supply of devices with energy and the
layout of the signal wiring. The communication systems engineering considers the layout of the
communication system and selects communication system components and technologies. Thereby,
the electrical engineering finally creates signal lists. The piping engineering develops the hydraulic,
pneumatic, etc. systems of the production system supplying the system components with an
appropriate medium including pipes, fittings, and supply units. The control engineering implements the
necessary control code required to control the behaviour of the production system. Robot
programming and simulation generates code for the execution of the intended robot behaviour. Robot
code allows simulating robot cells and testing the code for correctness and the processes for
feasibility. HMI engineering defines variables serving as interfaces between human operators and
machines, specifies and implements user interfaces and intervention possibilities in the system
process. The process replanning is in parallel to all other activities within this phase. In this activity all
changes are continuously collected and processed to adapt the layout and the processes of the
production system. Finally, the virtual commissioning comprises all software-based analysis activities
of control code executed prior to actual commissioning. The outputs of the detailed engineering phase
are MCAD and ECAD drawings, device lists, wiring lists, installation guidelines, control code, etc., all
necessary to set up the production system correctly.

The system integration phase is intended to install parts of the production system based on the
detailed engineering of the prior phase. Therefore, the necessary parts of the production systems are
acquired in the brought in parts purchase activity, all components are assembled and installed in the
correspondingly named activity, the control devices are configured and programs are uploaded to
controllers, robots, and HMIs, and finally the system components are tested. Thus, the outputs of the
system integration phase are the set of preinstalled and tested production system components.

Finally, the commissioning and use phase is related to the final set up of the production system at its
intended location and its use for product production. Within the final assembly and installation activity
the preinstalled system components are moved to the final location, installed there, and tested within
the complete production system. Afterwards, the system is ramped up in the commissioning activity
and can be used. Parallel to the use are the monitoring and diagnosis and the maintenance activities
required to ensure the future applicability of the installed production system and to repair it if
necessary.

AutomationML in a Nutshell

Analysis phase ‘

Basic planning phase ‘

Detailed planning phase ‘

System integration phase ‘ -
Commissioning and use phase -

Figure 4 - Plant Planning Process

<AufomationML/> AutomationML in a Nutshell .

As visualized in Figure 4 the different engineering activities depend on each other, i.e. require
engineering results of prior engineering activities. Each of them exploits different engineering tools
usually optimal tailored to an efficient execution of the necessary work within one engineering
activities, i.e. the optimal execution of design decisions and creation of required engineering artefacts
[8]. They are based on their own model type and their own data structure optimised to the tool use and
software structure. But following the chain of engineering activities it is hard to enable a consistent and
lossless exchange of engineering data (digital engineering artefacts or parts of them) between the
engineering tools [6].

To enable this exchange of engineering data by one data format like AutomationML this format has to
be able to represent all engineering information which is relevant within at least two of the named
engineering activities. Summarizing the engineering activities of the five engineering phases named
above a data exchange format has to cover at least the following information sets.

e Topology data: This information set covers the hierarchical structure of the production system
resources ranging from plant level over cell and function levels down to devices and
mechanical parts [15], the describing attributes of the hierarchy elements, the relations
between these elements, and the describing attributes of these relations.

e Mechanical data: This information set includes the mechanical construction of the production
system reflected by geometry and kinematics. Usually it is given by mechanical drawings
(MCAD). In addition it contains physical properties like forces, speed, and torsion or chemical
properties like material information.

e Electrical, pneumatic, and hydraulic data: This information set represents the complete wiring
and piping structure of the system developed by electrical construction as electrical drawings
(ECAD) and piping engineering as piping plans. On the one hand it contains the connected
components and their characterising properties as well as the connections between
components their different types, their plugs, and their characteristics.

/ Control Related \ / Further Technical \

Information Information
Signals Weight
PLC program organsiation Energy consumption
units Technical documentation

< U 4
/ Topological \ / Electr., Pneum., \

Information Hydrau. Information
Plant- and device structure Wiring
Layout Connections
Interfaces Piping

AU U /
(Economical \ / Mechanical \

Informationen Information

oo Function Describing
Vendorinformation) - Information
Kinematics
Part number
Price

Function description
Functional parameters
/ \ Technological parameters

.

Figure 5 - Required Information Sets

<AutomationML/> AutomationML in a Nutshell

e Function describing data: This information set covers information relevant to characterise the
function of a production system component. Thus, it contains functional models of controlled
and uncontrolled behaviour, functional parameters, technological parameters, etc. all relevant
to appropriately describe the production process as well as other processes executable by the
component.

e Process control data: This information set contains all control device related information like
hardware configuration, control code, control parameters, etc.

e Generic data: This information set summarizes further organizational, technical, economical,
and other information like order data, handbooks, and guidelines.

These information sets are depicted in

Figure 5. AutomationML is able to represent of all these information sets as presented in the next
section.

3 Running Example

In the following, the modelling of the identified information is presented. To accompany abstract
presentation of modelling rules, a running example is used for a better understanding. This running
example is part of a lab size production system hosted at IAF of the Otto-v.-Guericke University
Magdeburg. It consists of a set of multipurpose machines, turntables, and conveyers and is wired
using Field IOs to Raspberry Pi based controllers as depicted in Figure 6.

From this lab size production system only a very small but representative part is used (see Figure 7). It
comprises one turntable containing at least two devices, an inductive sensor for material detection,
and a drive for table rotation. Both devices have at least one pin to connect them to a modular Field-l1O
by a wire. This Field-IO is established by a Modbus TCP Ethernet fieldbus coupler used by the
controller to access physical inputs and outputs. The Field-IO is again connected to a Raspberry Pi
based controller via an Ethernet cable. The Raspberry Pi based controller is running a PLC program
controlling the turntable.

Pl based
controller1

Turntable 1

<AutomationML/> AutomationML in a Nutshell

Figure 6 - Lab Size Production System as Running Example

Variable declaratioP: Boolean MotorAn, SensorWert;

ReadinputRegister

Pl based
Controller1

Input Output
Regist Reglster
Bit1

WriteOutputRegister

EthernetCabell

Sensor

Pin 1

Turntable 1

Koppler Dll IOcabel_Drive_DO1
750-341 750-437 750 30

DI2 |IOCabel_Sensor_DI1

750-437 750-530

Figure 7 - Considered Part of the Running Example

4 General Architecture of AutomationML

The AutomationML data format has been developed by AutomationML e.V. (see [16]) as solution for
the data exchange focusing on automation system engineering but able to cover all information
relevant within the engineering of production systems. It is an open, vendor neutral, XML-based, and
free data exchange format which enables a domain and company spanning transfer of engineering
data of production systems in a heterogeneous engineering tool landscape.

AutomationML stores engineering information following the object oriented paradigm and allows the
modelling of physical and logical plant components as data objects encapsulating different aspects.
Objects may constitute a hierarchy, i.e. an object may consist of sub-objects and may itself be a part
of a larger composition or aggregation. Additionally each object can contain information about object
describing properties covering geometry, kinematics, and logic (sequencing, behaviour, and control
information) as well as further properties.

AutomationML follows a modular structure by integrating and enhancing/adapting different already
existing XML-based data formats combined under one roof the so called top level format (see Figure
8).

These data formats are used on an “as-is” basis within their own specifications and are not branched
for AutomationML needs. Logically AutomationML is partitioned in:

e Description of the component topology and networking information including object properties
expressed as a hierarchy of AutomationML objects and described by means of CAEX

following IEC 62424 [17],

<AufomationML/> AutomationML in a Nutshell

e Description of geometry and kinematics of the different AutomationML objects represented by
means of COLLADA 1.4.1 and 1.5.0 (ISO/PAS 17506:2012) [18],

e Description of control related logic data of the different AutomationML objects represented by
means of PLCopen XML 2.0 and 2.0.1 [19], and

e Description of relations among AutomationML objects and references to information that is
stored in documents outside of the top level format using CAEX means.

<AutomationML/>»

IEC 62714 Geometry
and
Top level format > :((;:\r:rantatuc
CAEX IEC 62424 COLLADA
S P b g — Loaic Jacs
Topology s for?nat =
Information E > PLCopen
Mechatronics . - XML
Networks : : “' o >
. s : For
Devices . FSemantic it et
Attribut " | referencing oo -
ributes == -
| Furtheraspects
i inotherXML ;

Figure 8 - Structure of AutomationML Projects

AutomationML is currently standardized within the IEC standard series IEC 62714 [20]. For a more
detailed description of AutomationML see [9] and [16].

The foundation of AutomationML is the application of CAEX as top level format and the definition of an
appropriate utilization fulfilling all relevant needs of AutomationML to model engineering information of
production systems, to integrate the three named data formats CAEX, COLLADA, and PLCopen XML,
and to enable an extension if necessary in the future.

CAEX enables an object oriented approach (see Figure 9) where semantics of system objects can be
specified using roles defined and collected in role class libraries. Interfaces between system objects
can be specified using interfaces classes defined and collected in interface class libraries. Classes of
system objects can be specified using system unit classes (SUC) defined and collected in system unit
class libraries. Finally, the individual project objects are modelled in an instance hierarchy (IH) as a
hierarchy of internal elements (IE) referencing both system unit classes they are derived from and role
classes defining their semantics and interface objects used to interlink objects among each other or
with externally stored information (e.g. COLLADA or PLCopen XML files). For details on this structure
the authors refer to the different AutomationML whitepapers available at [16].

Additional and essential features of AutomationML are the separation of syntax and semantics of data
objects based on the libraries of role classes and system unit classes and referencing to library
elements out of the instance hierarchy, the provision of identification capabilities for objects based on
UUIDs, the provision of version information including version identification and version history
information based on appropriate object attributes, the provision of data source identification
information based on appropriate object attributes, and the provision of data structuring capabilities
beyond object hierarchies exploiting the facet and group concept.

<AutomationML/> AutomationML in a Nutshell

InstanceHierarchy System Unit Library
Description of project data Definition of reusable components
IH
— |F -é N IS IS I s S s e (el Eae Eas . Instantiation of
ohjects
ST
. LIE I

E I l
Linking of ohjects
|_’_] 5LC
— Reference to
L external data e

|
IE ; SUC I
I el
I * xml |
- I
|]
. i |
I z 1
Role Class Libraiy | I Interface Class Lilrary
Definition of objectlsemarrfcs | Definition of interfaces
ke
= i ')
I I LIE I Use of interfaces
Bok Use of semantics I
I |
L -] |
bk |

Figure 9 - AutomationML Topology Description Architecture

5 System Topology and System Element Modelling

As named in the last section AutomationML exploits CAEX for modelling the system topology and the
system elements. Therefore, AutomationML provides four main modelling means.

The first means comprises role classes collected within role class libraries. A role class describes an
abstract functionality without defining the underlying technical implementation, thus, it has to be seen
as an indicator for the semantics of an object. This can be for example the role classes
MechanicalPart and Device indicating system structure semantics or LogisticalDevice and
PhysicalDevice representing communication system semantics. AutomationML defines a set of basic
role classes represented in Figure 10. There are the AutomationMLBaseRoleClassLib with
fundamental role classes defined in Part 1 of the AutomationML standard [20] and the
CommunicationRoleClassLib defined in the Part 5 [16].

