

Application Recommendations: Automation Project

Configuration

©AutomationML consortium
Version 1.3.0, November 2021

Contact: www.automationml.org

<AutomationML /> Application Recommendations: Automation Project
Confi

nfiguration

Table of contents

LI oS00l ote] o1 (=T | £ PRSPPI 3
LIST OF fIQUIES ettt e e oo a bt e e e e a b et e e e e s b et e e e ekt et e e e anbe e e e e anbe e e e e anbreeeennes 5
IS) i = o] =PRSS 6
1 L gL 0T [0 Tox i o] o P PRSP TR 7
R R 2 - 1 ot PRSPPI 7
s Yoo o1 PSR P PPN SPPPPTIN 7
R B o L= (=T =T (o L PRSP 8

2 General notes regarding exchange of Automation Project Configuration datacc.ee...e. 9
2.1 Data exchange WOIKIIOWooiuiiiiiiiii e 9
2.2 Possibilities of CONfIGUIALION.........ciiiiii e e e e e s e e e e e e s e aan 10
2.3 Recommended WOIKFIOW.........coiuiiieiiiiie et e e 10
2.3.1 Providing an initial PLC project as basis for electrical engineeringcccuu.... 10

A I (@7 B I =T To |1 U= =1 41 o TP 10

2.3.3 PLC ENGINEEING. .. .tete ettt ettt ettt e ettt e e et e e s anb e e e anbr e e e e aneee 14

3 Automation Project Configuration data structures in AutomationMLcccccevvvvveviiiieninenennn, 15
I A = T (ol oo] [o1= o ST OO PTTPUPPR 15
3.1.1 Export from ECAD to AUtOMAIONMLccoiiiiiiiiiiiiei it 15

3.1.2 Import from AutomationML into PLC...........coooviiiiiiiiieeeeeeeeeeeeeeee 16

3.2 The neutral model: Automation Project Configuration data............ccoccveeeiniiiieiniee e 16
I A = - 11 (o [0 [T L PP O PP PPPPPT PP 17

3.2.2 Contents of data eXChaNGecoouiiiiiiii e 19

3.2.3 Automation Project Configuration data exchange data model.................cccceeeveeen. 19

4 Guideline for the use of the ECAD model in practical applicationsccccoeeeve e, 29
5 Modelling of Automation Project Configuration data with AutomationMLccccceeeeiiinnnee. 30
L0 R {01 [T =TTy I o] = o 30
5,11 AULOMALIONPIOJECT ...eeiiiiiiie ettt ettt e e 35

5.1.2 DeVICEUSEIFOIUENccciiiiiiieiiee ettt e e e e e e e e s 36

IO T S 1] o1 T SRS 36

L0 I T o - PR 37

LN I B = Tt | (T o PP PP PPPUTT PP 39

B.LE TAGTADIE oo e 42

5.1.7 TAQUSEIFOIAET ..o 44

oI 08 T ©e] 101 0] (=) g I T PSP PP RPPOTPPR 44

L0 I T o T [R 44

5.1.10 CommuNICAtIONINTEITACEeeiiiiiiiiiiiiiii e 45

Lo I 5 A (1YL (=T o PSP PP PP PPPPPP PP 46

5.1.12 COmMMUNICAtIONP O ..ottt e e e e e et e e e e e e e s aneeeeees a7

L0t 0t G T o 1.1 o] 48

5.1.14 SENSOMPOI ..cociiiiiiiiiiiii 49

5.1.15 DeViCelteMBUSEXIENSIONcuiiiiiiiiiiiiiiie ettt e e e e 49

5.1.16 NOUEBUSEXIENSION......cciiiieiiiiiieee e e eectiiieit e e e e e s e r e e e e e s st e e e e e e e ssnsanteneeeeesesnnenneees 50

5.1.17 CommunicationInterfaCeBUSEXIENSIONooiiuuiiiiiiiiiiiiiiiee e 50

5.2 INerfaceCIasSSLIDIArYocuiiiiiiiiie e 51

Application Recommendations: Automation Project

5.2.1
5.2.2
5.2.3
524
525
5.2.6
5.2.7
Appendix A

Configuration
12T TP PP PRTT TP 53
(O g - o] 1= PP 54
CommunicationPoOrtINtEIfACE.uvvieii e 55
PoWerPortINterfacCe. ..., 55
SENSOIrPOMINTEITACEevviiiiiee e r e e 55
MOAUIBASSIGNIMENTeeiiitieie ettt e e et e e e e st b e e e abreeeeans 55
Naming and ESCAPINGuviiiiiiiei ittt et e e s sbae e e s sbae e e e sbbeeee e 56
Roundtrip Engineering and ldentification of Logical AR APC Objects........ccccceeenne. 57

<AutomationML /> Application Recommendations: Automation Project
Confi

nfiguration

List of figures

Figure 1 — Automation Project Configuration between ECAD and PLC t0Ol...........ccccvvveveeeeiiicnnnnen, 9
Figure 2 — Data exchange WOTrKFOWoiiiiiiiiiii e 10
Figure 3 — Example for PLC configuration and graphical placementcccoccociiiiiiiiiiiee e 11
Figure 4 — Example for stations and bus data configurationccccccovviiiiiiiiie e 12
Figure 5 — Example for symbolic address configurationcccccoecveeeinieie e 12
Figure 6 — EXample for €rrOr ChECKcoi it e e e e e e e e e e e 13
Figure 7 — Example for export from an ECAD t00]coocuuiiiiiiiieiiiiie e 13
Figure 8 — Example for import iNt0 @& PLCcoouiiiiiiiii ettt 14
Figure 9 — Example for result of import into @ PLC ... 14
Figure 10 — Basic concept for ECAD-PLC data eXChangecoooviiiieiniiiieiiiiiee e 15
Figure 11 — Basic concept for ECAD-export (EPLAN €Xample)ccveeeiiiiiiiiieiee e cciniieeee e e 16
Figure 12 — Basic concept for PLC-import (Step 7 eXample)ccooieieiiieiennieie e 16
Figure 13 — Coupling CAE @nd PLCcooiiiiieiiiicc ettt snee e e e e 17
Figure 14 — Objects and parameters of the Automation Project Configuration data exchange 20
Figure 15 — Objects and parameters of the Automation Project Configuration data exchange

L0 Q=34 (=1 1S3 o RO PERR 21
Figure 16 — Procedure for use of ECAD in AUtOMatioNMLccvvviiiieiii i 29
Figure 17 — AutomationProjectConfigurationRoleClassLib in AutomationML Editor view 30
Figure 18 — AutomationProjectConfigurationRoleClassLib as XML representation 35
Figure 19 — AutomationProjectConfigurationinterfaceClassLib in AutomationML Editor view....... 51
Figure 20 — AutomationProjectConfigurationinterfaceClassLib as XML representation 52

<AutomationML /> Application Recommendations: Automation Project

Configuration

List of tables

Table 1 — Overview of AUtOMAtIONML PAItS.......cccviiiiiie e e e e e srreee e e 7
Table 2 — Definition AULOMALIONPTOJECTvviiiiiiiiie ittt e e snreee e 35
Table 3 — Definition DeVICEUSEIFOIAETuuuuiiiiiiiiiiiiiiiiiiieieiaiareraeiebara e 36
Table 4 — Definition SUBNEL........oooi e e e e s s ree e e e e 36
Table 5 — DEfiNItION DEVICEuuuuiiiiiiiiiiiiiiiiititii bbb e e beaeaebarsraeetsrssassbssssssssnrasssssnsnsnsnnnnns 37
Table 6 — Definition DEVICEITEM ... e e e s e st r e e e e e s e s anraaneeeaes 39
Table 7 — Definition TagTable...........oo e 42
Table 8 — Definition TAQUSEIFOIIENooiiiiiiie ittt snree e 44
Table 9 — Definition COMPIEXTAQG ...coccveiiiiieee e e e e e e e e e e s e st r e e e e e s e annraaeeeeaes 44
Table 10 — Definition NOGEuuuuiiiiiiiiiiiiiii e e be e aerere s rersraserersrarsrsrararssssnsnsnrnrnrns 44
Table 11 — Definition CommuniCatioNINIEITACEcviviiiiiiiiiic e 45
Table 12 — Definition IOSYSIEIMeiiiiiiieee ettt et e e st e e e e sbreeeean 46
Table 13 — Definition CommUNICAtIONPOITuuiiiiiic e e 47
Table 14 — Definition POWEIPOIc..uviiiiei ettt e e e e e et r e e e e e s e eanraraeeeae s 48
Table 15 — Definition SENSOIPOIT.........uuiiiiiiiiiiiiti e e are e rarerererarsrsrararsrsrsrsrsrarares 49
Table 16 — Definition DevicelteMBUSEXIENSIONciiiiiiiiiiiiieiiee et e e saraaae e 49
Table 17 — Definition NOAEBUSEXIENSIONuuuuuiiiiiiiiiiiiiiiiiiiiiiiiieieiaiarerarerarererereereraara—a—a—————. 50
Table 18 — Definition Communicationinterface BUSEXIENSION...........cccuvvieeieeeii i 50
Table 19 — DEfiNitioN TAG vueeeeirieeee ittt ettt e et e e st b e e e e sbb e e e e sbbe e e e snbbeeeesbneeeeans 53
Table 20 — Definition CRaNNEL...........uuiiiiiiii bbb e b e srerarararsrersrarsrsrsrssnrnrnres 54
Table 21 — Definition CommunicationPortiNterfacecccovveeieeiii i 55
Table 22 — Definition POWEIrPOMINIEITACEuuiiiiiiiiiiiiiiiiiiii bbb erarerarararare 55
Table 23 — Definition SENSOrPOIINIEITACEc..uviiieiee e 55
Table 24 — Definition MOAUIEASSIGNMENTiiiiiiiiii ettt ee e 55

<AutomationML./> Application Recommendations: Automation Project
Confi

nfiguration

1 Introduction

A very frequently occurring task within the planning process of production and automation systems is
the exchange of automation project configuration information of automation system devices between
ECAD and PLC systems. To avoid multiple engineering in the participating systems ECAD and PLC
systems need an interface for sharing this information.

