Automati

Josef Prin:
INPRO

o

ﬁ_ﬂo Short Introduction to OCL <AUtDT‘3G,h9nSr\A,I;,/>

Automation Engineering

= OCL (Object Constraint Language) is a formal language for the
description of object constraints

= OCL is part of the UML (Unified Modeling Language)
= OCL is OMG standard and ISO standard ISO/IEC 19507
= OCL is “a formal language that remains easy to read and write”

= OCL is linked to an object model through UML embedding

27.09.2021 3

o

m Short Introduction to OCL <AutemarnenML/>

The Glue for Seamless

Automation Engineering

= Some terms and definitions

= Constraint: A constraint is a restriction on one or more values
of an object-oriented model or system.

= Context: Object model (class), for which the constraint is
defined.

= Instance: The object for which the constraint is calculated.

= Invariant: An invariant is a constraint that should be true

for an object throughout its lifetime:

context <class name>
Inv[<constraint name>].<OCL expression>

27.09.2021 4

_

<SAutematiomML/>

[T_P‘o Short Introduction to OCL S e b

Automation Engineering

Invariant example:

context Process inv: self.end > self.start
self always refers to the object for which the constraint is calculated .

context Process inv: end > start
The keyword ‘self’ can be omitted .

context Process inv startEndConstraint: end > start
Constraints can be named.

27.09.2021 S

_

<SAutemationML/>

ﬁ_ﬂ‘b Short Introduction to OCL S e b

Automation Engineering

OCL Navigation

l context opl:Operation
op2:0peration
duration = 20

self.operation -> {Operation opl, Operation op2}
self .Operation.duration -> {13.4, 20}

27.09.2021 6

_

m Short Introduction to OCL SAutemarionML/>

The Glue for Seamless

Automation Engineering

Some examples

" context Process
inv: self.operation->forAll (op|op.duration <
self .duration)

“ context Process
inv: if self.temperature > 20
then self.operation.pressure > 100
else self.operation.pressure <= 100
endif

27.09.2021

oro

<AutemationML/>

Short Introduction to OCL ey

Automation Engineering

lterator based Operations
® QOcl defines operations for collections using Iterators

Predefined
Operations

Explanation

select (expression)

results in a collection, that contains all the elements from collection for which the expression evaluates
to true.

reject (expression)

results in a collection, that does not contain the elements from collection for which the expression
evaluates to true.

collect (expression)

results in a collection of elements that results from applying the
expression to every member of the source collection

forAll (expression)

expression, which must hold for all objects in a collection

exists(expression)

checks whether a collection contains an element specified by expr

isUnique(expression)

returns true if the given expr evaluated on the body returns only different values.

closure(expression)

iterating over a transitive relationship (i. e. a tree structure)

................... iterate(expreSSion)

iterating over all elements of a collection

;LI UJ.LUZLL

_

The Glue for Seamless
Automation Engineering

m Short Introduction to OCL SAutomarionML/>

OCL further reading

= OMG OCL language specification:
https://www.omg.org/spec/OCL

= OCL tutorial (by Jordi Cabot)

https://www.slideshare.net/[cabot/ocl-tutorial
https://modeling-languages.com/wp-content/uploads/2012/03/OCLChapter.pdf

" QOCL tools

OCL Eclipse plug-in (OCLInEcore)

- USE, a system for the specification and validation of information systems based on a subset of the Unified
Modeling Language (UML) and the Object Constraint Language (OCL)

= SimpleOCL is a proof-of-concept implementation of the OCL standard, built on top of theEclipse Modeling
Framework (EMF) and EMFText.

27.09.2021 9

https://www.omg.org/spec/OCL
https://www.slideshare.net/jcabot/ocl-tutorial
https://modeling-languages.com/wp-content/uploads/2012/03/OCLChapter.pdf

Integratic

o

m AutomationML OCL Integration CAutomanenML/>

The Glue for Seamless
Automation Engineering

= Motivation

= Feasible Designs (a feasible design is a design,
where all constraints are satisfied)

unconstrained solution
space

= Types of constraints
= Safety Constraints
= Quality Constraints constraints
= Manufacturing Constraints
= Timing Constraints Y
= Component / Interface Compatibility
= Design Guides

allowable solution
space

27.09.2021 11

_

<SAutematiomML/>

ﬁ_m AutomationML OCL Integration S e b

Automation Engineering

= OCL AutomationML object model embedding
= classes
= SystemUnitClass, RoleClass, InterfaceClass
= |nstances
= |nternalElement, Externallnterface
= relations
= Inheritance relations
= class instance relations
= |nstance instance relations (InternalLink)
= parent child relations
= attributes