<AufomationML/> AutomationML in a Nutshell

« | B AutomationMLBaseRoleClasslib

= AutomationMLBaseRole {Class:}

Group {Class: AutomationMLBaseRole}
Facet {Class: AutomationMLBazeRole}

= Port | Class: AutomationhMLBaseRole}
Resource {Class: AutomationMLBaseRole)
Product {Class: AutomationMLBaseRole}
Process {Class: AutomationMLEaseRaole}

- Structure {Class: AutomationMLBaseRole)
ProductStructure {Class: Structure}
ProcessStructure {Class: Structure}

- ResourceStructure {Class: Structure}
Cell {Class: ResourceStructure}
MainGroup {Class: ResourceStructure}
FunctionGroup {Class: RescurceStructure}
SubFunctionGroup {Class: ResourceStructure}
MechatronicAssembly {Class: ResourceStructure}
MechanicalAssembly {Class: ResourceStructure}
MechanicalPart { Class: ResourceStructure)
Device {Class: ResourceStructure}

PropertySet {Class: AutormationMLBaseRaole}
« CommunicationRoleClassLib

= PhysicalDevice {Class: AutomationMLBaseRaole}
PhysicalConnection {Class: AutomationMLBaseRole}
PhysicalMNetwork { Class: AutomationMLBaseRaole}

- LogicalDevice {Class: AutomationMLBaseRole}
LogicalConnection {Class: AutomationMLBaseRole}
LogicalMetwork {Class: AutomationMLBaseRols}
CommunicationPackage {Class: AutormationMLEaseRole}

Figure 10 - AutomationML BaseRoleClass Library and CommunicationRoleClass Library

Further role classes are defined in Part 2 of the AutomationML standard [16]. Each AutomationML
user can define new role classes following its use cases and needs for data exchange. AutomationML
only defines some rules for role class definition.

Each role class shall have a unique name within the role tree of a role class library. Thereby, it can be
uniquely referenced by this hierarchy path. The Port role depicted in Figure 11 has the identification
path AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Port. In addition, each role class has
to be derived directly or indirectly from AutomationMLBaseRole by using the RefBaseClassPath
attribute.

Each role class may have attributes and interfaces. These attributes and interfaces shall enable an
importer of an engineering tool to interpret and process incoming information correctly.

<AutomationML/> AutomationML in a Nutshell

« | Direction

Name Direction
Description
Value
Default Value
Unit
DataType xs:string
» | Cardinality
Name Cardinality
Description
Value
Default Value
Unit

DataType xs:string

Port [Class: AutomationMLBaseRole) * MinOccur
MaxCeeur

-

Name Category

«o ConnectionPoint {Class: PortConnector]

Description
Value
Default Value
<RoleClass Name="Port" RefBaseClassPath="AutomationMLBaseRole"> L

| <Attribute Name="Direction” AtiributeDataType="xs:string" /> DataType xsstring
. <Attribute Name="Cardinality">

i1 <Aftribute Name="MinOccur” AttributeDataType="xs:unsignedint" />
{1 <Aftribute Name="MaxOccur" AttributeDataType="xs:unsignedint" />
i </Attribute>

' <Attribute Name="Category" AttributeDataType="xs:string" />

i <Extemnalinterface Name="ConnectionPoint" ID="1c6a2bb9-8f93-4394-8fae-ef0e0074716a" RefBaseClassPath="AutomationMLInterfaceClassLib/Automation
</RoleClass>

Figure 11 - Port Role Class as Example of Role Definition

An example of a user defined role class can be a ModbusTCPPhysicalDevice role class with the
attributes MACaddress and IPAddress as defined in the running example representing a control
device able to communicate over Modbus TCP.

The second modelling means are the interface classes. An interface class describes an abstract
relation an element can have to other elements or to information not covered within the CAEX based
model (see geometry and kinematics modelling and behaviour modelling). This can be for example the
interfaces Signallnterface and PhysicalEndPoint indicating provided interfaces for signal processing of
cable plugging or ExternalDataConnector representing the association to externally stored information.
AutomationML defines a set of basic interfaces represented in Figure 12. There are the
AutomationMLInterfaceClassLib with fundamental interfaces defined in Part 1 [20] of the
AutomationML standard and the CommunicationinterfaceClassLib defined in the upcoming Part 5 [16].

Each AutomationML user can define new interface classes following its use cases and needs for data
exchange. AutomationML only defines some rules for interface class definition:

Each interface class shall have a unique name within the interface class tree of an interface class
library. Thereby, it can be uniquely referenced by this hierarchy path. The COLLADAInterface
interface class depicted in Figure 13 has the identification path
AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConnector/COLLADA.........
Interface. In addition, each interface class has to be derived directly or indirectly from
AutomationMLBaselnterface by using the RefBaseClassPath attribute.

Each interface class may have attributes. These attributes have to be used and filled with values in
each occurrence of an instance of the interface class.

An example of a user defined interface class can be a ModbusTCPSocket interface class as defined in
the running example representing the plugging position for an Ethernet cable within a control device
able to communicate over Modbus TCP.

<AutomationML/> AutomationML in a Nutshell

« | @ AutomationMLUnterfaceClasslib
» =g AutomationbLBaselnterface {Class:}

» «g Order { Class: AutomationMLBaselnterface}
o +0 PortConnector {Class: AutomationMLBaselnterface)
«o InterlockingConnector {Class: AutomationMLBaselnterface}
«o PPRConnector {Class: AutomationMLBaselnterface}
» =g ExternalDataConnector {Class: AutomationMLBaselnterface}
» =g COLLADAInterface {Class: ExternalDataConnector}
o «g AttachmentPointinterface {Class: COLLADAInterface}
«0 Representationinterface {Class: COLLADAInterface)
a | s PLCopenXMLinterface { Class: ExternalDataConnector}
o «o Logidnterface {Class: PLCopenXMLUnterface]
«o Variablelnterface {Class: PLCopeniMLUnterface}
» =g Communication {Class: AutomationMLBaselnterface}
o «o Signallnterface {Class: Communication}
» | @ CommunicationlnterfaceClassLib
- «0 PhysicalEndPoint {Class: Communication}
«o LogicalEndPoint {Class: Communication}

o DatagrammObject { Class: Communication}

Figure 12 - AutomationML InterfaceClass Library and CommunicationinterfaceClass Library

& refURl
Name refURI
Description l
Valye
Default Value .

Unit
DataType
=0 COLLADAInterface {Class: ExternalDataConnector) |2 refype

Name refType

Description

Value

Default Value

Unit

DataType xsistring

<InterfaceClass Name="COLLADAInterface” RefBaseClassPath="ExternalDataConnector">

. <Aftribute Name="refType" AttributeDataType="xs:stnng" />

</interffaceClass>
Figure 13 - COLLADAInterface Class as Example for Interface Definition
The third modelling means are system unit classes. System unit classes can be considered as
reusable system components or as templates for system modelling depending on the point of view.

Usually they reflect either a vendor dependent library of components or devices or a set of templates
used within an engineering tool to structure discipline dependent model information.

<AufomationML/> AutomationML in a Nutshell

Within the AutomationML standard there is no basic AutomationML system unit class library defined.
Thus, the definition of system unit class libraries is up to the user of AutomationML. AutomationML
only defines some rules for system unit class definition.

Each system unit class shall have a unique name similar to role classes and interface classes. It shall
have at least one role class assigned to it giving the system unit class a semantic by using the
SupportedRoleClass sub-element.

Each system unit class may have sub-objects of the type InternalElement, attributes, and interfaces
representing the structure of the modelled class of objects, its properties, and its possible
associations. In addition, each system unit class may be derived from another system unit class by
using the RefBaseClassPath attribute. In this case it inherits all supported role classes, sub-elements,
interfaces, and attributes from the parent element.

An example of a user defined system unit class library is given in Figure 14 and an example of a user
defined system unit class Motor representing a drive class is given in Figure 15.

+ [GeckoExampleSystemUnitClassLib_PlantComponents
= Motor {Class:}
o MotorAn_PinA {Class: Signallnterface}
SupportedRoleClass: GeckoExampleEClassRoleClassLib/ECIassClassification/27 Elektro-, Automatisierungs- und Pre leittechnik/27-(
SupportedRoleClass: AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Structure/ResourceStructure/Device
- Induktivsensor {Class:}
a Drehtisch {Class:}
» [IE] myMotor {Class: Motor Role:}
SupportedRoleClass: GeckoExampleEClassRoleClassLib/ECIassClassification/27 Elektro-, Automatisierungs- und Prozessleittechnik

SupportedRoleClass: AutomationMLBaseRoleClassLib/AutomationMLEaseRole/Structure/ResourceStructure/Device
v %9 Interfaces
» [iE] mylnduktivsensor {Class:Induktivsensor Role:}
SupportedRoleClass: GeckoExampleEClassRoleClassLib/ECIassClassification/27 Elektro-, Automatisierungs- und Prozessleittechnik
SupportedRoleClass: AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Structure/ResourceStructure/Device
v =9 Interfaces
E SupportedRoleClass: AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Structure/ResourceStructure/MechatronicAssembly

Figure 14 - Example System Unit Class Library

» eClassReferencefeatureGrouplD2
» eClassReferencefeatureGrouplD
» ellassVersion

w | Hersteller-Name

» Herstellerartikelnummer

+ | Min. Drehzahl

Motor {Class:}

Name Min. Drehzahl

-0 MotorAn_PinA {cbsg SEgna]Intg a0 Description Kleinstmdgliche Drehzahl, bei der ein Motor im thermisch zulassigen|
Value 5800

SupportedRoleClass: GeckoExampleEClassRoleClassLib/EClassClassificaty

Default Value

(L] SupportedRoleClass: AutomationMLBaseRoleClassLib/AutomationMLBaseR Unit s
DataType xsiinteger

4 Nenndrehzah!

Name Nenndrehzahl
Description Drehzahl die den Nenndaten des verwendeten Motors entspricht
Value 8746
<8ystemUnitClass Name="Motor">
<Attribute Name="eClassReferenceFeatureGroupiD2" AttributeDataType="xs-string" /> Default Value
bute Name="eClassR pID" AttributeDataType="xsstring"> Unit 1/
<Attribute Name="eClassVersion" AttributeDataType="xs:string">
<Attribute Name="Hersteller-Name" AttributeDataType="xs:string"> DataType xsfloat
tribute Name="t " AftributeDataType="xs:string">

<Attribute Name="Min. Drehzahl" AttributeDataType="xs integer” Unit="1/s">

| <Description>Kleinstmégliche Drehzahl, bei der ein Motor im a dauernd betrieben werden kann</Description>

| <Value>5800</Value>

</Attribute>

<Attribute Name="Nenndrehzahl" AttributeDataType="xsfloat" Unit="1/5">

| <Description> Drehzahl die den des Motors icht</Di

| <Value>8746<NValue>

</Attribute>

<Extemnallnterface Name="MotorAn_PinA" RefBaseClassPath="/ InterfaceClassl i " ID="923608d1-6cbb-448b-b739-f86d11e1958" />

RoleClass RefRoleClassPath="G lassRoleClassLib/EClassCl ion/27 Elektro-, i und P ik/27-02 Antrieb/27-02-25 DC-Motor/27-02-25-01 DC-Motor (IEC)" />
dRoleClass RefRoleClassPath=", lassLi Device™ />
</SystemUnitClass>

Figure 15 - Motor System Unit Class as Example for System Unit Class Definition

18

<AufomationML/> AutomationML in a Nutshell

All modelling concepts may have attributes. Attributes are seen as properties which can be assigned
to role classes, interface classes, system unit classes, and internal elements.