In case of beginning engineering in the ECAD tool certain rules must be observed to get the hardware
information in the correct location in the PLC tool. In case of beginning engineering in the PLC tool non
placed functions must be placed and operated in the ECAD tool.

This application recommendation describes these workflows and the method of hardware configuration
modelling using AutomationML.

1.1 Basics

The data exchange format AutomationML which is standardising in the IEC 62714 standard is a neutral,
free, and XML-based data format. It has been developed in order to support the data exchange between
engineering tools in a heterogeneous engineering tool landscape.

Due to the different aspects of AutomationML the IEC 62714 consists of different parts.

Table 1 — Overview of AutomationML parts

Part / Title Description
Document Identifier
Part1/ Architecture and | This part specifies the general AutomationML
WP Arch, V 2.0.0 general architecture, the modelling of the engineering data,

requirements classes, instances, relations, references, hierarchies,

basic AutomationML libraries and extended
AutomationML concepts.

Part 2/ Role class This part specifies additional AutomationML libraries.
WP LibV 2.0.0 libraries
Whitepaper / Communication | This Whitepaper describes the modelling of
WP Comm V 1.0.0 Communication mechanisms in AutomationML
Whitepaper / AutomationML This Whitepaper describes the integration of eCl@ss in
WP eClass V 2.0.0 and eCl@ss AutomationML

integration
Best Practice Multilingual This Whitepaper describes the handling of different texts
Recommendation / expressions in for different languages in AutomationML
BPR MIingExp AutomationML
V 1.0.0
Best Practice Modelling of This Whitepaper describes the handling of reference
Recommendation / Reference designations following IEC 81346-1:2009-07 within
BPR RefDes V 1.0.0 | Designations AutomationML

Further parts may be added in the future in order to e.g. interconnect further data standards to
AutomationML.

1.2 Scope

This application recommendation proposes a modelling method of automation project configuration data
by means of the engineering data format AutomationML. It will describe the recommended use of role
and interface classes as well as the recommended structures to be considered within the instance
hierarchy of an AutomationML project.

<AutomationML /> Application Recommendations: Automation Project

Configuration

1.3 References

The following documents are referenced in this document and are indispensable for its application. For
dated references, only the edition cited applies. For undated references, the latest edition of the
referenced document (including any amendments) applies.

Extensible Markup Language (XML) 1.0:2004, W3C Recommendation (available at
<http://www.w3.0rg/TR/2004/REC-xmI-20040204/>)

IEC 62424:2008, Representation of process control engineering - Requests in P&l diagrams and data
exchange between P&ID tools and PCE-CAE tools

Whitepaper AutomationML Part 1 — AutomationML Architecture, November 2018
Whitepaper AutomationML Part 2 — AutomationML Role Libraries, October 2014
Whitepaper AutomationML — AutomationML Communication, September 2014
Whitepaper AutomationML — AutomationML and eCl@ss Integration, November 2021
Best Practice Recommendation Multilingual expressions in AutomationML, March 2017

Best Practice Recommendation Modelling of Reference Designations, September 2017

<AutomationML./> Application Recommendations: Automation Project
Confi

nfiguration

2 General notes regarding exchange of Automation Project Configuration data

ECAD tools and PLC tools have different views of automation system information. Whereas ECAD tools
depict all electrical detail information of devices applied within automation systems in PLC tools only a
logical compilation of the automation devices is used. So in ECAD tools there are defined e.g. devices
which are involved in an automation systems, voltage connectors which are used for power supply of
the devices, and wire types which are used to connect devices. But these are not used in PLC tools. On
the other side in PLC tools there are device and control application specific conditions defined e.g. baud
rates which are used within the communication connections, control code variables which are associated
to control device inputs and outputs, and control application codes. But these are not needed in ECAD
tools. Nevertheless, both types of tools have some information in common. For example, the wiring of a
certain automation device to a PLC defines the address the device can be accessed within the PLC.
This must be considered by development of import and export tools. Figure 1 shows the scope of this
application recommendation.

ECAD > AutomationML > PLC-Tool

| 1 == . ®
. /'1* Application Recommendation: / R s
< iR \' & Automation Project Configuration e —
\{ \] 1 Sy
' = R
=g

Figure 1 — Automation Project Configuration between ECAD and PLC tool

Beyond the named engineering tools for ECAD and PLC programming also other tools can be interested
in the common data set of both tools. For example, tools for mechanical engineering (MCAD) can be
interested in the devices to be wired and documentation tools can be interested in the wiring structure
reached. Nevertheless, within this document only ECAD and PLC programming tools are considered
knowing that more engineering tools can benefit from importing the modelled information. Systems
containing drives may comprise of different aspects other than electrical configuration. Therefore, an
own Application Recommendation “Drive for MCAD” (AR Drive MCAD) will propose a modelling method
of mechanical aspects of drive configurations whereas a specific drive extension will handle the electrical
configuration of drives. It will describe the recommended use of role and interface classes for drives as
well as the recommended structures to be considered within the instance hierarchy of an AutomationML
project.

2.1 Dataexchange workflow

Usually, in a production system engineering process the construction phase in the PLC project will begin
later than in the ECAD system because the completion of the ECAD documents is the base for the
production of the control cabinet. The combination with the software within the plant and the following
commissioning will not take place before all control cabinets are completed.

<AutomationML /> Application Recommendations: Automation Project
Confi

nfiguration

18.]21.]24.]27.]30.]02.]05. [08.]11.]14.]17.]20.]23.]26.| 29.[02.]05.]08.[11.[14.]17.]20.]23.] 26.]29.|01.]04.]07.[10.[13.
ECAD : :

roduction Control Cabinet

Commissioning

Figure 2 — Data exchange workflow

So the PLC engineer will usually attend later to the project than the ECAD engineer. Nevertheless at an
early point of time (during ECAD engineering) the automation project configuration of the plant must be
defined because the ECAD documents must be generated and the parts must be ordered.

2.2 Possibilities of configuration

ECAD systems normally can handle the components of different PLC manufacturers which have certain
analogies from a point of view of electrical hardware. But additionally, there are system specific /
manufacturer specific parameters. Therefore, only the engineering system of the PLC manufacturer can
guarantee a complete and comfortable handling of all parameters of a hardware component. So, the
configuration of the PLC system should be done as far as possible within the engineering system of the
PLC manufacturer.

2.3 Recommended workflow
Accordingly to the described criteria in most cases the following workflow is established.

¢ Engineering the basic device configuration within the PLC project of the PLC programming tool
and exporting it to ECAD tool

e Importing PLC project to ECAD tool, engineering of the ECAD project, and exporting the ECAD
project to PLC programming tool

e Importing ECAD project into PLC programming tool and engineering of the PLC project

2.3.1 Providing an initial PLC project as basis for electrical engineering

If no ECAD project exists so far, the ECAD engineer first of all defines a raw project within the
engineering system of the PLC manufacturer, the PLC programming tool. The ECAD engineer selects
all needed components and defines the bus topology in close cooperation with the PLC engineer who
has to implement the requested functions later on. This close cooperation ensures a high consistency
regarding the selected hardware components. The automation project configuration will be exported
from the engineering system of the PLC manufacturer and imported into the ECAD tool.

2.3.2 ECAD engineering

Based on the existing ECAD project the ECAD engineer executes the complete hardware construction,
sometimes with slight adaptions. During this process the symbolic names for variables, tags or signals
can be defined too. So the PLC configuration is done under the following conditions:

e PLC configuration can be imported from PLC programming system
e Configuration via graphical placement on overview page or navigator
e PLC-device selection carried out from ECAD database

e Drag&Drop on pages from navigator

Application Recommendations: Automation Project

Configuration

e s7-a00

Faldbasiartar Fiter:
[Elatetr ettt

volleaser-rilkar:
[Sic.ees7

(SRR
S Eieerorecnrii
[

& O =es

SIE.GES7 13146601 0AAD

> —EoneEraz 2

S GES FasE 1BHOL-OAAD Y Epemalensin
SIE|BES7AZE-16LO00-0AR0 L)) —En e
S GES T AT S-S OO0 ARG S,

STy G

SIE.GES7E00-1AESO OAMD

Figure 3 — Example for PLC configuration and graphical placement

Application Recommendations: Automation Project

When the PLC configuration is completed the stations and bus-data are engineered. This is

Configu

ration

normally

done by manual assignment of cards to CPUs and devices to bus via device properties.