27.09.2021 12

<AutemationML/>

m AutomationML OCL Integration e —

Automation Engineering

OCL AutomationML object model embedding

Contextual |
Contextual Type Properties : :
Instance Related Class Relationship

, SystemUnitClass
Attribute ~oleCl Parent Child
) oleClass
SystemUnitClass InternalElement internalElement
Externallnterface —__—" to
RoleRequirement InterfaceClass
Instance
RoleClass _
_ Parent Child
RoleClass InternalElement AIDUE
Externallnterface
Instance to
InterfaceClass
Instance
Attribute Instance to
InterfaceClass Externallnterface Externallnterface InterfaceClass T —

27.09.2021

<SAutemalionML/>

AutomationML OCL Integration

The Glue for Seamless
Automation Engineering

= OCL AutomationML navigation to associated objects

UML: AutomationML.: An OCL-context can be defined for:
Internal
Class A Element,{
Systemanit « SystemUnitClass
A A « RoleClass
: : InterfaceClass
OCL: | OCL:| e

 [InternalElement
 Externalinterface

Context Context

27.09.2021

_

. . JAUtematienML/>
ﬁ_m AutomationML OCL Integration i e
Automation Engineering
= Associations in an AutomationML 2l
model are defined by the role
classes and SystemUnit classes Motor e p—— I
that are referenced by the child
elements of an AutomationML D00
object AutomationML.:
= Example: An object motor (IE or <IE oder SuC>
SuC) that has IE children (parts) Motor | <TE>
that reference either the RC J oo b |
"Sensor" or a SuC "Sensor" has an . fRCGoder SuC>
association: Motor->Sensor <IE> 7 >
2 f---- !
<IE>
Il o L. |

27.09.2021 15

o

<SAutemalionML/>

ﬁ_m AutomationML OCL Integration S e b

Automation Engineering

= |f there Is at least one robot there must also be at least one controller

~Robot-> notEmpty() implies Controler-> notEmpty()"

= ,,->“Is a quantity operator
Implies is a link operator for constraints
notEmpty() analog size()>0

= |f there Is at least one IE that references a SuC "Robot" or a RC "Robot",
then there must also be at least one IE that references either a SuC or a
RC "Controller". These can also be more specific classes.

27.09.2021 16

o

<SAutemalionML/>

m AutomationML OCL Integration S e b

Automation Engineering

= OCL context and AutomationML class relationship

= Usage of class names as association end names

= Class names are not unique across AutomationML libraries an need not
be unique In single libraries

= OCL provides a way of explicitly referring to types in other packages by
using a package-pathname prefix.

= Names of libraries have to be unique in AutomationML. Librarynames can
be used as package-pathname.

= Ambiguity of class names in a single library can be solved by using the
CAEX Pathname as a package-pathname

27.09.2021

o

<SAutemalionML/>

ﬁ_m AutomationML OCL Integration S e b

Automation Engineering

= OCL context and AutomationML class relationship

|-/ package AutomationMLBaseRoleClassLib

A package, created from the 3 context AutomationML8aseRol
AutomationMLBaseRoleClassLib E] context Group

_ _ _ [-] context Facet
4 AutomationMLBaseRoleClassLib L

4 [rRe] AutomationMLBaseRole [~ context Resource
Group {Class: AutomationMLBaseRole } =l context Product
Facet {Class: AutomationMLBaseRole } -

Resource {Class: AutomationMLBaseRole } E'Em“te’“ Process
Product {Class: AutomationMLBaseRole } =] context Structure

Process {Class: AutomationMLBaseRole } B
4 Structure {Class: AutomationMLBaseRole } 3 context ProduciSiructure
ProductStructure {Class: Structure } [=] context ProcessStructure
ProcessStructure {Class: Structure } [
[=] context ResourceStructure
ResourceStructure {Class: Structure } B
ExternalData {Class: AutomationMLBaseRole } [~ context ExternalData

27.09.2021

endpackage

_

<SAutemationML/>

The Glue for Seamless
Automation Engineering

ﬁ_ﬂ‘b AutomationML OCL Integration

= OCL context and AutomationML class relationship

) [~| package Equipment::FANUC
A package, created from a user defined
SystemUnitClassLib | il context RCS_ Module
=l package Equipment ~lendpackage
4 W Equipment (=] context ABB _
4 ABB — = package Equipment::ABB
=] context FANUC
@ RCS_Module — [~] context RCS_Module
4 [FANUC =] context KUKA
se] RCS_Module ~lendpackage
4 KUKA =] endpackage (=] package Equipment:KUKA

fsuc RCS_Module (=] context RCS_Module

endpackage

27.09.2021

_

<SAutematiomML/>

[T_P‘o AutomationML OCL Tools S e b

Automation Engineering

= Available Tools (for AutomationML members)
= OCL Editor and Interpreter
= available as an AutomationML Editor Plugln

= OCL Engine
= available as a .NET DLL

27.09.2021

Thanks for your attention!

Josef Prinz : josef.prinz@inpro.de

Innovationsgesellschatft flr fortgeschrittene
Produktionssysteme in der Fahrzeugindustrie mbH

Steinplatz 2
D-10623 Berlin

www.inpro.de