AutomationML defines some rules for attribute definition. Each attribute shall have a unique name
within its parent element. It may have a DataType and a Unit attribute and sub-elements for
description, default value, value, and semantic referencing. An example of a user defined attribute is
given in Figure 16.

| » Herstellerartikelinummer

Name Herstellerartikelnummer

Dascription eindeutiger Produktschlissel des Herstellers
Value 35481

Default Value

Unit

DataType us:string
v RefSemantic: ECLASS0173-1%02-AA06765002

<Attrnbute Name="Herstellerartikelnummer" AttnbuteDataType="xs:string">

| <Description>eindeutiger Produktschlissel des Herstellers</Description>
<Value>35481<Nalue>

i <RefSemantic CorrespondingAttributePath="ECLASS:0173-1#02-AAQ6T6#002" />

<[Attnbute=

Figure 16 - Herstellerartikelnummer Attribute as Example for Attribute Definition

The most important modelling means is the InstanceHierarchy with its integrated hierarchy of
InternalElements. It represents the actual engineering data to be modelled by CAEX following an
object oriented and hierarchical structure.

The workhorse of the representation of actual engineering data is the InternalElement. It is the
representative of an object in the production system to be modelled. Depending on the level of
abstraction it can represent physical components like the complete plant, functional component as
machines and turntables, a device as a drive or a controller, or just a mechanical part as a conveyer
belt or a wire. Also, it can represent logical components like a PLC program, a product description, or
an order.

InstanceHierarchy

IH
A
1
~
1.*% * a
0. Attribute
N 1 1/ R
Roleclass RoleRequirement InternalElement 1
RC 0..* 1 |E o
S dRoleCl =
Y, upportedRoleClass _ o
1 1 Interface
Y

RefBaseSystemUnitPath

System unit class
suc

Figure 17 - Simplified Structure of an InstanceHierarchy

<AutomationML/> AutomationML in a Nutshell

InternalElements in the InstanceHierarchy are generally user defined. They can contain attributes and
interface instances derived from interface classes of any interface class library. They can reference a
system unit class from an arbitrary system unit class library by using the RefBaseSystemUnitPath
attribute. This reference will identify the corresponding system unit class as the parent class the
InternalElement is derived from and, thereby, name the system unit class as template for the
InternalElement. This will lead to the fact that the InternalElement shall have the same substructure,
interfaces, and attributes as defined in the system unit class. In addition, the InternalElement shall
reference at least one (but possible more than one) role class from an arbitrary role class library.
Therefore, the RoleRequirements and the SupportedRoleClass sub-objects shall be applied. The
referenced role class will define the semantics of the InternalElement. The structure an
InternalElement is depicted in Figure 17.

An example InstanceHierarchy modelling the running example is given in Figure 19. Here the
hierarchy of physical and logical entities can be found ranging from the highest InternalElement
FlexibleManufacturingSystem over InternalElements representing the turntable (Drehtisch1), the 10
fieldbus coupler (WagolOA) and the controller (PIBasedControllerA) down to InternalElements
representing the control application (MyPIProgram), control devices (myMotor) or wires
(IOKabel_Motor_DO1_DrathB).

An example of an InternalElement is given in Figure 18. It depicts the wire connecting the drive with
the field 10. This InternalElement has several attributes like Polzahl representing the number of leads
in the wire and min. zulassige KabeauRentemperatur representing the minimal acceptable
temperature of the wire surface. In addition it has two interfaces representing both end points of the
wire.

» eClassReferenceFeatureGrouplD2

v eClassReferenceFeatureGrouplD

» eClassVersion

& Polzahl
Name Polzahl
Description quantitative Angabe zur Menge der Stro|
Value 1
Default Value
Unit

a m I0Kabel Motor DO1_DrathB {Class: I0Kabel Role:)

DataType xsinteger
s | %Q Interfaces v RefSemantic: ECLASS:0173-1202-AAT080#001

A i « min. zulassige KabelauBentemperatur (fest verlegt)
#0 Plugl {Class:Signallnterface) ! 3 2

Name min. zuldssige KabelauBentemperatur (fe
«0 Plug2 [Class: Signallnterface) Description | unter den ungUnstigsten Betriebsbeding
Value -50

@ SupportedRoleClass: CommunicationRoleClassLib/PhysicalConnection
Default Value

Unit °C
DataType xsfloat
v RefSemantic: ECLASS:0173-1202-AAC0282007

E SupportedRoleClass: GeckoExampleEClassRoleClassLib/EClassClassification/27 Elektro-, A

» max. zuldssige KabelauBentemperatur (fest verlegt)

= | Hersteller-Name

= Herstellerartikelnummer

<InteralElement Name="I0Kabel_Motor_DO1_DrathB" RefBaseSystemUnitPath="GeckoExampleSystemUnitClassLib_PhysicalCommunicationDevices/|OKabel” ID="c154d16f-1ffa-4126-bdef-b5d3i0e02c5d">
<Attribute Name="eClassReferenceFeatureGrouplD2" AttributeDataType="xs string" />
<Attribute Name="eClassReferenceFeatureGrouplD” AttributeDataType="xs string">
<Attribute Name="eClassVersion” AttributeDataType="xs:string™>
<Attribute Name="Polzahl” AttributeDataType="xs:integer">
<Description>quantitative Angabe zur Menge der Strompfade (Pole)</Description>
<Value>1</Value>
<RefSemantic CorrespondingAttributePath="ECLASS:0173-1#02-AAT080#001" />

</Attribute>
<Attribute Name="min. zulassige KabelauRentemperatur (fest verlegt)” AttributeDataType="xsfloat” Unit=""C">
<Description=unter den ungiinstigsten Betni 1gen kleinst zula Gi , der nie Gberschritten werden darf, um Personen- und/oder hschaden zu iden, der Temp der auBen liegender
1 der die umgebende Atmosphare gelangen kann, wobei dieses Kabel auf bestimmte Stelle(n) angebracht und befestigt ist</Description>
<Value>-50</Value>
<RefSemantic CorrespondingAttributePath="ECLASS:0173-1402-AAC028#007" />
</Attribute>
<Aftribute Name="max. zulassige KabelauRentemperatur (fest verlegt)” AttributeDataType="xs float” Unit=""C">
<Attribute Name="Hersteller-Name" AttributeDataType="xsstring">
<Attribute Name="Herstellerartikelnummer” AttributeDataType="xs string">
<Extemnallnterface Name="Plug1” RefBaseClassPath="Automati lassLil ionML omm i ignalinterface” ID="051¢c2ff5-cfe7-459a-bde3-354f5988423" />
<Extemnallnterface Name="Plug2" RefBaseClassPath="Autom M lassLib ionMLBaselnterface/Commt i gnalinterface” ID="be03555¢-bf72-4d92-864¢-3966a82983a9" />

<SupportedRoleClass RefRoleClassPath="CommunicationRoleClassLib/PhysicalConnection” />
<SupportedRoleClass RefRoleClassPath="GeckoExampleEClassRoleClassLib/EClassClassification/27 Elektro-, Automatisierungs- und Prozessleittechnik/27-06 Kabel, Leitung/27-06-03 Konfektionierte Leitung/27-06
iierte Sensor-Aktor-Leitung” />

</IntemalElement=

Figure 18 - IOKabel_Motor_DO1_DrathB as Example for an InternalElement

20

<AutomafionML/> AutomationML in a Nutshell

" “ﬁ IAFD=maonstrationPlznt
& @ FlexibleManufacturingSystem |[Class: Role: Resource]}
« [If] Transportationline {Class: Role: C2li}
: - [T_ﬂ Drehtischl {Class: Drehtisch Role: }
- - @ my™otor {Class: Motor Role: |
. SupportedRoleClass: GeckoExampleEClassRoleClassLib/EClas=Classification/27 Elekiro-, Automatisisrungs- und Prozessle
E' SupportedRoleClass: Automationh LBazeRoleClasslib/AutomationALBaseRale/Structure/ResourceStructure Device
- ﬂIﬂEEI'fSCEE.
wo MotorAn_PinA | Class: Signallnterface]
- El rmylnduktiveensor [Class:Induktivsensor Role: }
El SupportedRoleClass: GeckoExampleEClassRoleClazsLib/EClas=Classification/27 Elektro-, Automatisisrungs- und Prozessle
El SupportedRoleClass: Automationh LBaseRolellasslib/AutomationMLBaseRaole/Structure/ResourceStructure Device
a %9 Interfaces
w0 SensorWert_Pinl [Class: Signallnterface]
El SupportedRoleClass: AutomationMLBaseRoleClasslib/AutomationMLBaseRole/Structure/ResourceStructure/MechatronichAsse
« [If] ControlCabinet {Class: Role:]
- E WagolDA [Class: WagolDSystem Role: }
- m IoMapperApplikation {Class I2Mapperfpplikation Role:)
& [iE] Koppler750-341 {Class: WagolOBKT50-341 Role:)
. @ SupportedRoleClass: GeckoExampleEClassRoleClazsLib/ECIas=Classification/27 Elektro-, Automatisisrungs- und Prozessle
SupportedRoleClass: ModbusTCPRoleClazsLib/ ModbusTCPPhysical Device
a :%Inu:—rfaces
. wg EthernstSocket |Class: ModbusTCPSocket]
« [IE] DIL 750-237 {Class: WagolOlnput750-437 Role: |
@ SupportedRoleClass: GeckoBxampleEClassRoleClassLib/ECassClassification/27 Elektro-, Automsatisierungs- und Prozessle
@ SupportedRoleClass: CommunicationRoleClassLib/Phy=sicalDevice
= oo, Interfaces
= [IE] D12 750-437 {Class: WagolOlnputTE0-437 Role: |
= [1f] D01 750-530 {Class: WagelDOutput750-530 Role: |
= [if] O2 750-530 {Class: WagolOOutput750-530 Role: |
SupportedRoleClass: CommunicationRoleClasslib/PhysicalDevice
- @ PlBzsedControllerl [Class: PIBasedController Role:)
- @ hiyPiProgram [Class: PiProgram Rolez}
- E hyPIMetworkZard | Class: PiMetworkCard Role: }
SupportedRoleClass: GeckoExampleEClassRoleClazsLib/EClassClassification/27 Elekfro-, Automatisisrungs- und Prozessieittec
SupportedRoleClass: CommunicationRoleClassLibPhysicalDevice
- @ hodbusPhysicalCommunikationMetwork | Class: Role: ModbusTCPPhysicalMetwork)
- E ControlApplicationDataBxchange {Class: Role: ModbusTCPLogicalMetwoark}
- E 120iring {Class: Role: PhysicalMetwork]
- E IOKabel_Sensor_DI1_DrathA | Class:IOKsbel Role: }
» [IE] IDKabel_Motor DO1 Draths {Class:IOKabel Role:}

Figure 19 - InstanceHierarchy of the Example (Extract)

6 Integration of Object Semantics

A critical point during the import of data within engineering tools is the mapping of the incoming data to
the data model of the importing tool. Therefore, it has to be decided for each datum, which semantics
the datum has related to the importing tool.

21

<AufomationML/> AutomationML in a Nutshell

Within the import process of AutomationML based data the exchanged data are given within the
InstanceHierarchy either as InternalElements or as attributes.

To identify the semantics of InternalElements AutomationML provides two main mechanisms:
referencing of role classes and referencing of system unit classes. For referencing of role classes with
the sub-objects RoleRequirements and SupportedRoleClass two means are provided. They can
contain the complete role class name including the role class path. For the representation of
semantics of an attribute the RefSemantic sub-attribute of an attribute can be exploited. It is given for
each AutomationML attribute. Figure 20 recapitulates all these means for semantics representation.

Attributes
| RefBaseSystemUnit
Path

.]

Attribute

RefSemantic |

InternalElement

SupportedRoleClass |

RoleRequirements |

Figure 20 - Means for Semantic Integration in InternalElements and Attributes

AutomationML will not define semantics of production system components itself. Instead it integrates
existing semantic definitions as given for example in the eCl@ss classification standard [21].

eCl@ss is a hierarchical semantic system for grouping materials, products and services according to a
logical structure with a level of detail that corresponds to the product-specific properties that can be
described using standard conform properties. eCl@ss classifies materials, products, and services
enabling a unique identification of production system component classes like devices types or
installation material types. For each class standardized properties are defined useable to specify the
individual characteristics of the class instances.

