<Autom’aﬁmnML/ >
A@E@@?

<AUfDmEJHDI']ML/> Best Practice Recommendation: AutomationML

Container

Table of contents

BLIE=T o1 L= 0 oo 1 (=1 o1 £SO 2
o) i 1o = O PO P PP PPPPPN 2
1= = o7 TP PSR 3
1 Motivation for the realization of AutomationML as CoNtaiNeruvvvivieimiiivieieieieiein. 3
2 == 112 {0) o SRR 3

% T (=1 F= a1 TS 1] L 1Y 01U PRRRRR 3

2.2 Structure of an AutomMatioNML CONLAINETcoiiiiiiiiiiiiee e e e e e 5

2.3 Referencing into an AutomatioNML CONTAINETuueeieieeiiiiiiiieire e e e e serrir e e e e e s s ssirrreeeeeee e eans 5
3 Generate an AUtoMAatioNML CONTAINETcoiiiiiiiiiiiiiiie e a e e e s 6
4 =T aa] ol L=l] o] (=T g =T) = i o o SRR 6
5 (@00 [Tt U 1] 0] [T R 7
6 R (= =] [T T PR PPPPRPPRPPRt 7

List of figures

Figure 1 — Structure of an AUtOMAtIONML CONTAINETueiieiiiiiee e 5
Figure 2 — Two Steps for the generation of an AutomationML Containerccccooevvvevivveeesinnenn. 6
Figure 3 — create new AML CONtaINET fil@ocuueiiiiiiii e 7
Figure 4 — extract an AML CONLAINETccuuuiiiiee e e e e e s e e e e e e s e ar e e e e e e s s s saatbaeeeeeeesensnreees 7

<AU|’OITIE]”DFIML/> Best Practice Recommendation: AutomationML

Container

Preface

AutomationML provides the basis for an efficient data exchange within the engineering process of
production systems. The AutomationML standard series IEC 62714 "Engineering data exchange
format for use in industrial automation systems engineering” already contains many use cases and
guidelines of how system engineering information is modelled.

In order to specify these definitions with examples, to apply them to specific use cases, and to
facilitate the first steps with AutomationML, specific issues for the modelling of data in AutomationML
are illustrated in Best Practise Recommendations (BPR).

In addition, the BPR shall provide a consistent realisation for specific use cases and shall thus,
complement the AutomationML standard documents.

1 Motivation for the realization of AutomationML as Container

AutomationML is realized as a distributed document format, i.e. a project can be stored in different
files of different formats. The files can be available locally or even centrally. Thus, they can be stored,
for example, in a project share or in the internet. For that, it is important to know the root file that
contains the project entry point. Additionally, it is also important to know which file is a part of the
project in the data transfer.

To cope with these challenges, a complete AutomationML project can be stored by using an
AutomationML Container. In doing so, all relevant files resp. all files, that are not centrally available,
can be stored in an ECMA OPC archive as one package.

On the one hand, this enables the different involved software tools to find the project’s entry point and
on the other hand this enables the involved experts to transfer complete projects. As a side effect, the
file size can be reduced significantly due to the compression as an archive, since XML based files
enable a high packaging density.

2 Realization

Two types of AutomationML Containers are allowed: completely standalone, offline (self containing
/pack’n‘go) AutomationML Containers and AutomationML Containers with project public links (non-self
containing /interlinked containers).

For completely standalone, offline AutomationML Containers, all files belonging to the AutomationML
project have to be in the AutomationML Container. Only relative, local links are allowed between the
files.

For AutomationML Containers with project public links, links with URIs are allowed, additionally, which
refer to locations which are public available for all the different involved software tools or experts.

AutomationML Containers can include further AutomationML Containers.

The referencing to these elements is described in clause 2.3. AutomationML Container files have the
file extension “.amix”.

2.1 relationshipTypes
Relationships within an OPC Container file are represented by so called relationshipTypes.

The following relationshipTypes shall be used for an AutomationML Container:

Root AML File

A Root AML file represents an AutomationML file that serves as the entry point for an AutomationML
Container.

relationshipType: http://schemas.automationml.org/container/relationship/RootDocument

Mime type: "model/vnd.automationml+xml"

http://schemas.automationml.org/container/relationship/rootdocument
http://schemas.automationml.org/container/relationship/rootdocument
http://schemas.automationml.org/container/relationship/rootdocument

<AU|'DI'H<3HDFIML/> Best Practice Recommendation: AutomationML

Container

Library AML File

A Library AML file is an AutomationML library file that usually contains only RoleClassLibs,
InterfaceClassLibs, and SystemUnitClassLibs. Like the Root AML file, a library file is always defined
as an entry point for an AutomationML Container. In this manner, it is possible to create
AutomationML Containers which only contain library files.