B3 Fertigungsstraiie

ETH Steusrung ET1

Al
VB (SPS-Kaster) =EBS-HERSI1 2

U (SpS-Kazten) =EBIHETA/LO

%1 (5PS-anschiuss for Bus-kabel, Quells) =EB3-+ETA[1.1
52 (5PS-Anschiuzs For Bus-kabel, Quells)
Lot (5P Anschiuss, SPS-KY (4)) —EBIHEBS/1 .2

[Bus-Konfiguration - EPLARN-DEMO

A M1 (SPS-Anschiuss, SPS-KY (M) =EBI+EBS/1.2 Filker:
M2 (SPS-Anschiuss, SPS-KW (M) =EB3-HEBS/1.2 Master —
P (50w, SPSKY (L)) ~EB3 HEBG1 2 \ L]

g (Artikslplatzierung, SPS-Karte) ~EBI+ET (BR1,51) Msster [Slavs:

o Az
=) a3

5|
i
EERI G
11 {10}
12 {In0}
12 {10}
15 {irmy

13 {10 ¢

ETZ Steusrung ET2
ET3 Steusrung ET3
ET4 Steusrung ET4

A

i B (SPS-kasten) —EBI+ETA/Z.2
SP3-Kacten) —EB3HEES/9.4

SP5-Kasten) —ER3+ERS/10.4

F30,0] (SPS-Anschiuss, DE) =EB3+ET4/2,2
E30.0] (SPS-Anschiuss, DE) =EB3+ERS/10.4
=PS-Anschluss, SPS-AV (+9) =EBI+HET4(2.3
=PS-Anschluss, SPS-AY (+9) SEBI-+HEBS(10.+
SPS-Arschizs, SPS-AY (-)) —EBIHET4/2.3
S5 ArschiEs, SPS-AY (-1) —EBI--ERSH 10,4

= Siemens SIMATIC 57

i Bl 2: —EB3-ET1-A1:MPI (MPT Master)
=1 = Profibus DP
[l Z: —EB3+ET1-A1:DF (DP Master)
; BIETZ-A1:BK3100
B3-ET3-A0:IMIS1-1 Basic
ES-+ET4-A0:IL PB BE DPfY 1

14 {100} (SPS-Anschiuss, SPS-AY (PEX) —EBIHET4/2,3
14 {100} (SPS-Anschiuss, SPS-AY (PE)) ~EBI+EBS/10.4

21 {In1} [E30,1] (SPS-Anschiuzs, DEY =EBI-+ETHZ 4 Baugruppentréger [Modul:

21 {In1} [£30, 1] (5P5-Anschiuss, DE) =ED3+EB5/10,5 1= 1] Siemens SIMATIC 57
22 {In1} (SPS-Anschiuss, SP5-AY (+1) =EBI+ET4/2,4 = Wl —FRIAETZ-A1 (3)

2z {11} L SPE-AY (40 .5 i 8] (SPSKasten) =EBSHETZ/Z.0
23 {In } (SPS-Arvichiuzs, SPS-AV (-)) —EBI-HET42.5 FE1] (5PS-kasten) —EES-EES(3.3

23 {IN1} (SPS-Anschiuss, SPS-AV (-)) =EBI-+-EBS/10.5
24 {IN1} (SPS-Anschiuss, SPS-AV (PEY) =EBI+ETH2.5
24 {IN1} (SPS-Anschiuss, SPS-AV (PEY) =EBI+EDS/10.5
CArtikelplatziorung, SPS-Karte) —EBI+HETH (OR+ 54)

1 (SPS-Kasten) —EBIFETAMLS

& DP (SPS-Anschiuss Fur Bus-Kabel, allgemein) =EB3+ETA(1.3
24V (SPS-Anschiuss, SPS-KY (+)) =EB3+ET2/2. 1
14 (SPS-Anschluzs, SPE-KV (+)) =EBIHET2/2.1

1- (5PS-Anschiuss, SPS-KY (-3) =EBI+ETZ/2.1

1PE (SPS-Anschiuss, SPS-KY (PE)) —EB3-+ET2/2, 1
O (5PS-Anschiuss, SP5-KY (M) —EB3+ET2/2. 1

24 (SPS-Anschiuss, SPS-EY (-+3) =EBS-HETZ/2, 1

2= (SPS-Anachiugs, SPS-k (<)) =EB3HETZ/Z.1

ZPE {5PS-Anschiuss, SPS-KY (PE)) —EBI+ET2/2,2
CArtikelplatzierung, SPS-Karte) —EB3+ETZ (BRZ.52)

S 1: =EBA+ETZ AZ
[21 mEBIHETZ-A3
e 3 —EBIHETZ-A4
e 41 —EBIHETZ-A5
o Si —EBIHETZ AR

o
o [l —ER3ETI-AD (4)
o [l =EBIHET4-A0 {53
o [l = —EBS+ETL-A1 (0)

Figure 4 — Example for stations and bus data configuration

In the next step the tag list is to be engineered, i.e. a list of tags, variables or signals (symbolic address)
of hardware related tags:

2
B

Cenasaravaal

[Comceyer bemss o

Figure 5 — Example for symbolic address configuration

Finally a simple error check should be performed, e.g.:

e Double usage of I/O / bus or symbolic addresses
e Missing addresses.
e Simple rules, e.g. slot 3 reserved for IM-module

W et s e | g Y ni —_—
cheme EE =] V)))) o))
Deerption: Check mith mesum fuctionaity

n Clesz - Yorvber Mesage et -
- Temingts Gou00 T PLC b propery 0oT pecied confguratm vauE T
e Pug: s coutepiece m cverven:
iy . PLC b without conn. point.
7 Fack S 2 mountea on
s s/ bus coupler 15 s 2 o s st/ b covple, (€ 2,
o cennestens S5 el K% of 3 0k R4 ekgotd e e
“ 10 Fack s s nknwn.
s Forcgn e 1 s e 54 of 2 bus i i T
m Croseefer.. z = 5
o etaruption... 5 Fack s Fing comciion.
a2 20 pare oy I B s s coupler 51
w Fars dta = 5o meses s coupler 815 1 ot e, (Communication unds 521 amd 0. =
o4 Macie Fack s s nek e,
as Reperts oo st at .
s Biack o 0 senaee atingut.
w or e than s 10 cermecton pord s s charnel
s Dottt e has Boen ssscyes o than snce wahin § E9U
ms Dettrnste.
o Projectcam. ires i misin
o Placehoider (Correction pet s iption & b
- i St/ mae s missing
- ot s i S
@ P G i oo d
s m"i“mi" (Mizsing symiboic sddvess (sutomatic)
5ymibohc adesshas een g more than v vihin s L.
o Topology o ey T =
Bue-sines - |5 »

Application Recommendations: Automation Project

Configuration

Figure 6 — Example for error check

Now the ECAD project can be exported to AutomationML dependent from the implementation in the
ECAD tool and imported to the PLC programming tool.

L L o ey ——ry BOD
BEEA A0 GGy pe e CRec sa@as @r 0@ B ssw ok WM
TR UM (010 W i (B REE ERREREET D A 8t Re
e en] .| Demmenissten .[vnl
fm sicer B |
55 [T T T T
e Q™ a—
e
otk . .
v R ——
B fmbsie onm & —

Satn imposen..
o B 2 <GB T LB
5 Pin 0 Schopan oo
I ——
LT e—
B & SERIETIADIMILL Ackesien ks shbuschin [] EL E

AR L

BB L

[—e, 5]
& S AT

QFTTEAT[S % L ¢en=00 a0Rss

Figure 7 — Example for export from an ECAD tool

Application Recommendations: Automation Project

Configuration

2.3.3 PLC engineering

At a later point in time the PLC programmer will begin the engineering based on the already developed
ECAD project. So at this point of the engineering process the export function of the ECAD system and
the import function of the PLC system should be used to check possible changes and verify the equality
of both configurations.

-7 @ RED W

prTT——y

Figure 8 — Example for import into a PLC

CAx_asterisk AML_02 » PLC_1 [CPU 319-3 PN/DP]

> I

|ET...L|,é > ﬂi,..

|
jﬂ‘ - pp |Baugr... | Steckpla E-Ad) | A-Adres... |
PS 307 5A_1 o 1
~ PLC1 (] 2
MPIDP interface_1 0 2x1 8191*
DPinterface_1 (4 2x2 8190*
» PROFINETinterface_1 () 2x3 8189*
0 3
DI 32x24VDC_1 0 4 0.3
DO 32x24VDCI0.5A_1 0 5 0.3
I o 6
B (] 7
v o]
I o 9
o 10
0 1"
v
<[> [100% v —y— & < i | B
6| Eigenschaften I"_i.‘.lnfn \QIE Diagnose LR 4

Figure 9 — Example for result of import into a PLC

<AutomationML /> Application Recommendations: Automation Project

Configuration

3 Automation Project Configuration data structures in AutomationML

In the following chapter a concept is defined how Automation Project Configuration data can be
represented in AutomationML.

3.1 Basic concept

For using AutomationML as a neutral exchange format for Automation Project Configuration data the
PLC-specific interfaces of the different PLC manufacturers must be decoupled. This guarantees an
independence of the further development of PLC-tools as well as of the further development of ECAD
tools. Furthermore the transformation and implementation should be as easy as possible for ECAD and
PLC-vendors likewise. Therefore already existing models should be used as far as possible.