Key element of the eCl@ss specification is the IRDI (International Registration Data Identifier) which is
based on the international standards ISO/IEC 11179-6, ISO 29002, and ISO 6532. The IRDI provides
a unique identification code for each attribute and each class of objects.

To reference the semantics of an attribute AutomationML will exploit the referencing of the IRDI of
eCl@ss properties. Therefore, the attribute CorrespondingAttributePath of the CAEX schema element
RefSemantic shall be assembled as the string “ECLASS: ” + IRDI of the eCI@ss property defining the
semantics of the AutomationML attribute.

Figure 21 depicts an example for the use of RefSemantic to specify the semantics of an
AutomationML attribute. Here, the attribute max. Versorgungsspannung representing the maximal
applicable supply voltage for an inductive sensor is given. This attribute is semantically defined by the
IRDI 0173-1#02-AAC962#006.

The semantic representation of InternalElements is more complicated. It applies the role class
concept. The classification of the classification standard of interest (in this case eCl@ss) is modelled
as an AutomationML user defined role class library. Thereby, on the one hand the hierarchical
structure of the classification shall be preserved and on the other hand each derived role classes shall
have three attributes applicable to identify the class. These attributes will contain information on the
version of the classification standard, the identification of the class, and the class IRDI. An example of
such a role class library for the running example is given in Figure 22.

<AutomationML/>

AutomationML in a Nutshell

Pl max. Versorgungsspannung

Name max. Versorgungsspannung

Description héchster Grenzwert der Spannung, die ar
Value 30

Default Value

Unit v

DataType xs:float

v RefSemantic: ECLASS:0173-1=02-AAC965%006

<Attribute Name="max. Versorgungsspannung” AttributeDataType="xs-float” Unit="V">
| <Description> htchster Grenzwert der Spannung, die am Versorgungseingang eines elektrischen Betri ittels zeitweise oder

muss|c/Description>

| <Value=30<Nalue>
i <RefSemantic CormespondingAttributePath="ECLASS:0173-1#02-AAC965#006" />
</Attribute>

Figure 21 - Example of Semantic Representation for Attributes

a eckoExampleEClassRoleClassLi
GeckoE pleEClassRoleClassLib
a EClassClassification {Class: AutomationMLBaseRole}
i ektro-, Automatisierungs- und Prozessleittechni ass: EClassClassification
[R[] 27 Elektro-, A isi g d P leittechnik {Cl EClassClassification}
a 27-02 Elektrischer Antrieb {Class: 27 Elektro-, Automatisierungs- und Prozessleittechnik}
- 27-02-25 DC-Motor {Class: 27-02 Elektrischer Antrieb}
27-02-25-01 DC-Motor (IEC) {Class: 27-02-25 DC-Motor}
& 27-06 Kabel, Leitung {Class: 27 Elektro-, Automatisierungs- und Prozessleittechnik)
- -6~ ammunikationskabel ass: 2 7- el, Lettun,
27-06-18 K ikationskabel {Cl 27-06 Kabel, Leitung}
27-06-18-01 Datenkabel {Class: 27-00-18 Kommunikationskabel}
" 27-06-03 Konfektionierte Leitung {Class: 27-06 Kabel, Leitung}
27-06-03-07 Bus-Kabel {Class: 27-06-03 Konfektionierte Leitung}
27-06-03-11 Konfektionierte Sensor-Aktor-Leitung {Class: 27-06-03 Konfektionierte Leitung}
a 27-24 Steuerung {Class: 27 Elektro-, Automatisierungs- und Prozessleittechnik}
- 27-24-06 PC-basierte Steuerungen {Class: 27-24 Steuerung}
27-24-06-90 PC-basierte Steverungen (nicht spezifiziert) {Class: 27-24-06 PC-basierte Steuerungen}
- 27-24-26 Feldbus, Dezentrale Peripherie {Class: 27-24 Steuerung}
27-24-26-04 Feldbus, Dez. Peripherie - Digitales Einfusgangs-Modul {Class: 27-24-26 Feldbus, Dezentrale Peripherie}
27-24-26-07 Feldbus, Dez. Peripherie - Grundgerat { Class: 27-24-26 Feldbus, Dezentrale Peripherie}
a 27-27 Binare Sensorik, sicherheitsgerichtete Sensorik {Class: 27 Elektro-, Automatisierungs- und Prozessleittechnik}
- 27-27-01 MNaherungsschalter {Class: 27-27 Bindre Sensorik, sicherheitsgerichtete Sensorik}
27-27-01-01 Induktiver Ndherungsschalter { Class: 27-27-01 Naherungsschalter}
i 27-44 Steckverbindersystem {Class: 27 Elektro-, Automatisierungs- und Prozessleittechnik]
. 27-44-01 Industriesteckverbinder {Class: 27-44 Steckverbindersystem}
27-44-01-01 Rechtecksteckverbinder (Set) {Class: 27-44-01 Industnesteckverbinder}

Figure 22 - Example Role Class Library for Semantics Representation

The developed role classes are then referenced by InternalElements using the RoleRequirements and
the SupportedRoleClass sub-objects. An example for a drive of the running example is given in Figure
23. It presents the indication of the InternalElement myMotor as an IEC DC drive with the class
identification 27-02-25-01.

23

<AufomationML/> AutomationML in a Nutshell

» eClassReferenceFeatureGrouplD2
s eClassReferenceFeatureGrouplD
Name eClassReferenceFeatureGrouplD
Description
Value 27022501
Default Value
Unit
DataType xsistring
» eClassVersion
Name eClassVersion
Description
Value 9.0
Default Value
Unit
DataType xsistring

+ | [iE] myMotor {Class: Motor Role:]
@ SupportedRoleClass: GeckoExampleEClassRoleClassLib/ECIassClassification/27 Elektro-, Automatisierungs- und Prozessleittechnik/27-02 Elektrischer Antrieb/27-02-25 DC-Motor/27-02-25-01 DC-Motor (IEC)
@ SupportedRoleClass: AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Structure/ResourceStructure/Device

v | %9 Interfaces

<IntemalElement Name="myMotor" RefBaseS: nUnitPath="G JnitClassLib_PlantCe Motor” ID="f71cBed6-bc9d-466b-bc11-13c3357df2e3">
i <Attribute Name="eClassReferenceFeatureGrouplD2" AttributeDataType="xs:string" />
| <Attribute Name="eClassReferenceFeatureGrouplD" AttributeDataType="xs string">

L <Value>27022501</Value>

| <iAtiribuie>

i <Attribute Name="eClassVersion” AttributeDataType="xs:string">

i | <Value>9.0</Value>

i <sAttribute>

I <Attribute Name="Hersteller-Name" AttributeDataType="xs:string">

i <Attribute Name="Herstellerartikelnummer" AttributeDataType="xs:string">

i <Attribute Name="Min. Drehzahl" AttributeDataType="xs:integer" Unit="1/s">

| <Attribute Name="Nenndrehzahl" AttributeDataType="xsfloat” Unit="1/s">

! <Extemallnterface Name="MotorAn_PinA" RefBaseClassPath=", InterfaceClassl " ID="1700730e-8e12-4f03-9eca-1bae092eb8d2" />
i leClass RefRoleClassPath="GeckoExan lassRoleClassLib/EClassClassi 27 Elektro- und Pr ik/27-02 El Antrieb/27-02-25 DC-Motor/27-02-25-01 DC-Motor (IEC)" />
leClass RefRoleClassPath=" i BaseRoleClassl BaseR e/Device” />

</InternalElement>

Figure 23 - Example for Semantics Representation for InternalElements

7 Geometry and Kinematics

As named above AutomationML exploits the international standard COLLADA 1.4.1 and 1.5.0 for the
representation of geometry and kinematics information which is standardized as ISO/PAS 17506:2012
[18]. Therefore, AutomationML has developed a two stage process. At first, relevant geometries and
kinematics are modelled as COLLADA files. At second, these files and the data objects within them
are referenced out of the CAEX file.

COLLADA stands for COLLAborative Design Activity. It has been developed by the KHRONOS
association under the leadership of Sony as an intermediate format within the scope of digital content
creation in the gaming industry. It is designed to enable the representation of 3D objects within 3D
scenes covering all relevant visual, kinematic, and dynamic properties needed for object animation.

COLLADA [26] is an XML-based data format with a modular structure enabling the definition of
libraries of visual and kinematic elements. It can contain libraries for representation of geometries,
materials, lights, cameras, visual scenes, kinematic models, kinematic scenes, and others. An
example of a COLLADA file is given in Figure 24. The left upper picture represents an original
conveyer of the running example while the left lower picture is the corresponding model. The right
picture represents the COLLADA file of this model.

The most important feature enabling the integration of COLLADA files in AutomationML projects is the
availability of an unique identification of objects within a COLLADA file. Several data objects within a
COLLADA file have a unique identification (ID) like geometries, visual scenes, kinematic models and
kinematic scenes.

For referencing those objects AutomationML has defined a special interface class within the
AutomationMLInterfaceClassLib named COLLADAInterface which shall be applied to derive the
needed interfaces for geometry integration. This interface class (as presented in Figure 25) itself is
derived from the interface class ExternalDataConnector and has, thereby, an attribute refURI. This
attribute can be applied to reference into a COLLADA file pointing to an ID of an object modelled in the
COLLADA file. Therefore, the value of the refURI attribute shall contain a string structured like
file:///filename.dae#ID. The attribute refType is applied to define the way an object is embedded within
a scene of a model enabling the modelling of attachments of objects like a work piece which is
attached to a conveyer belt and is moved when the belt is moving.

<AufomationML/> AutomationML in a Nutshell

E]<COLLADA xmins="http://www.collada.org/2005/11/COLLADASchema” version="1.4.1">
@ <asset>

= <library_visual_scenes>

@ | <visual_scene id="ID1">

I <flibrary_visual_scenes>

& <library_nodes>

L <node id="ID3" name="Conveyer">

<node id="ID5" name="Sensor_gesamt">

<node id="ID7" name="Sensor">

<node id="1017" name="Sensor_Stander">

— <node id="ID27" name="Motor">

@ <node id="ID37" name="ganzes_GestaEl">|
@ <node id="ID39" name="Gestell">

[<node id="1D41" name="Komponente_1">
@ <node id="ID49" name="Komponente_2">
@ <node id="ID63" name="Komponente_2">

<node id="ID78" name="Komponente_1">
<node id="ID86" name="Komponente_3">
@ <node id="1D94" name="Komponente_3">
@& <node id="1D103" name="Dreieck™>
<node id="ID114" name="Band_Conveyer2">
& <node id="ID116" name="Band_2">
@ <node id="ID130" name="Rolle">
r <llibrary_nodes>
<library_geometries>
<library_materials>
<library_effects>

& <scene>
<instance_visual_scene url="#D1" />
I </scene>
"~ </COLLADA>
Figure 24 - Example COLLADA File (Extract)
[© renm
Name refURT
v @ AutomationMLInterfaceClassLib Description
V) 00 AutomationMLBaselnterface |{Class:) Valtie
%) o< Order {Class: AutomationMLBaselnterface} LB
o PortConnector {Class: AutomationMLBaselnterface] ‘;:::Twe T
o InterlockingConnector {Class: AutomationMLBaselnterface} e
o0 PPRConnector {Class: AutomationMLBaselnterface} Nate Fefiype
+) oy ExternalDataConnector {Class: AutomationMLBaselnterface} Description
) 00 COLLADAInterface {Class: ExternalDataConnector} Value
~) 0 PLCopenXMUinterface {Class: ExternalDataConnector) D’.'“" =
~) oy Communication {Class: AutomationMLBaselnterface] E:::Type g

| <InterfaceClass Name="ExternalDataConnector” RefBaseClassPath="AutomationMLBaselnterface™>
i | <Attribute Name="refURI" AttributeDataType="xs:anyURI" />

. <interfaceClass hame="COLLADAinterface” RefBaseCiassPaih="ExternaiDataConnecior">

| ‘ <Attribute Name="refType"” AttrbuteDataType="xs:string" f>|

| </interfaceClass>

| <InterfaceClass Name="PLCopenXMLInterface” RefBaseClassPath="ExtemalDataConnector">
i </InterfaceClass>

Figure 25 - Definition of COLLADAInterface Interface Class

An example of the integration of a geometry in an AutomationML project is depicted in Figure 26. It
shows how a system unit class Motor can be enriched by its geometry representation.