relationshipType: http://schemas.automationml.org/container/relationship/Library

MIME type: "model/vnd.automationml+xml*

COLLADA File

relationshipType: http://schemas.automationml.org/container/relationship/Collada

MIME type: "model/vnd.collada+xml"

PLCopen XML File

relationshipType: http://schemas.automationml.org/container/relationship/PLCOpenXML

MIME type: "model/vnd.plcopen+xml"

Any Content

relationshipType: http://schemas.automationml.org/container/relationship/AnyContent

MIME type: "application/x-any" or user defined

CAEX Schema
relationshipType: http://schemas.automationml.org/container/relationship/ CAEXSchema

MIME type: “text/xml”

COLLADA Schema

relationshipType: http://[schemas.automationml.org/container/relationship/ColladaSchema

MIME type: “text/xml”

PLCopen XML Schema
relationshipType: http://schemas.automationml.org/container/relationship/PCLOpenXMLSchema

MIME type: “text/xml”

http://schemas.automationml.org/container/relationship/Library
http://schemas.automationml.org/container/relationship/Library
http://schemas.automationml.org/container/relationship/Library
http://schemas.automationml.org/container/relationship/Collada
http://schemas.automationml.org/container/relationship/Collada
http://schemas.automationml.org/container/relationship/Collada
http://schemas.automationml.org/container/relationship/PLCOpenXML
http://schemas.automationml.org/container/relationship/PLCOpenXML
http://schemas.automationml.org/container/relationship/PLCOpenXML
http://schemas.automationml.org/container/relationship/AnyContent
http://schemas.automationml.org/container/relationship/AnyContent
http://schemas.automationml.org/container/relationship/AnyContent
http://schemas.automationml.org/container/relationship/CAEXScheme
http://schemas.automationml.org/container/relationship/ColladaScheme
http://schemas.automationml.org/container/relationship/PCLOpenXMLScheme

<AUfDmaHDﬂML/> Best Practice Recommendation: AutomationML

Container

2.2 Structure of an AutomationML Container

The following figure shows the structure of an AutomationML Container.

AutomationML Container

Relation on package level, ability to reference from outside the container file

Relation on part level, describes container internal references to parts

Containeramlx

CAEXSchema P ’ l/
Ty
7 Root document " Library
- |
| 4

ColladaSchema o

Ty
I 4

PLCOpenXMLSchema |

)
I 4

A 4 4 \
Collada PLCOpenXML AnyContent

Figure 1 — Structure of an AutomationML Container

2.3 Referencing into an AutomationML Container
For referencing an OPC Container via URI references the “pack” scheme is used. See:

= http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-
376,%20Fourth%20Edition,%20Part%202%20-%200pen%20Packaging%20Conventions.zip

= http://standards.iso.org/ittf/PubliclyAvailableStandards/c061796 I1SO IEC 29500-2 2012.zip

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-376,%20Fourth%20Edition,%20Part%202%20-%20Open%20Packaging%20Conventions.zip
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-376,%20Fourth%20Edition,%20Part%202%20-%20Open%20Packaging%20Conventions.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c061796_ISO_IEC_29500-2_2012.zip

</-\UfDmaﬁDﬂML/> Best Practice Recommendation: AutomationML

Container

Examples for URIs:
= pack://http:,,www.automationml.org,container.amix/root.aml
= pack:/ffile:,,c:,temp,container.amix/root.aml

3 Generate an AutomationML Container

The following figure shows the two steps necessary to generate an AutomationML Container.

e Collect all references to external files in the Root AML File)
e Referenced files, that are not public available to the target
system, shall be stored in the Container.
Data ¢ All references, which need to be included in the Container
Processing later, shall be converted into relative URIs. y

~N

¢ Write Root AML file with relationshipType "rootdocument"
into the Container

e Write all files into the Container, that were identified in step
"Data Processing"
Generation)

Container

Figure 2 — Two Steps for the generation of an AutomationML Container

4 Example implementation

See AMLContainer.cs

N Best Practice Recommendation: AutomationML

<Automation

Container

5 Code examples

L.Container.Automatior
root = acAddRoot("
ac.AddLibrary(root,) Uri("/Lib1.aml"));
rootfile i yRelationType(AMLContainerRelationShipType.Root))
rel in rootfile.GetRelationshig y ContainerRelationShipType.Library. ToString))

Debug.Print : b 1", rooffile.Ur.ToString, rel.TargetUr.ToString);

Figure 3 — create new AML Container file

ontainer ac = AMIL.Container.Automat t tainer.amix"))

ac.ExtractallFiles

Figure 4 — extract an AML Container

6 References
/