ECAD > AutomationML neutral model > PLC-Tool

Figure 10 — Basic concept for ECAD-PLC data exchange
Using a neutral model allows
e definition of PLC-Tool independent roles in AutomationML

e definition of PLC-specific SystemUnitClasses for different ECAD- and PLC-Tools / vendors in
AutomationML

o definition of PLC-specific InterfaceClasses in AutomationML

3.1.1 Export from ECAD to AutomationML

The following figure shows the detailed export of Automation Project Configuration data based on an
EPLAN example:

<AutomationML /> Application Recommendations: Automation Project

Configuration

ECAD > AutomationML — neutral model >

| Croate Project l

Change Project

{SystemUnitCiass:

1 SystemUnitClass:

Figure 11 — Basic concept for ECAD-export (EPLAN example)

1. Export/Import of Automation Project Configuration data from / to AutomationML
2. Manufacturer independent roles in AutomationML

3. Neutral SystemUnitClasses in AutomationML
4

Topology in AutomationML (neutral model)

3.1.2 Import from AutomationML into PLC

The following figure shows the detailed import of Automation Project Configuration data based on an
Step 7 example:

AutomationML - neutral model PLC

MyRoleClassLib

RoleClass:

RoleClass:

MySystemUnitClassLib)

SystemUnitClass:

SystemUnitClass:

Figure 12 — Basic concept for PLC-import (Step 7 example)
1. Import of ECAD data from AutomationML (neutral model)

2. Import from neutral model into manufacturer specific PLC tool (Example S7)

3.2 The neutral model: Automation Project Configuration data

The aim is to support the engineering workflow between ECAD systems and PLC engineering systems.
Providing standardized interfaces for the data exchange between PLC and ECAD systems are
mandatory. The interfacing to ECAD systems has as further target group all ECAD manufacturers:

<AutomationML /> Application Recommendations: Automation Project
Confi

nfiguration

|
|

I
l

rExXx rEx s x
r=E=x rx rsx

XML (AML) File

Figure 13 — Coupling CAE and PLC

So, we must consider the different ECAD systems and CAE manufacturer. Therefore, the term “ECAD”
stands for the different CAE, E-CAD and E-CAE formats depending on the different existing ECAD
systems. Based on this the implementation of a neutral “proxy ECAD”-format in AutomationML is defined
in the following chapter. Furthermore, the already existing concepts of the leading ECAD-Tool
manufacturer and PLC manufacturer shall be considered to ensure an “as easy as possible”
implementation of this neutral model for all ECAD and PLC manufacturer.

3.2.1 Basic ideas

The Automation Project Configuration data can be modelled by using AutomationML. Therefore, the
modelling methodology is based on the concepts of AutomationML topology modelling using CAEX
defined in Part 1 of the AutomationML standard. Additional provisions are added to the basic definitions
to fulfil the special requirements that arise from data exchange with ECAD tools. The Automation Project
Configuration data modelling methodology enables the development of a self-containing model. No
dependencies to other models are mandatory.

For modelling of Automation Project Configuration data a vendor neutral Automation Project
Configuration data structure will be defined. It represents in its base structure a neutral object model of
PLC systems.

The data exchange is based on complete information about the objects. This means that the Automation
Project Configuration data always holds the complete data of the object itself and not only delta
information.

The export/import granularity is at the level of hardware stations as PLC engineering systems always
operate at a station level. The export/import will either support exchange of data referring to one or more
stations (e.g. a complete project) or only parts of a station (e.g. one single module). The requirement
here always is that the “environment®, the part lives in, is also part of the data exchange.

Only PLC hardware configuration information of automation devices including some relevant parameter
and symbols/tags related to the hardware objects are in scope of this data exchange. Additionally
information about the networks these hardware configurations are connected to is part of this exchange
format.

Only a subset of all data provided by PLC hardware configuration is relevant for data exchange with
ECAD systems. Due to the electrical view of the plant handled by ECAD tools, these tools can only
deliver a very general subset of information belonging to the PLC hardware objects. Specific parameter
settings are the domain of PLC specific hardware-configuration tools and the specific object managers.
They only can be handled in the manufacturer specific tool.

Besides the standard devices in the PLC hardware catalogues, there are some types of device items
that need additional descriptions. Examples for this are GSD or GSDML descriptions. Devices and

<AutomationML /> Application Recommendations: Automation Project

Configuration

device items like norm slaves or GSDML based IODevices can only be instantiated in a PLC
configuration if the appropriate description / package is installed. It is the responsibility of the PLC
programmer to make sure that the correct and up to date device item information (GSD, etc.) is available.
But the AutomationML based ECAD data exchange file can provide information about the needed device
item information.

Some of the ECAD systems are capable to provide that information about a needed description file.
Others also can provide the file itself. Therefore, it is allowed to transmit this additional data from the
ECAD system to PLC engineering system. Files are expected to be delivered e.g. as a zip file and are
unpacked into the same directory as the import file. Thus, it should be possible to specify and reference
the file in the data exchange file. The user of a PLC system, who is importing the file, can expect to find
some or all needed descriptions in the same directory as the import-file. The reference to the description
file is inserted as separate properties for the module. It is an anchor to the item description.

3.2.2

<AutomationML /> Application Recommendations: Automation Project
Confi

nfiguration

Contents of data exchange

An analysis of the already existing proprietary XML-based data exchange files of the leading PLC and
ECAD manufacturers regarding the Automation Project Configuration data showed that all data to be
exchanged can be grouped in three major categories:

1.

HW Data:

These are data concerning parts or devices like a central rack, a slave or a switch. Therefore
mostly the term “device” is used for this group of parts. Within these devices there are other
devices or device items like racks, CPUs, power supply, I/O Modules, submodules. Therefore
mostly the term Deviceltem is used for this group of parts. Additional device items like routers,
switches, hubs, repeaters will be supported by the export format. Devices are often grouped in
a hierarchical “folder” structure.

Symbols / Tags:

Exported and imported are “symbols” and “tags” assigned to a device item. Only hardware
oriented symbols/tags are considered here. The symbols/tags are exported with the controller
target device item (i.e. the CPU) and not with other device items they might refer to (e.g. an I/O
module). Like devices also the tags are often grouped in “tag tables” and in a hierarchical “folder”
structure.

Networks:

Networks are modelled right below the project as global subnet objects. The link between a
network and the device items are modelled as a reference to the subnet object. The network
parameters are stored at the network object. The parameters concerning a network interface of
a given device item, attached to a network, are stored in a hode object at that device item. The

communication is often regulated using “channels”, “ports” and “interfaces”.

Additionally the “Whitepaper AutomationML Part 5 — AutomationML Communication” already defines an
XML based methodology for communication system information exchange among engineering tools
developed by AutomationML e.V. These methods shall also be considered when modelling Automation
Project Configuration data.

3.2.3

Automation Project Configuration data exchange data model

The consideration of all these mentioned and already existing models leads to the following basic
Automation Project Configuration data exchange diagram:

<AutomationML /> Application Recommendations: Automation Project
Confi

nfiguration

Automation Project

-ProjectName
-ProjectManufacturer
-ProjectSign
-ProjectRevision
-Projectinformation

1__t
0% 0.* 0.1
Device .
Subnet n DeviceUserFolder 0..
-Name
-Name -Typelde ntifier: Tem plateldentifier -Mame
-Type -Manufacturer
-CustomAttributes[0...n]: Value -Comment
1
1 o -
ﬁ - ModuleAssignment
Deviceltem
-Mame
-TypeName o.* 0.*
-DeviceltemType - 0.1
PositicnMumber
-Builtin
= TagTahle TagUserFold
0- -Typeldentifier: Templateldentifier 58 agtser er o
-Manufacturer -Name -Name -
-CustomAttributes[0...n]: Value -— -AssignToDefault
-FirmwareVersion 0.1
-Comment
-Address[0..n]: StartAddress, Length, loType
-PlantDesignation IEC o 1 1
-Locationldentifier IEC
-Product Designation IEC 0.1
-InstallationD ate
4 1 1 1 1 ?
o.* 0.*
PowerPort
|%—Label Channel Tag
-Ty pe -Name
O{'l_l -loType -DataType
-Mumber [—4-I0Type
SensorPort o.* -Length -Logicaladdress
-CustomAttributes[0..n]: Value -Comment
P -Label o.*
0.1
'—I Communicationinterface 0.*
1
-Label 1
———————— Type j 1
-CustomAttributes[0...n]: Value o.*
ComplexTag E
I ’ -DataType
1 1 -Comment
0.* 0.*
0.1 o.*
Node
Type loSystem CommunicationPort
-MetworkAddress -Number -Label
-CustomAttributes[D...n]: Value -CustomAttribute s[0...n]: Value -CustomAttributes[0...n]: Value

Figure 14 — Objects and parameters of the Automation Project Configuration data exchange

<AutomationML /> Application Recommendations: Automation Project

Configuration

As this document also serves as a basis for bus specifical definitions and extension which are defined
in separate documents the abstract RoleClasses “DeviceltemBusExtension”, “NodeBusExtension” and
“CommunicationinterfaceBusExtension” are defined to prepare an easy implementation for future
extensions.

The following figure shows these abstract ExtensionRoleClasses for reasons of clarity only in the area
of the parent objects.

AutomationProject

-ProjectName
-ProjectM anufacturer
-ProjectSign
-ProjectRevision
-Projectinformation

1 1 0.1

1.* of*

Device

Subnet -Name

-Ty peldentifier: Templateldentifier
-Manufacturer

-Comment

-Mame
-Type

Deviceltem

-MName
-TypeName
-DeviceltemType
_PositionNumber DeviceltemBusExtension
-Builtin

-Ty pe ldent ifier: Tem plateldentifier
-Manufacturer

-CustomAttributes[0_ .n]: Value
-FirmwareVersion

-Comment

-Address[0...n]: StartAddress, Length, loType
-PlantDesignation IEC

-Locationldentifier IEC

-ProductDesignation IEC

-InstallationDate

| :

0.. *
CommunicationinterfaceBusExtension
Communicationinterface r
1
-Label
@ Type
0.* -Customattributes[0...n]: Value
Node

-Ty pe |_ NodeBusExtension
-MetweorkAddress
-CustomAttributes[0..n]: Value

L

Figure 15 — Objects and parameters of the Automation Project Configuration data exchange for

extensions

<AutomationML./> Application Recommendations: Automation Project
Confi

nfiguration

The AutomationML export of Automation Project Configuration data is based on the use of an
InstanceHierarchy covering the exported Automation Project Configuration data. The InternalElements
of this instance hierarchy will reference appropriate elements in RoleClass Libraries, SystemUnitClass
Libraries, and InterfaceClass Libraries.