Naturally, an InstanceHierarchy may contain more than one InternalElement with a geometry assigned
to. To enable the proper positioning of these geometries within the overall set of geometries each
InternalElement may have an attribute usable to specify the position of the assigned geometry related
to the coordinate system of the parent InternalElement. This frame attribute depicted in Figure 27
enables the specification of the offset of the geometry in the Cartesian directions x, y, z as well as its
rotation around these axes.

25

() refType
.E,. m FabrikMaodell g:::‘ption reflyes
._:.) @ Bauteile [Class:) Value explicit
..@M tor | Default Value
() o> Motor_PLCopen_Logicinterface {Class: Logicinterface) Unit
o> Rucklauf_Stromanschiussbuchse {Clus:itromanschlw ® :::IYPE xsstring
o Motor_COLLADAInterface {Class: COLLADAInterface) - R refURD
o< Vorlauf_Stromanschlussbuchse {Class: Stromanschlussbuchse) Description
o Virichwaibanig {Chisk Verszhimibamig) Value File///Geometrie/Motor.daeID1
o> Verzahnung {Class: Verzahnung) x‘:\lﬂ =
. SupportedRoleClass: Motor DataType xsanyURI

<SystemUnitClass Name="Motor" RefBaseClassPath="">
<Attribute Name="Geometrie Motor” Unit="mm" AttributeDataType="xs integer">
<Attribute Name="Material” AttributeDataType="xs string">
<Aftribute Name="Anschliisse” Unit="" AttributeDataType="
eistung” Unit="Watt" AttributeDataType="
<Attribute Name="Gewicht” Unit="Gramm" AttributeDataType:

<Externalinterface Name="Motor_PLCopen_Logicinterface” RefBaseClassPath="ModellinterfaceClas
Rucklauf_Stromanschlussbuchse™ RefBaseClassPath="ModellinterfaceCl

<Extemnalinterface Nai

| <Attribute Name="refType" AttributeDataType="xs:string">
‘ <Value>explicit</Value>

| <lAtibute>

<Attnbute Name="refURI" AttributeDataType="xs:anyURI">
| <Value>File:///Geometrie/Mator.dae#iD1</Value>

| </Attribute>

</SystemUnitClass>

<Attribute Mame="Drehzahl" Unit="U/min" AttributeDataType="xs:integer"> g

<Externalinterface Name="Motor_COLLADAInterface” ReﬁaseClassPa\h='AulomationMUmeﬁscaCg

</Extemnalinterface> L
<Externalinterface Name="Vorlauf_Stromanschlussbuchse” RefBaseClassPath="ModellintefaceCla: |

Ex Name="Verschraubung" RefBaseClassPath="ModellinterfaceClassLib/\erschraut |
rface Name="Verzahnung" RefBaseClassPath="Modelll lassLib/Ve M
<SupportedRoleClass RefRoleClassPath="Modell RoleClassLib/Motor™ /> %

<?xml version="1.0" encoding="UTF-§" standalone="no" 7>

<COLLADA xmins="http://www.collada.org/2005/11/COLLADASchema" version="1.4.1">
<asset>
<library_visual_scenes>

<visual_scene id="ID1">

% <node name="SketchUp™>

<node id="ID2" name="instance_0">
<matrix>1 0 0 0.5905511811023623 0 1 0 0.3543307086614174 0 0 1 0 0 0 0 1</matrix>
<instance_node url="#ID3" />

i 1 </node>

| </node>

<Misual_scene>

<flibrary_visual_scenes>

<library_nodes>

<node id="ID3" name="Motor">

; <instance_geometry url="#ID4">
</node>

</library_nodes>

<library_geometries>

<geometry id="1D4">

; <mesh>

</geometry>

<flibrary_geometries>

<library_materials>

<library_effects>

© <scene>
| <instance_visual_scene url="#1D1" />
[</scene>
= I<.’(:0LL.°\D.|'-\>
Figure 26 - Example of Geometry Integration
|® Frame
Name Frame
Description
Value
Default Value
Unit
DataType
Name ®
Description
Value 0
Default Value
Unit mm
DataType xsinteger
&y
Name ¥
Description I
Value 105
Default Value
Unit mm
DataType xsinteger
(a) 2
(Al ™
a1y
(A

Figure 27 - Example of a Frame Attribute

<AufomationML/> AutomationML in a Nutshell

8 Behaviour Modelling

Similar to the modelling of geometry and kinematics AutomationML exploits for behaviour
representation an additional XML-based data format named PLCopen XML [19] developed by the
PLCopen association. AutomationML has developed a two stage process for behaviour modelling and
integration as well. At first, relevant behaviour is modelled as PLCopen XML files. At second, these
files and the data objects within them are referenced from the CAEX file.

PLCopen is a vendor and product independent worldwide association aiming at resolving topics
related to control programming to support the use of international standards in this field. It especially
promotes the use of IEC 61131-3 standard for industrial control programming. With PLCopen XML the
PLCopen has developed a data format applicable as an open interface between all different kinds of
software environments providing the ability to transfer PLC programming project information to other
platforms. AutomationML exploits version 2.01 of the PLCopen XML schema published in May 2009.
This version covers most of the IEC 61131-3 2nd edition.

A PLCopen XML file is structured in a way representing all essential parts of an IEC 61131 PLC
programming project. It covers tool information, the developed program code preserving the program
structure, and PLC hardware information. Most relevant for AutomationML is the representation of
Program Organisation Units (POUs) as represented in Figure 28. Each POU describes one structural
unit of an PLC program containing the source code of the program in one of the five IEC 61131
programming languages and the variable declaration for this program. Each of these parts may have a
global identifier applicable to uniquely reference the element.

<7xml version="1.0" encoding="utf-8"?>
<project xmins="http://www.plcopen.org/xml/tc6_0200">
<fileHeader companyMame="" productName="CODESYS" productVersion="CODESYS V3.5 SP3 Patch 7" creationDateTime="2013-12-18T19:32:28 4147223" />
<contentHeader name="TEST.project” modificationDateTime="2013-12-18T18:56:49.0513577">
<types>
<dataTypes />
<pous>
<pou name="Motor" pouType="functionBlock" globalld="1SID_20131218-500">
<interface>
<localVars>
<variable name="Signal" globalld="1SID_20131218-501">
<variable name="AUS" globalld="ISID_20131218-502">
<flocalVars>
<finterface>
<body=>
<SFC=
<step localld="0" initialStep="true" name="Motor AUS" globalld="1SID_20131218-503">
<selectionDivergence localld="1">
<inVariable localld="2">
<transition localld="3">
<step localld="4" name="Motor dreht links">
<inVariable localld="5">
<transition localld="6">
<inVariable localld="T">
<transition localld="8">
<step localld="9" name="Motor dreht rechts">
<inVariable Eocalld="10">|
<transition localld="11">
<selectionConvergence localld="12">
<jumpStep localld="13" targetName="Init">
</SFC>
</body>
<addData />
</pou>
</pous>
<ftypes>
<instances>
<addData>
</project>

Figure 28 - Example PLCopen XML File

As AutomationML intends to cover the complete engineering process of a production system different
levels of behaviour modelling have to be considered. As presented in Figure 29 they range from
abstract process planning modelled as sequences with Gantt or PERT Charts over sequencing and
interlocking of field device signals modelled by Impulse Diagrams and Logic Networks down to

<AutomationML/> AutomationML in a Nutshell

detailed code representation as PLCopen programs or detailed component behaviour modelling based
on the automaton approach following Harels State Charts [22].

AutomationML has decided not to apply all of the IEC 61131 programming languages for behaviour
representation. As most of the relevant model types represent discrete event dynamic systems it was
decided to represent sequencing models by Sequential Function Charts (SFC). Thus, AutomationML
has defined transformation rules mapping the modelling means of the named model types to SFC
model elements. For details see [9], [16], and [22]. For the representation of Logic Networks Function
Block Diagrams (FBD) shall be applied. Both, SFC and FBD models can be expressed by PLCopen

XML.
Product Plant Mech. Electr. PLC Robot HMI Virtual
Design lanning// Constr. // Constr.// Progr. Progr. Progr. Comm.
Gantt Chart
PIannlng D| | | Pert Chart
L] Impulse diagram
Control System Behavior
B Logical Networks

Interlocking

SFC

L]

[State Charts
Component Behavior | || SFC

Control System Implementation

Figure 29 - Model Types Reflected by AutomationML Logic Description

For referencing PLCopen file content AutomationML has defined a special interface class within the
AutomationMLInterfaceClassLib named PLCopenXMLInterface which shall be applied to derive the
needed interfaces for behaviour integration. This interface class (as presented in Figure 30) is also
derived from the interface class ExternalDataConnector and has, thereby, an attribute refURI. This
attribute can be applied to reference into a PLCopen XML file pointing to a globallD of either a
complete POU or a variable applied within this POU. Therefore, the value of the refURI attribute shall
contain a string structured like file:///filename.xml#globallD.

= AutomationMLnterfaceClasslib

L:} o0 AutomationMLBaselnterface {Class:)
~) o COrder {Class: AutomationMLBaselnterface} - _
oy PortConnector {Class: AutomationMLBaselnterface) Name .-e_iUF;J
o0 InterlockingConnector {Class: AutomationMLBaselnterface} Description
Value

o= PPRConnectar {Class: AutomationMLBaselnterface}
Default Value

v) o0 ExternalDataConnector {Class: AutomationMLEaselnterface}
Unit

A o COLLADAInterface {Class: ExternalDataConnector}

DataType

) o) PLCopenXMLnterface {Class: ExternalDataConnector)
~) o<d Communication {Class: AutomationMLBaselnterface)

<InterfaceClass Mame="ExtemalDataConnector” RefBaseClassPath="AutomationMLBaselnterface™>
<Attribute Name="refURI" AttributeDataType="xs:anyURI" />

i <InterfaceClass Name="COLLADAInterface” RefBaseClassPath="ExternalDataConnector">
<Attribute Name="refType" AttnbuteDataType="xs:string" .-f>|

| </InterffaceClass>

i | <InterfaceClass Name="PLCopenXMLInterface” RefBaseClassPath="ExtemalDataConnector">

| </ntedaceClass>

Figure 30 - Definition of PLCopenXMLInterface Interface Class

<AutomationML/> AutomationML in a Nutshell

An example of the integration of a behaviour model in an AutomationML project is depicted in Figure
31. It shows how a system unit class Motor can be enriched by its behaviour representation.

+ | [§E] FabrikModell

v [6ix] Bauteile {Class:) v refURl
v @ Motor {Class:} Name | refURI
) o0 Motor_PLCopen_Logicinterface {Class: Logicinterface} Description I
Value I Files///Verhalten/Motorxmi$20131218-500

oy Ricklauf Stromanschiussbuchse {Class: Stromanschlussbuchse)

i Default Value |
o Motor COLLADAInterface {Class: COLLADAInterface} Uit
i
o Vorlauf_Stromanschlussbuchse {Class: Stromanschlussbuchse} DataType | xsanyURI

o~ Verschraubung [Class: Verschraubung])
oy Verzahnung {Class: Verzahnung)
SupportedRoleClass: Mator

<SystemUnitClass Name="Motor" RefBaseClassPath="">
<Aijtribute ame="Geomeirie iviotor" Linii="mm" AtinbuieDaiaType="xs:inieger">
<Attribute Name="Material” AttributeDataType="xs:string">
<Attribute Name="Anschlusse” Unit="" AttributeDataType="xs:">
<Attribute Name="Leistung” Unit="Watt" AttributeDataType="xs:integer">
<Attribute Name="Gewicht” Unit="Gramm" AttributeDataType="xs:integer">
<Attribute Name="Drehzahl” Unit="U/min" AttributeDataType="xs:integer">
<Extemnallnterface Name="Motor PLCopen_Logiclnterface” RefBaseClassPath="ModellinterfaceClassLib/PLCopenXMLinterface/Logicinterface” ID="{adb4452d-02eb-4fe9-3b36-b97d9a89479}">
{ <Attribute Name="refURI" AttributeDataType="xs-anyURI">
| <Value>File:///Verhalten/Motor. xmi#20131218-500</Value>
</Attribute>
</Extemnalinterface>

{Tebf5b1
<Externallnterface Name="Vorlauf_Stromanschlussbuchse” RefBaseClassPath="Modellintert
<Externalinterface hame="Verschraubung” ReiBaseCiassPath="liodeliinterfaceCiassLib/Ver
<Externallnterface Name="Verzahnung" RefBaseClassPath="ModellinterfaceClassLib/Verzah
<SupportedRoleClass RefRoleClassPath="Modell RoleClassLib/Motor"/>
</SystemUnitClass>

<vanable name="Signal">
<variable name="AUS">

<finterface>
<body>

| =addData/>
| </pou>
</pous>

Figure 31 - Example of Behaviour Integration

9 Modelling of Networks

Production systems can contain several types of networks like wiring and piping networks,
communication networks, or transportation networks. All of these networks have in common that they
can be represented by a graph based structure. Thus, AutomationML has developed a methodology
for modelling graph based structures and has applied this methodology to different types of networks
[24].

A graph G = (V (G), E (G)) is defined by two non empty sets: vertex set V (G) and edge set E (G).
These sets have the property that E (G) < V (G) x V (G) holds, i.e. the vertices are linked by the edges
[25]. If information is added to the objects of a graph it can be seen as labels of the related objects.
Labels can have different forms, for example real numbers or even text boxes. For the development of
graph models labels are one of the most important characteristics. For labelled graphs the definition
above has to be extended. A labelled graph LG = (V (G), E (G), L1, L2) is a graph with two additional
mappings L1, L2. For the mappings holds that there are annotation sets A1 and A2 with L1: V(G) -
A1 is a mapping of the vertex set into the annotation set 1 and L2: E(G) > A2 is a mapping of the
edge set into the annotation set 2.

Starting point for modelling graphs is the definition of transformation rules to map the graph objects
vertex and edge to AutomationML objects by means of CAEX. Thus, an InternalElement is generated
as representative of the entire graph. Characteristics and additional information describing the graph,
i.e. labels, can be attached to this element by means of attributes. Then the elements of the vertex set
and edge set are created as child objects of the parent object graph. First of all, all vertices of the
graph and their associated labels are transformed into the form of an InternalElement and its
attributes. Afterwards, edges are transformed in a similar way. For greater clarity it is suggested that
the edge objects are created as child objects of an additional InternalElement for the edge set. To
express relations between vertices and edges interfaces are used. Therefore, all InternalElements

<AufomationML/> AutomationML in a Nutshell

representing vertices have as much interfaces as they have incident edges and all InternalElements
representing edges usually have two interfaces. Interfaces of incident edges and vertices can then be
linked by internal links. An example is given in Figure 32.

- GraphStructure
v [IE] ExampleGraph [Class: Role: Graph}
v |_E'| Edgeset {Class: Role: EdgeSet]
~ | [[E] Edgef {Class: Role:Edge)
v o Interfaces
o) EdgefinterfaceToVertex2 {Class:VertexEdgelnterface]
o EdgebinterfaceToVertexl {Class:VertexEdgelnteriace]
~ 1 [IE] Edge 5 {Class: Role: Edge}
~ [IE] Edged [Class: Role: Edge)
~ |'[_E] Edge3 {Class: Role: Edge)
~ [IE] Edge2 {Class: Role: Edge]
~ E] Edgel {Class: Role: Edge]
~) [IE] VertexS {Class: Role: Vertex]
A |E| Vertexd {Class: Role: Vertex)
~ ||E] Vertex3 {Class: Role: Vertex]
w I‘E‘ Vertex2 {Class: Role: Vertex]

<Internallink>

<Internallink>
= Intarfarac
v ol Interfaces
o0 VertexZinterfaceToEdgel {Class: VertexEdgelnterface)

o VertexZinterfaceToEdgeS {Class: VertexEdgelnterface]

o VertexZinterfaceToEdget (Class: VertexEdgelnterface}
w IEI Vertexl |Class: Role: Vertex)
v 0O Interfaces
o VertexlinterfaceToEdge2 (Class: VertexEdgelnterface)
o VertexlinterfaceTofdge3 { Class: VertexEdgelnterface]

o VertexlinterfaceToEdgeb {Class: VertexEdgelnterface]

Figure 32 - Example of a Graph Model in AutomationML

At first, AutomationML has applied this methodology to model communication networks. Therefore, all
relevant objects to be modelled in a graph based structure have been identified, relevant role and
interface classes have been defined, and a modelling methodology has been proposed (see Part 5

[16]).

Each communication network is considered on two layers: a logical layer and a physical layer. The
logical layer consists of control application building blocks providing different functionalities of the
control process and forming logical devices. In general, these logical devices (control application
parts) have to exchange information of different types which can be seen as connection points to the
logical devices and end points of the information exchange between logical devices. The information
exchange itself is executed by different logical connections. The logical network can contain different
objects with different describing properties. While logical devices can have unique identifiers, cycle
times, and storage foot print (to name only a few examples), logical end points can have a data type,
and logical connections may have a required transmission rate. In any case these describing
properties can be considered as attributes of the objects of interest.

Looking at the physical layer physical devices can be found. They have physical endpoints
representing network interfaces like plugs and sockets and are connected via physical connections to
a communication system. Compared to the logical layer view there are additional physical entities
representing infrastructure components of the network (like switches etc.). Similar to the logical
network the physical network objects can have different describing properties. While physical devices
can have processor capacity or identifiers, physical end points may have an address or a maximal
data rate, and physical connections can have a possible transmission rate, a wire type, or a
documentation number. In any case these de-scribing properties can be considered as attributes of
the objects of interest again.

Both layers need to be combined to get the complete network description. Therefore, logical devices
are hosted by physical devices. In addition, physical interfaces and logical interfaces are mapped.
Thereby, each logical connection is mapped virtually to a set of physical connections implementing it.
It is not strictly necessary that there is a unique chain of physical connections representing this
implementation like it is not given in some communication technologies. The resulting structure is

represented in Figure 33.

<AufomationML/> AutomationML in a Nutshell

AutomationML

PLC |0 Device Communication
Main control _ :
o IO function Physical
application device
Logical Connection A
oo --- Physical
i end point
! N of device
4 Physical
' P E : z connection
: L T L with end
] “".““"..."“::.. i...............: point
Wirel |]
: : PDU Logical device
! [
jm——=d i .
| : ‘ Datagram Logical
1 i object end point
: Active infra- : y j Ny endpoint
! i apping o
" structure device ' e ® Logl
' : é Signal ! connection
:] ,:’ interface to with end
|] datagram points
| ! object
! : Mapping of
: éé&ééé] Variable / « logicalto
:] Signal o physical
:. | leccccccca= V\ﬁ re-2 _________ interface interfaces

Figure 33 - Communication System Structure Represented by AutomationML

Within communication systems communication datagrams (known as Protocol Data Units / PDU) are
exchanged between control application parts. Hence, they belong to a logical connection. Each PDU
contains control information (sensor and actuator signals, status, alarms, etc.) modelled in
AutomationML based on interfaces of PLCopenXMLlInterface type (see above). Thus, each logical
connection has to contain PDU objects exchanged via this connection. Each of the PDU objects is
linked to a PLCopenXMLInterface or a Signallnterface modelling the exchanged information.

Basis of the method for communication system modelling within AutomationML is the definition of an
AutomationML role class library and an AutomationML interface class library and the derivation of
relevant role classes and interface classes for the special application cases from them. The
AutomationML communication role class library will contain roles dedicated to identify
InternalElements as physical devices, physical connections, and physical networks as well as
InternalElements as logical devices, logical connections, logical networks, and communication
packages. The AutomationML interface class library contains interface classes for physical end points,
logical end points, and communication datagram objects. Both libraries are depicted in the upper part
of Figure 34 named CommunicationRoleClassLib and CommunicationinterfaceClassLib.

Exploiting these basic role and interface classes special classes can be derived identifying devices
and connections related to special applications and communication technologies. Thereby, role class
libraries and interface class libraries for special purposes have to be developed. An example is given
in the lower part of Figure 34 named ModbusTCPRoleClassLib and ModbusTCPInterfaceClassLib.

<AutomationML/> AutomationML in a Nutshell

B CommunicationRoleClassLib i CommunicationlnterfaceClassLib
A PhysicalDevice {Class: AutomationMLBaseRole} «o PhysicalEndPoint {Class: Communication)
PhysicalEndpointlist {Class: AutomationMLBaseRole) +0 LogicalEndPoint {Class: Communication}
PhysicalConnection {Class: AutomationMLBaseRole} +o DatagrammObject {Class: Communication}
PhysicalNetwork {Class: AutomationMLBaseRole] ﬁ ModbusTCPInterfaceClasslib
. LogicalDevice {Class: AutomationMLBaseRole] +0 ModbusTCPPlug {Class: PhysicalEndPaint}
LogicalEndpointlist {Class: AutomationMLBaseRole) +0 ModbusTCPSacket {Class: PhysicalEndPoint)
LogicalConnection {Class: AutomationMLBaseRole} +0 ModbusTCPMasterRequest {Class: LogicalEndPoint}
LogicalNetwork {Class: AutomationMLBaseRole} «0 ModbusTCPSlaveResponce {Class: LogicalEndPoint)
CommunicationPackage {Class: AutomationMLBaseRole) +0 ModbusTCPDatagrammObject { Class: DatagrammObject)

B ModbusTCPRoleClassLib
- ModbusTCPPhysicalDevice {Class: PhysicalDevice}
ModbusTCPPhysicalEndpointlist { Class: PhysicalEndpointlist]
ModbusTCPPhysicalConnection {Class: PhysicalConnection}
ModbusTCPPhysicalNetwork | Class: PhysicalNetwork])
- MeodbusTCPLogicalDevice [Class: LogicalDevice}
ModbusTCPLogicalEndpointlist {Class: LogicalEndpointlist)
ModbusTCPLogicalConnection {Class: LogicalConnection}
ModbusTCPLogicalNetwork {Class: LogicalNetwork}
MedbusTCPCommunicationPackage {Class: CommunicationPackage}

Figure 34 - Basic Role Classes and Interface Classes and Derived Special Classes for
Communication System Modelling

The defined application case dependent role and interface class libraries can be applied for definition
of usually applied physical devices and connections as well as logical devices and connections by
defining appropriate system unit classes within related system unit class libraries. For the purpose of
unique identification of the semantics of the different defined system unit classes the defined role
classes are used and referenced.