The objects and parameters shown in the figure above are described as follows. All objects will be
modelled as role classes or interface classes derived from classes defined in Whitepaper AutomationML
Communication and completed with additional attributes already used in the tool landscape of PLC
manufacturers. Additional parameters can be defined using eCl@ss integration mechanisms as
described in “Whitepaper AutomationML — AutomationML and eCl@ss Integration”. Objects and
attributes which are not defined by AR APC might be ignored according “AutomationML Whitepaper —
Architecture and general requirements” and will not be kept in a roundtrip scenario. Depending on the
different communication systems and bus systems some objects may contain additional, unused or
restricted attributes. These attributes and the bus specific parameters are described in separate bus
specifications. Please refer to these bus specifications for more information.

Some attributes are defined based on strings. All strings are defined in the corresponding definitions
exactly to the related spelling (usage of small letters, capital letters...). But due to error tolerance all
importing tools should also support a tolerant interpretation (mixed spelling) of these strings as far as
possible.

3.2.3.1 AutomationProject

An AutomationProject object represents the project from which the export arises. It aggregates all other
objects below. The standard parameter for a Project are its “name” (string), the project manufacturer
(string), the project sign (string) of the manufacturer, the project revision number (string), and a project
information (string) hosting a comment to the project.

3.2.3.2 DeviceUserFolder

A DeviceUserFolder supports the structure of a device within a project. The only and one standard
parameter for a DeviceUserFolder is its “name” (string)

3.2.3.3 Subnet

A Subnet object is responsible for storing and managing properties and functionality of networks like
Ethernet, PROFIBUS, MPI, etc. A subnet is defined by the logical availability of all subnet participants.
All subnet participants have different, unambiguous addresses. The standard parameters of a Subnet
object are listed below:

e Name (string):
Name of the Subnet

e Type (string):
The type of the subnet (e.g. PROFIBUS, MPI...). The type shall be defined in the bus specific
description.

e CustomAttributes (ListType):
Additional manufacturer specific information for the Subnet. Specifies manufacturer specific
property names and values.

e A Subnet has exactly one LogicalEndpoint to connect the subnet to Nodes.

3.2.3.4 Device

A Device object represents a collection in which the individual HW objects of a slave or rack, including
the slave or rack HW item, are brought together. Therefore, a Device is a Device ltem container that
serves as a collection of Device Items (in particular hardware items). A Device has to have a unique
name within an automation project. A device can be:

e a central configuration with some racks within (Automation system station with central and

extension racks)

<AutomationML /> Application Recommendations: Automation Project
Confi

nfiguration

a fix combination of CPU and some I/O modules (e.g. C7),
a PC station where the PC represents a device,
a field device,

a switch

The standard parameters of a Device object are listed below:

Name (string):
Name of the Device

Typeldentifier (string):
Identifier of the device type. An optional additional sub attribute “Templateldentifier”
references the path of a library element.

Manufacturer (string):
Additional information to describe the manufacturer of the device.

Comment (string):
An optional comment for the device.

3.2.3.5 Deviceltem

A Deviceltem is aggregated by a Device and represents a generic class for HW modules and
submodules (CPU, I/O module, rack, etc.). Whereas a Device represents the logical bracket, the
Deviceltems represent more the physical hardware objects.

A Deviceltem can be plugged in another Device Item (e.g. CPU within a rack, submodule within a
module). The relative position to the father object is defined by the PositionNumber.

A Deviceltem can also be built in another Deviceltem. These Deviceltems can model a fix combination
that cannot be broken up (e.g. C7). The standard parameters of a Deviceltem object are listed below:

Name (string):
Name of the Deviceltem

TypeName (string):
Additional type information. Not mandatory but useful for user in case of error.

DeviceltemType (string):
Classification of the Deviceltem (e.g. CPU)
The DeviceltemType is an additional information that may be useful for user in case of error.

o Customized (boolean):
The subattribute “Customized” indicates if the DeviceltemType contains vendor
specific information (Customized = “true”) or not (Customized = *false”). If the attribute
is omitted or set to “false” the DeviceltemType contains already standardized
information (e.g. CPU).

Manufacturer (string):
Additional information to describe the manufacturer of the Deviceltem.

CustomAttributes (ListType):
Additional manufacturer specific information for the Deviceltem. Specifies manufacturer
specific property names and values.

PositionNumber (int):
Slot number where this Deviceltem is plugged in.

Builtin (Boolean):
Flag indicating that this module is a build-in part of another module. This module is
automatically created because it is a fixed part of the other module. If omitted this parameter

defaults to false.

<AutomationML /> Application Recommendations: Automation Project
Confi

nfiguration

Typeldentifier (string):
Identifier of the device item type. An optional additional sub attribute “Templateldentifier”
references the path of a library element.

FirmwareVersion (string):
Specifies the firmware version of e.g. a CPU and might be needed to identify the module
correctly (sometimes the order number is not sufficient).

Comment (string):
An optional comment for the module.

Address (OrderedListType):

Address information of device item within device. Most modules have address ranges
assigned. There may be e.g. address ranges for input, output channels which are described
by their start value and length. The Address defines the start, length and IO-type. It is
modelled as an ordered list of address parameters. The order is required for identifying the
correct sub device item in case of multiple start addresses for one module-The
subparameters are listed below:

o StartAddress (int):
Start of the Address

o Length (int):
Total width of the module (vendor specific). In the most cases it corresponds to the
width of all channels.
o loType (string):
Input or Output.
o BitOffset (int):
Start of BitAddress within a Byte

InstallationDate (dateTime):
Installation Date of the device item.

Note: In addition to the named standard documents attributes can be added enabling the
representation of reference designations following IEC 81346. The following attributes will give three
possible examples.

PlantDesignation IEC (string):
Plant designation for this device item. The PlantDesignation is a product oriented reference
designation following “IEC 81346-1:2009-07#5.3 - Function-oriented structure”

Locationldentifier IEC (string):
Location designation for this device item. The Locationldentifier is a location oriented
reference designation following “IEC 81346-1:2009-07#5.5 - Location-oriented structure”.

ProductDesignation IEC (string):
Product designation for this device item. The ProductDesignation is a product oriented
reference designation following “IEC 81346-1:2009-07#5.4 - Product-oriented structure”.

3.2.3.6 TagTable

A TagTable supports the structuring of tags. The standard parameters of a TagTable object are listed

below:

Name (string):
Name of the TagTable

AssignToDefault (Boolean):
While importing if the TagTable has an attribute ‘AssignToDefault' with 'True' value, then all
the Tags inside will be imported to an existing default TagTable. In this case the name of the

<AutomationML /> Application Recommendations: Automation Project
Confi

nfiguration

TagTable is ignored by the importing tool. By default, False value is assumed for
'‘AssignToDefault' attribute if it does not exist while importing.

3.2.3.7 TagUserFolder

The TagUserFolder supports the structuring of TagTables within a Deviceltem. The only and one
standard parameter for a TagUserFolder is its “name” (string).

3.23.8 Tag

A Tag represents the symbolic name of an I/O data. It provides the logical view on the Channel of a
module and is referenced by the associated channel directly.

Tags can only be aggregated by a Tag Table of a CPU. The CPU is represented by a concrete Device
Item. The standard parameters of a Tag object are listed below:

e Name (string):
Name of the Tag

e DataType (string):
Type of the data

o Customized (Boolean):
The subattribute “Customized” indicates if the DataType contains vendor specific data
types (Customized = “true”) or not (Customized = "false”). If the attribute is omitted or
set to “false” the DataType contains already standardized information according IEC
61131 (e.g. BOOL, BYTE, WORD).

o loType (string):
Input or Output

e LogicalAddress (string):
Logical Address specifies the address of the tag.

e Comment (string):
An optional comment specified for the tag

Tags without assigned channels and channels without assigned tags are possible (incomplete
engineering)
3.2.3.9 ComplexTag

A ComplexTag represents the symbolic name of structured I/O data. It provides the logical structure and
aggregates the tags for referencing the associated channel directly.

ComplexTags can be aggregated by a Tag Table of a CPU or by ComplexTags. The CPU is represented
by a concrete Device Item. The standard parameters of a ComplexTag object are listed below:

e DataType (string):
Name of the type of the structure

e Comment (string):
An optional comment specified for the ComplexTag

3.2.3.10 Channel

A Channel is part of an IO module and represents the process interface (e.g. digital or analogue
input/output). A channel is part of the Deviceltem which represents the IO module and can only be used
in a Deviceltem. The channel refers to tags using a link. The standard parameters of a channel object
are listed below:

e Type (string):
Analog or Digital

e loType (string):
Input or Output

<AutomationML /> Application Recommendations: Automation Project
Confi

nfiguration

e Number (int):
Number of the channel, starting with 0

e Length (int):
Width of the channel (e.g. 1 for bit, 8 for byte, 16 for word)

e CustomAttributes (ListType):
Additional manufacturer specific information for the Channel. Specifies manufacturer specific
property names and values.

A channel references with a LinkToTag to the associated Tags which are stored at a CPU Deviceltem.

3.2.3.11 Communicationinterface

A Communicationinterface is a special type of a Deviceltem acting as a connection point of a device to
a network (e.g. network card). Therefore, a Communicationinterface has a LogicalEndpoint. Depending
on the Communicationinterface type a Communicationinterface can contain different
Communicationinterface type specific parameters. Therefore, the bus specific parameters are described
in a separate bus specification. The standard parameters of a Communicationinterface object are listed
below:

e Label (string):
Name printed on the item e.g. unique identifier.

e Type (string)
Type of the Communicationinterface (e.g. ExtensionRack).

e CustomAttributes (ListType):
Additional manufacturer specific information for the Communicationinterface. Specifies
manufacturer specific property names and values.