Each physical device is equipped with as much physical end point objects as physical ports are
available which are integrated in an Endpointlist. Each logical device is equipped with as much logical
end point objects as logical application access points are provided. Also, they are integrated in a
Endpointlist.

Each physical connection object is equipped with as much physical end point objects as the
connection can connect at physical devices. Usually, in case of physical wiring there are two end point
objects. Each logical connection object is equipped with as much logical end point objects as the
connection can connect at logical devices. In case of master slave communication there are two end
point objects, in case of multicast communication there can be more than two end point objects.

For representation of special properties of the different system unit classes appropriate attributes
should be applied.

For representation of a PDU appropriate system unit classes are defined having a role class derived
from the CommunicationPackage role class. Within this system unit class an interface is derived from
an interface class DatagrammObject for each information object transmitted and to be modelled. To
model PDU related properties as well as datagram object properties attributes are used. The system
unit class library of the running example is given in Figure 35.

Based on the developed system unit class libraries the communication system of interest can be
modelled. Therefore, all necessary physical and logical devices are instantiated as InternalElements in
an appropriate InstanceHierarchy. Especially the hierarchical structure of the modelled system has to
be reflected / preserved. This is especially valid for the integration of logical devices within physical
devices as shown in Figure 36 for the logical device MyPIProgram within the physical device

PIBasedController1.

<AutomationML/> AutomationML in a Nutshell

« | ff GeckoExampleSystemUnitClassLib_PhysicalCommunicationDevices
ik - PINetwarkCard {Class:}
o «o Ethemethacket {Class: ModbusTCPSocket)
SupportedRoleClass: ModbusTCPRoleClassLib/ModbusTCPPhysicalDevice
v PlBasedCaontroller { Class:}
“-- WagolOSystem {Class:}
“.- WagolOBK750-341 {Class:}
. s« Ethemetiacket {Class: ModbusTCPSocket)
SupportedRoleClass: GeckoExampleEClassRoleClassLib/ECIassClassification/27 El
SupportedRoleClass: ModbusTCPRoleClassLib/ModbusTCPPhysicalDevice
v WagelOlnput750-437 {Class:}
“-- WagelOOutput?50-530 {Class:}
“.- ModbusTCPCable {Class:}
. 0 RM5Plugl {Class: ModbusTCPPlug)
0 RM5Plug2 {Class: ModbusTCPPlug)
SupportedRoleClass: GeckoExampleEClassRoleClassLiby/ECIassClassification/27 El
SupportedRoleClass: ModbusTCPRoleClassLib/MedbusTCPPhysicalConnection
. ICKabel {Class:}
a ﬁi GeckoExampleSystemUnitClassLib_LogicalCemmunicationDevices
ik . PiProgram {Class:}
o » | «o MotorAn {Class: Variablelnterface}
.--- «o SensorValue {Class: Variablelnterface]
. «0 ReadRegisterSensorState {Class: ModbusTCPMasterRequest}
0 WriteRegisterMotordn {Class: ModbusTCPMasterRequest}
SupportedRoleClass: CommunicationReleClasslib/LogicalDevice
ICMapperApplikation {Class:}
. MadbuslogicalConnection {Class:}

0 ModbusTCP5laveResponce {Class: ModbusTCPSlaveResponce}
0 ModbusTCPMasterRequest {Class: ModbusTCPMasterRequest}
SupportedRoleClass: ModbusTCPRoleClassLib/MedbusTCPLogicalConnection

MaodbusReguestPackage {Class:}

ModbusResponcePackage { Class: |

Figure 35 - System Unit Class Library for the Running Example

After defining all devices the relevant attributes of the devices have to be completed and filled with
values.

If the devices have been completed they can be connected by connections. Therefore, in the
InstanceHierarchy of the network two InternalElements are instantiated implementing role classes
derived from the role classes PhysicalNetwork and LogicalNetwork. They are containers for all
physical and logical connection objects. For each physical connection one InternalElement with a role
class derived from the role class PhysicalConnection is instantiated. It is completed by appropriate
attributes and their values. For each logical connection one InternalElement with a role class derived
from the role class LogicalConnection is instantiated. Also, this InternalElement is completed by
appropriate attributes and their values.

If all necessary devices and connections are instantiated they are connected by exploiting
InternalLinks. Therefore, for each logical device and each logical connection, which are
interconnected, the related logical end points are interrelated by an internal link object. Also for each
physical device and each physical connection, which are interconnected, the related physical end

<AutomafionML/> AutomationML in a Nutshell

points are interrelated by an internal link object. To map also the logical end points to physical end
points implementing the related connections internal link objects are used. For the running example
the resulting structure is depicted in Figure 37.

& “la IAFDemonstrationPlant
a @ FlexibletdanufacturimgSystem { Class: Role: Resource]
« | [If] Transportationline {Class: Role: Cefl;
= [ii] Drehtischl {Class: Drehtizch Rolec}
s | [if] CeontrolCabinet {Class: Role:}
« [IE] WagolQA {Class: WagolOSystem Rolec}
> |‘_|‘[:] [CMapperApplikation {Olass:[OMapperApplikation Robe:]
s | [IT] Koppler7s0-341 {Class: WagolOBKT50-341 Role:)
SupportedRoleClass: GeckoExampleEClassRoleClasslib/EClassClassification/27 Blekiro-, Automa

[SupportedRoleClass: ModbusTCPRoleClassLib/ModbusTCFPhysicalDevice
» =, Interfaces

=g EthermnetSocket {Class: ModbusTCPSocket)
= | [if] D11 750-437 ([Class: WagolOlnput?50-437 Role: }
» | [if] D12 750-237 {Class WagelOlnput750-437 Role: }
[1f] DOL 750-530 {Oass: WagolOOutput750-530 Rolec}
= | [If] D02 750-530 {0lass: Wagol:Output?50-530 Role: }

a4

E SupportedRoleClass: CommunicationRoleClassLib/Physicallevice
« [IE] PlBazad{ontrollerl {Class: PlBasedControfi=r Rolec}
= | [if] MyFifrogram {Class: PiProgram Role:
s | [if] MyPINetworkCard {Class: FiNetworkCard Rolec}
[SupportedRoieClass: ModbusTCPRaleClassLib/ModbusTCRPhysicalDevice
a | 59, Interfaces
w0 EthemetSocket |Class ModbusTCPSocket;
il SupportedRoleClass: GeckoExampleEliassRoleClasslib/EClassClassification/27 Elektro-, Automatisier
fAr| SupportedRoleClass: CommunicationfioleClazzLiby/PhysicalDevice
« [If] MedbusPhyzicalCommunikationMetwork {Olass: Role: ModbusT P8 hysicalNetwork;
. « | [if] EthemetKabelk] {Class: ModbusTCPCable Rolec
[SupportedRoieClass: GeckotxampleEClaszRoleClassLib/EClaz=Classification/27 Blekiro-, Automa
SupportedRoleClass: ModbusTCPRoleClas:Lib/ModbusTCPPhysicalConnection
a | =0, Interfaces
«0 RM5Plugl {Oass: ModbusTCPMug)
w0 RM5Plug2 {Oass: ModbusTCPRug)
« [if] ControlApplicationCatabxchangs {Class: Role: ModbusTCPLegicaiNetwork;
s [if] ReadinputRegister {Class: ModbusLogicablonnaction Role:
» [IE] MeodbusResponcePackageRzadRegizter {Class: ModbusResponcePackags Role:
A1) SupportedRoleCiazs: ModbusTCPRoleClassLib/ModbusTCPCommunicationPackage
« | 4, Interfaces
«o Respondedfegizterfart {Class: ModbusTCPDatagrammOChbject}
= | [If] ModbusRequestPackageReadRegister [Class: ModbusRequestPackags Role: i
SupportedRoleClazs: ModbusTCPRobeClassLib/ModbusTCPLogicalConnection
» =9 Interfaces
w0 ModbusTCPSlaveResponce {(ass: ModbusTCPSlaveResponcel
e ModbusTCPMasterfequest [Olass: ModbusTCPMasterRequest]
» ﬂ‘[:] ‘\WriteOutputRegister [Class: ModbusLogicalConnection Role:
* | [If] 10Wiring {Class: Role: Phy=icalMetwork;

Figure 36 - Example of the Communication System Hierarchy of the Running Example

34

<AutomationML/> AutomationML in a Nutshell

@ ControlCabinet
+ oo Link_ MotorAn2PackagePart

» oo Link_LogicalConnection_PiBasedControllerl_WriteRegister

E A: 5059289f-061d-4216-53806-893a2ccab733
=0 A: WriteRegisterMotarAn
[l]] B: eb2b26b6-54fc-467-a599-0424727F29b0
=0 B: ModbusTCPMasterRequest

«» oo Link LogicalConnection_WagolO1_WriteRegister

= oo Link SensorValue2PackagePart

E A: 5059289f-061d-4216-a3806-893a2ccab?33
*0 A: SensorValue
[lE] B:13b4801a-843b-43e5-895¢-a2190059%c16
*0 B: RespondedRegisterPart
» oo Link_LogicalConnection_WagolO1_ReadRegister
» oo Link_LogicalConnection_PiBasedControllerl_ReadRegister

a oo Link_EthernetKabel_PlBasedControllerl

[IE] A: 6490d7cb-aaaa-4482-9ecB-5f166f29be7f
=0 A:RJ45Plug2
El B: 353cabec-fc06-44be-b3c3-15d8ed730bd5

#0 B: FthernetSocket
+ oo Link EthernetkKabel WagolO5ysteml

Figure 37 - Internal Links Within the Running Example

To model PDUs an InternalElement is created with a role derived from the role class
CommunicationPackage for each communication package transmitted via a logical connection within
the related InternalElement. Within this InternalElement an Interface is derived from the interface class
DatagrammObject for each information object transmitted and to be modelled. To model PDU related
properties as well as datagram object properties attributes for the corresponding InternalElements and
interfaces are integrated. The interfaces of the type DatagrammObject are connected by internal links
with the interfaces of PLCopenXMLinterface type or Signallnterface type representing the exchanged
information on sender and receiver side.

10 Integration of Further External Information

AutomationML possesses with its interfaces a modelling mean which can be used to associate
externally stored information to modelled objects. This is applied in case of geometry and kinematics
information as well as behaviour information by pointing to COLLADA and PLCopen XML files. For
this purpose appropriate interface classes are derived from a generic interface class
ExternalDataConnector.

This interface class or more specifically derivations of it can be exploited to model new interfaces
classes integrating externally stored information, e.g. technically data sheets, figures, manuals, etc.

An example of an approach integrating additional information to a modelled object is the use of a
Documentationinterface derived from ExternalDataConnector which contains, in general, the attribute

<AutomationML/> AutomationML in a Nutshell

refURI pointing to the external document and an attribute MIMEType specifying the document type
according to the MIME standard (Multipurpose Internet Mail Extensions). Depending on the number of
documents which has to be assigned to an object InternalElements are created as child elements.
Additionally, a role class library is modelled defining specific semantics, e.g. role classes for
specifications, technical data sheets, figures, manuals, etc. One or more of these role classes are
assigned to the corresponding InternalElement.

By this means, additional information sets can be modelled as InternalElements with role defined
semantics and a Documentationinterface which references to a document as well as identification of
the document type.

These technologies can be applied to several data formats of interest [23]. An example for the
integration of manuals as part of the additional data facets available in PDF format is given in Figure
38.

Currently the AutomationML association is working on the detailed specification of mechanisms to
associate externally stored information to modelled objects.