3.2.3.12 Node

A Node specifies all the interface related networking information of a network node. (e.g. logical address,
subnet mask). A Node belongs to the Communicationinterface (Deviceltem). The parameters of a node
are bus specific characteristics. It is a topology object of a physical connection (cable, glass fibre)
between two network stations. Depending on the node type a node can contain different node type
specific parameters. Therefore, the bus specific parameters are described in a separate bus
specification. The standard parameters of a hode object are listed below:

e Type (string):
The Type of the Network (e.g. Ethernet, Mpi) as defined in the bus specification.

e NetworkAddress (string):
Network address of this device item. The format depends on the Node type (e.g. a TCP/IP
address for an IP network).

e CustomAttributes (ListType):
Additional manufacturer specific information for the Node. Specifies manufacturer specific
property names and values.

3.2.3.13 CommunicationPort

A CommunicationPort is the physical connection to the network. It is a topology object of a physical
connection (cable, glass fibre) between two network stations. The standard parameters of a
CommunicationPort object are listed below:

e Label (string):
Name printed on the device item e.g. unique identifier.

<AutomationML./> Application Recommendations: Automation Project
Confi

nfiguration

e CustomAttributes (ListType):
Additional manufacturer specific information for the CommunictionPort. Specifies
manufacturer specific property names and values.

Ports are aggregated on an Interface which implicitly defines the relationship between the logical (=
Interface) and physical (= Port) network connectivity. This aggregation need not be explicitly modelled
in AutomationML because it is available via the derivation of Interface and Port from Deviceltem that
already defines a generic Deviceltem to Deviceltem aggregation.

3.2.3.14 loSystem

An loSystem object is responsible for representing a master — slave relationship typically found in
fieldbus systems. Although this relationship depends on a subnet connection between the interfaces,
the object model does not enforce this (incomplete engineering). The parent object of the loSystem
object is the interface that acts as the master. All interfaces that act as slaves for this master are linked
to the loSystem object. Please note that the master interface and the slave interfaces are different object
instances although they share the same class in the object model. The standard parameters of an
loSystem object are listed below:

e Number (int):
Number of the loSystem.

e CustomAttributes (ListType):
Additional manufacturer specific information for the loSystem. Specifies manufacturer specific
property names and values.

3.2.3.15 PowerPort

A PowerPort is the physical connection between modules for power transfer. It is a topology object of a
physical connection (cable) between two power modules. The standard parameters of a PowerPort
object are listed below:

e Label (string):
Name printed on the module e.g. unigue identifier.

A PowerPort has exactly one PowerPortinterface to link PowerPorts between modules for power
transfer. The PowerPortinterface is acting as a connection point of a power module.

3.2.3.16 SensorPort

A SensorPort is the physical connection between modules for transfer of sensor signals. It is a topology
object of a physical connection (cable) between two sensor modules. The standard parameters of a
SensorPort object are listed below:

e Label (string):
Name printed on the module e.g. unique identifier.

A SensorPort has exactly one SensorPortinterface to link SensorPorts between modules for sensor
signal transfer. The SensorPortInterface is acting as a connection point of a sensor module.

3.2.3.17 ModuleAssignment

The interface class "Module Assignment” is used to define the assignment of a module to a CPU in a
multi CPU system. By using an internal link between "Module Assignment" interfaces a module is
assigned to a CPU. A module can be assigned to several CPU’s and a CPU can control several modules.
Each Deviceltem shall have maximum one "Module Assignment” interface, which can be used by
several internal links. If only one CPU exists, the "Module Assignment" interface can be omitted and is
assumed that all modules are controlled by this CPU.

<AutomationML /> Application Recommendations: Automation Project
Confi

nfiguration

3.2.3.18 Bus specifical Sections

Bus specifical definitions and extension are defined in separate documents. AR APC defines the
following abstract RoleClasses: DeviceltemBusExtension, NodeBusExtension and
CommunicationinterfaceBusExtension:

3.2.3.18.1 DeviceltemBusExtension

The abstract RoleClass "DeviceltemBusExtension” is used to define additionally bus specific attributes
for a Deviceltem.

Note: DeviceltemBusExtension shall only be used for Deviceltem objects not for derived Deviceltem
objects (e.qg. like port).

3.2.3.18.2 NodeBusExtension

The abstract RoleClass "NodeBusExtension” is used to define additionally bus specific attributes for a
Node.

Note: NodeBusExtension shall only be used for Node objects.

3.2.3.18.3 CommunicationinterfaceBusExtension

The abstract RoleClass "CommunicationinterfaceBusExtension” is used to define additionally bus
specific attributes for a Communicationinterface.

Note: CommunicationinterfaceBusExtension shall only be used for Communicationinterface objects.

Note:

Derivations from these abstract RoleClasses are defined in separate RoleClassLibraries. The following
naming recommendation is recommended:

AutomationProjectConfiguration[BusTypeName]RoleClassLib.

The naming conventions for derivations of the abstract base classes is Deviceltem[BusTypeName],
Node[BusTypeName] and Communicationinterface[BusTypeName].

The BusTypeName shall exactly match the string for the attribute “type”.

If a class needs additional attributes, additional RoleClasses are introduced for deployment as an
additional SupportedRoleClass.

As an implementation recommendation additional RoleClasses should be handled tolerant by the tools.
This means that an importing tool should respect additional attributes even if the corresponding
RoleClass is not specified at the object in the instance hierarchy.

<AutomationML /> Application Recommendations: Automation Project
Confi

nfiguration

4 Guideline for the use of the ECAD model in practical applications
To use the previously described method for modelling ECAD in AutomationML four steps are required.

In a first step the ECAD RoleClassLib must be generated or imported i.e. the appropriate RoleClassLib
has to be defined. This RoleClass Lib contains the derivation of the ECAD Roles from the generic
communication model of AutomationML.

Next the Interfaces must be generated or imported, i.e. the appropriate InterfaceClassLib has to be
defined. This InterfaceClassLib contains the derivation of the ECAD Roles from the generic
communication model of AutomationML.

In step 3 the SystemUnitClasses for the engineering domain must be identified and modelled as
templates for further use. Here the structure of the Devices, Deviceltems... can be modelled especially
with respect to the relevant properties to be considered. Therefore, appropriate <InternalElement>’s and
attributes are added.

Finally, the defined structure can be used to model a practical system in the InstanceHierarchy.

This procedure is depicted in the following figure:

i Derivation of ECAD Roles j
i Derivation of ECAD Interfaces j
i Derivation of SystemUnitClasses j
: Building a practical system in Instance Hierarchy :

Figure 16 — Procedure for use of ECAD in AutomationML

<AutomationML /> Application Recommendations: Automation Project
Confi

nfiguration

5 Modelling of Automation Project Configuration data with AutomationML

5.1 RoleClassLibrary

Basement of the modelling are the required role classes. Facing the required model elements there are
role classes especially required for Automation Project Configuration data modelling derived from role
classes used for communication system modelling defined in AutomationML Whitepaper -
Communication or derived from AutomationML basic roles defined in AutomationML Whitepaper —
Architecture and general requirements.

The following figures represent the defined role class library.

4 [AutomationProjectConfigurationRoleClassLib
AutomationProject {Class: Structure }
DeviceUserFolder {Class: Structure }
4 Subnet {Class: LogicalNetwork }
*o LogicalEndPoint {Class: LogicalEndPoint }
Device {Class: PhysicalDevice }
4 Deviceltem {Class: PhysicalDevice }
0 ModuleAssignment {Class: ModuleAssignment }
TagTable {Class: VariableList }
TagUserFolder {Class: VariableList }
ComplexTag {Class: VariableList }
4 Node {Class: LogicalDevice }
*o LogicalEndPoint {Class: LogicalEndPoint }
4 Communicationinterface {Class: Deviceltem }
+o LogicalEndPoint {Class: LogicalEndPoint }
4 loSystem {Class: LogicalDevice }
*o LogicalEndPoint {Class: LogicalEndPoint }
4 CommunicationPort {Class: Deviceltem }
0 CommunicationPortinterface {Class: CommunicationPortInterface }
4 PowerPort {Class: PhysicalDevice }
o PowerPortInterface {Class: PowerPortInterface }
4 SensorPort {Class: PhysicalDevice }
+o SensorPortInterface {Class: SensorPortinterface }
DeviceltemBusExtension {Class: AutomationMLBaseRole }
NodeBusExtension {Class: AutomationMLBaseRole }
CommunicationlinterfaceBusExtension {Class: AutomationMLBaseRole }

Figure 17 — AutomationProjectConfigurationRoleClassLib in AutomationML Editor view

<RoleClassLib
Name="AutomationProjectConfigurationRoleClassLib">
<Description>Automation Markup Language Automation Project Configuration Data Class Library</Description>
<Version>1.3.0</Version>
<RoleClass
Name="AutomationProject">
<Attribute
Name="ProjectManufacturer"
AttributeDataType="xs:string"></Attribute>
<Attribute
Name="ProjectSign"
AttributeDataType="xs:string"></Attribute>
<Attribute
Name="ProjectRevision"
AttributeDataType="xs:string"></Attribute>

Application Recommendations: Automation Project

Configuration

<Attribute
Name="Projectinformation"
AttributeDataType="xs:string"></Attribute>
</RoleClass>
<RoleClass
Name="DeviceUserFolder" />
<RoleClass
Name="Subnet">
<Attribute
Name="Type"
AttributeDataType="xs:string"></Attribute>
<Attribute
Name="CustomAttributes">
<RefSemantic
CorrespondingAttributePath="ListType" />
<Attribute
Name="AttributeName1"
AttributeDataType="xs:string"></Attribute>
<Attribute
Name="AttributeName2"
AttributeDataType="xs:string"></Attribute>
</Attribute>
<Externallnterface
Name="LogicalEndPoint"
RefBaseClassPath="CommunicationinterfaceClassLib/LogicalEndPoint"
ID="3e661cba-acfc-43b8-a02b-14ad7061f137" />
</RoleClass>
<RoleClass
Name="Device">
<Attribute
Name="Typeldentifier"
AttributeDataType="xs:string">
<Attribute
Name="Templateldentifier"
AttributeDataType="xs:string" />
</Attribute>
<Attribute
Name="Comment"
AttributeDataType="xs:string" />
<Attribute
Name="Manufacturer"
AttributeDataType="xs:string" />
</RoleClass>
<RoleClass
Name="Deviceltem">
<Attribute
Name="TypeName"
AttributeDataType="xs:string"></Attribute>
<Attribute
Name="DeviceltemType"
AttributeDataType="xs:string">
<Attribute
Name="Customized"
AttributeDataType="xs:boolean">
<DefaultValue>false</DefaultValue>
</Attribute>
</Attribute>
<Attribute
Name="PositionNumber"
AttributeDataType="xs:int"></Attribute>
<Attribute
Name="BuiltIn"
AttributeDataType="xs:boolean">
<DefaultValue>false</DefaultValue>
</Attribute>
<Attribute
Name="Typeldentifier"
AttributeDataType="xs:string">
<Attribute
Name="Templateldentifier"
AttributeDataType="xs:string" />
</Attribute>

<AutomationML /> Application Recommendations: Automation Project

Configuration

<Attribute
Name="Manufacturer"
AttributeDataType="xs:string" />
<Attribute
Name="CustomAttributes">
<RefSemantic
CorrespondingAttributePath="ListType" />
<Attribute
Name="AttributeName1"
AttributeDataType="xs:string"></Attribute>
<Attribute
Name="AttributeName2"
AttributeDataType="xs:string"></Attribute>
</Attribute>
<Attribute
Name="FirmwareVersion"
AttributeDataType="xs:string" />
<Attribute
Name="PlantDesignation IEC"
AttributeDataType="xs:string">
<Description>Function oriented reference designation following IEC 81346</Description>
<RefSemantic
CorrespondingAttributePath="IEC 81346-1:2009-07#5.3 - Function-oriented structure" />
</Attribute>
<Attribute
Name="Locationldentifier IEC"
AttributeDataType="xs:string">
<Description>Location oriented reference designation following IEC 81346</Description>
<RefSemantic
CorrespondingAttributePath="IEC 81346-1:2009-07#5.5 - Location-oriented structure" />
</Attribute>
<Attribute
Name="ProductDesignation IEC"
AttributeDataType="xs:string">
<Description>Product oriented reference designation following IEC 81346</Description>
<RefSemantic
CorrespondingAttributePath="IEC 81346-1:2009-07#5.4 - Product-oriented structure" />
</Attribute>
<Attribute
Name="InstallationDate"
AttributeDataType="xs:dateTime" />
<Attribute
Name="Comment"
AttributeDataType="xs:string" />
<Attribute
Name="Address">
<RefSemantic
CorrespondingAttributePath="OrderedListType" />
<Attribute
Name="1">
<Attribute
Name="StartAddress"
AttributeDataType="xs:int" />
<Attribute
Name="Length"
AttributeDataType="xs:int" />
<Attribute
Name="loType"
AttributeDataType="xs:string" />
<Attribute
Name="BitOffset"
AttributeDataType="xs:int" />
</Attribute>
<Attribute
Name="2">
<Attribute
Name="StartAddress"
AttributeDataType="xs:int" />
<Attribute
Name="Length"
AttributeDataType="xs:int" />
<Attribute

Application Recommendations: Automation Project

Configuration

Name="loType"
AttributeDataType="xs:string" />
<Attribute
Name="BitOffset"
AttributeDataType="xs:int" />
</Attribute>
<Attribute
Name="3">
<Attribute
Name="StartAddress"
AttributeDataType="xs:int" />
<Attribute
Name="Length"
AttributeDataType="xs:int" />
<Attribute
Name="loType"
AttributeDataType="xs:string" />
<Attribute
Name="BitOffset"
AttributeDataType="xs:int" />
</Attribute>
</Attribute>
<Externallnterface
Name="ModuleAssignment"
RefBaseClassPath="AutomationProjectConfigurationinterfaceClassLib/ModuleAssignment"
ID="110c6f0b-75b7-4c3c-9d05-1b28eeeechdf" />
</RoleClass>
<RoleClass
Name="TagTable">
<Attribute
Name="AssignToDefault"
AttributeDataType="xs:boolean" />
</RoleClass>
<RoleClass
Name="TagUserFolder" />
<RoleClass
Name="ComplexTag">
<Attribute
Name="DataType"
AttributeDataType="xs:string">
<DefaultValue>Mandatory</DefaultValue>
</Attribute>
<Attribute
Name="Comment"
AttributeDataType="xs:string">
<DefaultValue>Optional</DefaultValue>
</Attribute>
</RoleClass>
<RoleClass
Name="Node">
<Attribute
Name="Type"
AttributeDataType="xs:string" />
<Attribute
Name="NetworkAddress"
AttributeDataType="xs:string" />
<Attribute
Name="CustomAttributes">
<RefSemantic
CorrespondingAttributePath="ListType" />
<Attribute
Name="AttributeNamel"
AttributeDataType="xs:string"></Attribute>
<Attribute
Name="AttributeName2"
AttributeDataType="xs:string"></Attribute>
</Attribute>
<Externallnterface
Name="LogicalEndPoint"
RefBaseClassPath="CommunicationInterfaceClassLib/LogicalEndPoint"
ID="9562e3ae-8c2h-4055-a327-3ab66f949d5e" />
</RoleClass>

<AutomationML /> Application Recommendations: Automation Project
Confi

nfiguration

<RoleClass
Name="Communicationinterface"
RefBaseClassPath="AutomationProjectConfigurationRoleClassLib/Deviceltem">
<Attribute
Name="Label"
AttributeDataType="xs:string" />
<Attribute
Name="Type"
AttributeDataType="xs:string" />
<Externallnterface
Name="LogicalEndPoint"
RefBaseClassPath="CommunicationInterfaceClassLib/LogicalEndPoint"
ID="dedad3eb-1a51-4d7e-accb-fdc8213c6c23" />
</RoleClass>
<RoleClass
Name="loSystem">
<Attribute
Name="Number"
AttributeDataType="xs:int" />
<Attribute
Name="CustomAttributes">
<RefSemantic
CorrespondingAttributePath="ListType" />
<Attribute
Name="AttributeName1"
AttributeDataType="xs:string"></Attribute>
<Attribute
Name="AttributeName2"
AttributeDataType="xs:string"></Attribute>
</Attribute>
<Externallnterface
Name="LogicalEndPoint"
RefBaseClassPath="CommunicationinterfaceClassLib/LogicalEndPoint"
ID="003f6b58-c95a-4346-8a0c-aaad895a6492" />
</RoleClass>
<RoleClass
Name="CommunicationPort"
RefBaseClassPath="AutomationProjectConfigurationRoleClassLib/Deviceltem">
<Attribute
Name="Label"
AttributeDataType="xs:string" />
<Externallnterface
Name="CommunicationPortInterface"
RefBaseClassPath="AutomationProjectConfigurationinterfaceClassLib/CommunicationPortInterface
ID="b0f1bb7c-1df9-494e-8352-0cae067e357d"></Externallnterface>
</RoleClass>
<RoleClass
Name="PowerPort">
<Attribute
Name="Label"
AttributeDataType="xs:string" />
<Externallnterface
Name="PowerPortInterface"
ID="6c3e2230-64d8-42e6-9ddd-3dbdf3310064"
RefBaseClassPath="AutomationProjectConfigurationinterfaceClassLib/PowerPortinterface" />
</RoleClass>
<RoleClass
Name="SensorPort">
<Attribute
Name="Label"
AttributeDataType="xs:string" />
<Externallnterface
Name="SensorPortInterface"
ID="32d38c98-80ch-4850-b3a2-ad789e4abh96a"
RefBaseClassPath="AutomationProjectConfigurationinterfaceClassLib/SensorPortInterface" />
</RoleClass>
<RoleClass
Name="DeviceltemBusExtension" />
<RoleClass
Name="NodeBusExtension" />
<RoleClass

<AutomationML /> Application Recommendations: Automation Project
Confi

nfiguration

Name="CommunicationinterfaceBusExtension" />
</RoleClassLib>

Figure 18 — AutomationProjectConfigurationRoleClassLib as XML representation
Note: The attributes of the roles can be “mandatory” or “optional’:

e mandatory: The exporting tool exports the attribute and the importing tool imports the attribute.
The importing tool might correct the value.

e optional: The exporting tool may export this attribute. The importing tool imports this attribute if
the exporting tool has exported this attribute and it exists on the importer side. The importing
tool might correct the value.

5.1.1 AutomationProject

An “AutomationProject” is derived from a “Structure” according to AutomationML Whitepaper -
Architecture and general requirements. It is defined as follows.

Table 2 — Definition AutomationProject

Role class name | AutomationProject

The role class “AutomationProject” shall be used in order to represent the project from

DS el o which the export arises.

Parent Class AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Structure

et or [BlerEm AutomationProjectConfigurationRoleClassLib/AutomationProject

reference
The attribute “ProjectName” defines the name
of the project.
“ProjectName” This attribute is mandatory.
(AttributeDataType="xs:string") Note: This attribute is modelled by the
standard attribute Name of the relevant CAEX
object.
“ProjectManufacturer” The attribute PrOJectManuf_acturer defines
] . o the manufacturer of the project.
(AttributeDataType="xs:string") This attribute is optional.
Attributes

The attribute “ProjectSign” defines the unique
identification of the project.