" InstanceHierarchy - x ﬂyi@"ﬁ
4| %X W E At
Tl‘[[_@].D_O‘cEéntationExample i THJME
w |E] PlantA {Class: Role: ResourceStructure)
v []_E] RobotCell {Class: Role: Resource}
~ E‘ BillOfMaterial {Class: Role: BillOfMaterial} (

v |'E| InstructionManual {Class: Role: InstructionManual)

ame
Description
Value pdf
Default Value
Unit

SupportedRoleClass: english

RoleRequirements: InstructionManual

New

v o Interfaces

o< InstructionManpal {Class: Dogdmentationlnterface} <

| %@ W | /{ -i-lxiam = \

~ % AutomationM I._Interfaceclﬁss Lib

"3
w

< o Documentationinterface {Class: E,xternm@
\

New

- Document {Class: AutomationMLBaseRale)

InstructionManual {Class: Document)

[fon] BillOfMaterial {Class: Document}

New

Figure 38 - Example of Integration of a pdf Document in AutomationML

11 Application Process

The AutomationML specification only defines the representation of information based on the
application of CAEX, COLLADA, and PLCopen XML. Nevertheless, the use of AutomationML enforces
an application process, which is more or less implicitly defined. This process is based on a general
view on data exchange and consists of two main phases covering at first the identification of the data
set to be exchanged and at second the modelling of the identified data set.

<AutomationML/>

AutomationML in a Nutshell

@nding tool

data

Project m

Data

represented
by data

exchange

represented
by data
exchange

Receiving t(%

Project

format

Write data

Exported Read data
data

Data
modell

Mapping

Figure 39 - Necessary Data Model Mapping for AutomationML Application

Foundation of the application of AutomationML is the general view on the data exchange between two
or more engineering tools (see Figure 39). Each engineering tool involved within an engineering
process has usually its own data model adapted to the tool purpose. Thus, it is likely, that the data
models of the involved tools will differ. To enable a data exchange the sending tool has to write its
data into the data exchange format and has to transform of its data model to the data exchange
format. The receiving tool has to interpret the received file against the background of its own data
model. Thus, export and import in combination will set up a mapping of the data models of the
involved tools. Before using AutomationML this data mapping and the modelling of involved data have
to be clarified.

Hence, the first activity of the application of AutomationML is the detailed investigation of the
engineering process to be supported by the use of AutomationML. Within this investigation the
engineering activities to be covered, the artefacts to be exchanged, and the tools to be used have to
be considered. It has to be decided which data shall be exchanged and how this data interrelate, i.e.
which dependencies are relevant among the different data points. Thereby, a kind of an overall model
of the exchanged data is established. For each tool it has to be decided which elements of the tool
internal data model are related to which entity of the developed overall data model.

Having these data models and mappings defined the representation of the overall data model by
AutomationML can be developed. This process starts (as depicted in Figure 40) with the identification
of main object types from the semantics point of view and their possible relations. Thereby, the role
classes within the role class libraries and the interface classes within the interface class libraries are
defined and enriched with descriptive properties represented by attributes. The next step is the
identification of reusable objects respectively components of the application domain. These
components are represented by system unit classes within system unit class libraries with all relevant
sub-structures, interfaces, attributes, etc. They can be recognized within exporters and importers of
engineering tools for a faster information mapping. If all these library definitions are finished, the
modelling of the data to be exchanged can be done.

Clearly, the development of the libraries is usually executed only once while modelling of data to be
exchanged is done several times within the development process. Nevertheless, it is conceivable, that
the libraries are developed incrementally in parallel to the engineering process they are applied within.

<AufomationML/> AutomationML in a Nutshell

Development of
role classes for
the application
case

Development of

system unit
I I I class details

Research data Create PLCopenXML Files Design COLLADA Data
for Attibutes with Codesys with Google Sketchup
Implement
[owns
Implement PLCopen xMD—)Qnteqme COLLADA
Development of
system unit

classes for the
application case

Download & Import
Standard Libraries

RoleClassLib Create Roles

SystemunitClassLib Crem cnmpanem SupportedRoleClass | Add attributes Create Assemblies

Add interfaces
by Drag&Drop

P InterfaceClasslib | >{ Create Interfaces

DeVeIOpm e nt Of (create lnrf‘rnal Links
interface |
classes for the

application case

(Add coordinates)

System
modeling
for data
exchange

|
|
h 4

@

Figure 40 - Phases of Implicit AutomationML Application Process

12 Conclusions

Within this paper the current state of development of the data exchange format AutomationML has
been presented. Within the last 10 years from the initiation of the development of AutomationML by
nine companies and research entities a widely applicable data exchange format has been developed
able to cover the needs of production systems engineering. It is able to represent the engineering
results of the production system structure definition, the mechanical, electrical, piping, control, etc.
engineering, the virtual commissioning, and, finally, the installation and commissioning. Thus, it is
applicable to engineering tool integration in heterogeneous tool landscapes as required in Industrie 4.0
approaches.

Today with more than 30 members the AutomationML association expedites the standardisation
process of AutomationML and develops application guidelines for several specialised application
cases. On the one hand, these cases cover the exchange of special engineering information. On the
other hand, structures and procedures of engineering embedding engineering data exchange
scenarios are investigated. Related to special engineering information, for example, the modelling of
the configuration of automation device networks, the modelling of production processes and the
utilization of resources within them to create products, and the definition of specialised role libraries for
transportation system elements are considered. Related to data exchange scenarios the current focus
is on the use of OPC UA to exchange AutomationML modelled data, the integration of AutomationML
modelled data in data management systems, and the identification of requirements emerging from
different types of engineering network structures following water fall or spiral like engineering
processes.

The further development of AutomationML towards an optimal adjustment of the data format and its
usability towards a complete fulfilment of the requirements of engineering chain integration in Industrie
4.0 is the main aim of the AutomationML members. Each company and each research entity
interested in joining this process is welcome.

<AufomationML/> AutomationML in a Nutshell

Literature

(]

(2]

(3]

4]

(5]

(6]

(7]

(8]

9]
[10]
(1]

(2]

[13]

[14]
(18]

[16]

7]

(18]

[19]
(20]

[21]
(22]

(23]

[24]

(28]
(26]

W. Terkaj, T. Tolio und A. Valente: Focused Flexibility in Production Systems, in Changeable and Reconfigurable
Manufacturing Systems, Springer Series in Advanced Manufacturing, 2009, |, 47-66.

H. Kagermann, W. Wahlster, J. Helbig (Editoren): Umsetzungsempfehlungen fir das Zukunftsprojekt Industrie 4.0 —
Deutschlands Zukunft als Industriestandort sichern, Forschungsunion Wirtschaft und Wissenschaft, Arbeitskreis
Industrie 4.0, http://www.plattform-i40.de/sites/default/files/Umsetzungsempfehlungen%20 Industrie 4.0_0.pdf, Letzter
Zugriff November 2013.

J. Jasperneite: Industrie 4.0 - Alter Wein in neuen Schlauchen? Computer&Automation(12/12) S. 24-28, Dezember
2012.

T. Schaeffler, M. Foehr, R. Kodes, A. Lider: Regionalization of Engineering, 20th ICE Conference, Bergamo, Italy, June
2014, Proceedings, DOI: 10.1109/ICE.2014.6871579

A. Alonso-Garcia, A. Hirzle, A. Burkhardt: Steuerungstechnische Standards als Fundament fiir die Leitechnik, ATP,
Jahrgang 2008, Heft 9, pp. 42—-47.

R. Drath, A. Fay, M. Barth: Interoperabilitdt von Engineering-Werkzeugen, at — Automatisierungstechnik 59 (2011),
Issue 7, pp. 451 — 460.

N. Schmidt, A. Lider, H. Steininger, S. Biffl: Analyzing Requirements on Software Tools According to the Functional
Engineering Phase in the Technical Systems Engineering Process, 19th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), Sep. 2014, Barcelona, Spain, Proceedings.

L. Hundt, A. Lider: Development of a method for the implementation of interoperable tool chains applying mechatronical
thinking — Use case engineering of logic control, 17th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA 2012), Krakow, Poland, September 2012, Proceedings.

R. Drath (Editor): Datenaustausch in der Anlagenplanung mit AutomationML, Springer Verlag, 2010.
X. Xu, A. Nee: Advanced Design and Manufacturing Based on STEP, Springer Publisher, 2009.

Ch. Diedrich, A. Luder, L. Hundt: Bedeutung der Interoperabilitdt bei Entwurf und Nutzung von automatisierten
Produktionssystemen, at — Automatisierungstechnik 59 (2011), Issue 7, pp. 426 — 438.

VDI/VDE — GMA Fachausschuss 7.21 ,Industrie 4.0“: VDI-Statusreport Industrie 4.0 — Wertschopfungsketten, VDI,
Frankfurt/Main, http://www.vdi.de/ fileadmin/vdi_de/redakteur_dateien/gma_dateien/VDI_Industrie_4.0_ Wertschoep-
fungsketten_2014.pdf.

A. Lider, M. Foehr, L. Hundt, M. Hoffmann, Y. Langer, St. Frank: Aggregation of engineering processes regarding the
mechatronic approach, 16th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA
2011), Toulouse, France, September 2011, Proceedings.

U. Lindemann: Methodische Entwicklung technischer Produkte, Springer, 2007.

Kiefer J., Baer T., and Bley H. (2006) Mechatronic-oriented Engineering of Manufacturing Systems Taking the Example
of the Body Shop, 13th CIRP International Conference on Life Cycle Engineering, Leuven, Belgium, June 2006,
Proceedings, http://www.mech.kuleuven.be/lce2006/064.pdf.

AutomationML e.V.: AutomationML web page, www.automationml.org, last access February 2015.

International Electrotechnical Commission: IEC 62424 - Representation of process control engineering - Requests in
P&l diagrams and data exchange between P&ID tools and PCE-CAE tools, www.iec.ch, 2008.

International Organization for Standardization: ISO/PAS 17506:2012 - Industrial automation systems and integration --
COLLADA digital asset schema specification for 3D visualization of industrial data, www.iso.org, 2012.

PLCopen association: PLCopen XML. www.plcopen.org, 2012.

International Electrotechnical Commission: IEC 62714 - Engineering data exchange format for use in industrial
automation systems engineering- AutomationML, , www.iec.ch, 2014.

eCl@ss association: eCl@ss classification system, http://wiki.eclass.de/wiki/Main_Page.

L. Hundt: Durchgangiger Austausch von Daten zur Verhaltensbeschreibung von Automatisierungssystemen, PhD
Thesis, Faculty of Mechanical Engineering, Otto-von-Guericke University Magdeburg, April 2012.

A. Luder, N. Schmidt, R. Rosendahl, M. John: Integrating different information types within AutomationML, 19th IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA), Sep. 2014, Barcelona, Spain,
Proceedings.

A. Lider, N. Schmidt, S. Helgermann: Lossless exchange of graph based structure information of production systems
by AutomationML, 18th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA
2013), Cagliari, Italy, September 2013, Proceedings.

R. Balakrishnan, K. Ranganathan: A Textbook of Graph Theory, Springer, 2012.
Arnaud, R.; Barnes, M.: COLLADA - Sailing the gulf of 3D Digital Content Creation, A K Peters, LTD, Wellesley,

Massachusetts, USA, ISBN 1-56881-287-6, 2006.

' ‘ AutomationML in a Nutshell

' ‘ AutomationML in a Nutshell

©AutomationML consortium
November 1% 2015

AutomationML e. V. c/o IAF
Universitatsplatz 2

39106 Magdeburg
Germany

Phone: +49 (0) 391 - 67 51826
Fax: +49 (0) 391 - 67 12404
E-Mail: office(at)automationml.org
Internet: www.automationml.org