This attribute is optional.

“ProjectSign”
(AttributeDataType="xs:string”)

The attribute “ProjectRevision” defines the
revision number of the project.

This attribute is optional.

“ProjectRevision”
(AttributeDataType="xs:string”)

The attribute “ProjectInformation” defines
commenting information of the project.

This attribute is optional.

“Projectinformation”
(AttributeDataType="xs:string”)

<AutomationML/>

Application Recommendations: Automation Project
Confi

nfiguration

5.1.2 DeviceUserFolder

A “DeviceUserFolder” is derived from a “Structure” It is defined as follows.

Table 3 — Definition DeviceUserFolder

Role class name DeviceUserFolder

Description

The role class “DeviceUserFolder” shall be used in order to support the structure of a
device within a project.

Parent Class

AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Structure

Path for Element

AutomationProjectConfigurationRoleClassLib/DeviceUserFolder

reference
The attribute “Name” defines the name of the
DeviceUserFolder.
“Name” . . .
Attributes .) o This attribute is mandatory.
(AttributeDataType="xs:string") Note: This attribute is modelled by the
standard attribute Name of the relevant CAEX
object.
5.1.3 Subnet
A “Subnet” is derived from a “LogicalNetwork” according to AutomationML Whitepaper -

Communication. It is defined as follows.
Table 4 — Definition Subnet

Role class name Subnet

Description

The role class “Subnet” shall be used in order to represent storing and managing of
properties and functionality of networks.

Parent Class

CommunicationRoleClassLib/LogicalNetwork

Path for Element
reference

AutomationProjectConfigurationRoleClassLib/Subnet

“Name”

(AttributeDataType="xs:string”)

The attribute “Name” defines the name of the
subnet.

Note: This attribute is modelled by the
standard attribute Name of the relevant CAEX
object.

This attribute is mandatory.

“Type”

Attributes

(AttributeDataType="xs:string”)

The attribute “Type” defines the identifier of
the type of the subnet. The value of the type
is defined in the bus specific specification.

This attribute is mandatory.

“CustomAttributes”
(ListType)[0..n]

“AttributeName”
(AttributeDataType
="xs:string”)

The name of the CustomAttribute defines the
property name in the target system. The
value defines the value of this
CustomAttribute. The AttributeName is
mandatory if the attribute “CustomAttributes”
exists. The AttributeName shall be unique.
Mapping of several custom attributes with the
same name can only be made by making the
key unique by appending a counter like #1,
#2, #3. Only simple data types in a flat list
are supported in this version.

<AutomationML /> Application Recommendations: Automation Project
Confi

nfiguration

This interface is used to link node elements
to a subnet. The direction of the link is
irrelevant. A Subnet has exactly one
LogicalEndpoint to connect the subnet to
Nodes.

“LogicalEndPoint”

(RefBaseClassePath="
CommunicationinterfaceClassLib/LogicalE
ndPoint”

Interfaces

Depending on the different communication systems and bus systems a Subnet may contain additional
attributes. These attributes and the bus specific parameters are described in separate bus
specifications. Please refer to these bus specifications for more information.

5.1.4 Device

A “Device” is derived from a “PhysicalDevice” according to AutomationML Whitepaper -
Communication. It is defined as follows.

Table 5 — Definition Device

Role class name Device

The role class “Device” shall be used in order to represent a collection in which the

Description individual HW objects of a slave or rack, including the slave or rack HW item, are brought
together.
Parent Class CommunicationRoleClassLib/PhysicalDevice

Path for Element

AutomationProjectConfigurationRoleClassLib/Device
reference

The attribute “Name” defines the name of the
device.

“Name” This attribute is mandatory.
(AttributeDataType="xs:string") Note: This attribute is modelled by the
standard attribute Name of the relevant CAEX
object.

The attribute “Typeldentifier” defines the
family identifier of the device type.

» “Template This attribute is optional.
“Typeldentifier”

(AttributeDataType= Iden‘tlfler The attribute “Templateldentifier” references

"xs:string”) (AttributeDataType | the path of a template element, for instance a
="xs:string”) library. The syntax is defined by the

corresponding target system element.

This attribute is optional.

Attributes

The attribute “Manufacturer” defines the

“Manufacturer” manufacturer of the device. T_he name of the
manufacturer must be unambiguous and

(AttributeDataType="xs:string") unique assigned to the manufacturer.

This attribute is optional.

The attribute “Comment” defines a comment
for the device. The attribute “Comment”
follows the Best Practice Recommendation
(AttributeDataType="xs:string") Multilingual expressions in AutomationML.

This attribute is optional.

“Comment”

Note: The attribute “Typeldentifier” has a prefix which describes the semantic of the following identifier
separated by “” The following prefixes are allowed: “OrderNumber”, “GSD”, "System”, ,CSP+“.In case
of a missing Typeldentifier the importing tool shall apply a substitution strategy. It is not ensured that the
substitution strategy succeeds in all cases.

Examples:
Typeldentifier = “GSD:SIEM8139.GSD/DAP”
Typeldentifier = "System:Device.Generic”

Typeldentifier = "System:Device.S7-1500”

Application Recommendations: Automation Project

Configuration

Typeldentifier = "System:Device.lQ-R”
Templateldentifier =
" GlobalLib://TemplateLibrary/Master copies/S7-1500/preconfigured/PLCs/s7-1518F”

<AutomationML/> Application
Configuration

cation Recommendations: Automation Project

515

Deviceltem

A “Deviceltem” is derived from a “PhysicalDevice” according to AutomationML Whitepaper -

Communication. It is defined as follows.

Table 6 — Definition Deviceltem

Role class name

Deviceltem

Description

The role class “Deviceltem” shall be used in order to represent a general object class for
HW modules and submodules.

Parent Class

CommunicationRoleClassLib/PhysicalDevice

Path for Element
reference

AutomationProjectConfigurationRoleClassLib/Deviceltem

Attributes

“Name”

(AttributeDataType=

"xs:string”)

The attribute “Name” defines the name of the
Deviceltem.

This attribute is mandatory.

Note: This attribute is modelled by the
standard attribute Name of the relevant CAEX
object.

“TypeName”

(AttributeDataType=

"xs:string”)

The Attribute “TypeName” defines additional
type information.

This attribute is optional.

“DeviceltemType”

(AttributeDataType=

string”)

"XS:

“Customized”
(AttributeDat
aType="xs:bo
olean”)

The attribute “DeviceltemType” defines the
classification of the Deviceltem.

This attribute is optional.

The subattribute “Customized” indicates if the
DeviceltemType contains vendor specific
information (Customized = “true”) or not
(Customized ="false”). If customized is omitted or
set to “false” the Deviceltem contains already
standardized information (Standard values are:
CPU, HeadModule, Accessory).

This attribute is optional.

“PositionNumber”

(AttributeDataType=

"xs:int”)

The attribute “PositionNumber” defines the slot
number where this Deviceltem is plugged in.

This attribute is optional. It is mandatory in
case of plugable Deviceltems and for
Deviceltems which can contain plugable
Deviceltems

“BuiltIn”

(AttributeDataType=

"xs:boolean”)

The attribute “BuiltIn” defines that this module
is a build-in part of another module.

This attribute is optional.
The default value is “false”.

“Typeldentifier”
(AttributeDataType
="xs:string”)

“Template
Identifier”

(AttributeDataType
="xs:string”)

The attribute “Typeldentifier” defines the
identifier of the Deviceltem type.

This attribute is mandatory if “Builtin” is “false”.
The attribute is optional, if “BuiltIn” is true.

A wildcard shall be “*”.

The attribute “Templateldentifier” references
the path of a template element, for instance a
library. The syntax is defined by the
corresponding target system element. This
attribute is optional.

“Manufacturer”

(AttributeDataType=

"xs:string”)

The attribute “Manufacturer” defines the
manufacturer of the Deviceltem. The name of
the manufacturer must be unambiguous and

This attribute is optional.

unique assigned to the manufacturer.

<AutomationML /> Application Recommendations: Automation Project
Confi

nfiguration

“CustomAttributes”
(ListType)[0..n]

The name of the
CustomAttribute defines
the property name in the
target system. The value
defines the value of this
CustomAttribute. The
AttributeName is
mandatory if the attribute

“AttributeName” “CustomAttributes” exists.
(AttributeDataTyp | The AttributeName shall
e="xs:string”) be unique. Mapping of

several custom attributes
with the same name can
only be made by making
the key unique by
appending a counter like
#1, #2, #3. Only simple
data types in a flat list are
supported in this version.

“FirmwareVersion”
(AttributeDataType="xs:string”)

The attribute “FirmwareVersion” defines the
firmware version of e.g. a CPU to identify the
module correctly.

This attribute is optional.

“Comment”
(AttributeDataType="xs:string”)

The attribute “Comment” defines a comment
for the Deviceltem. The attribute “Comment”
follows the Best Practice Recommendation
Multilingual expressions in AutomationML.

This attribute is optional.

“Address”
(OrderedListType)[0..n]

g

The attribute “Address” is
optional. The subattribute
“StartAddress” defines

“StartAddress” the start of the address.
(AttributeDataTyp .
e="xs:int") The subattribute
“StartAddress” is
mandatory if the attribute
“Address” exists.
The attribute “Length”
“Length” defines the total width of
(AttributeDataTyp | all of the channels on the
e="xs:int") device item.
This attribute is optional.
The attribute “loType”
“loType” specifies the direction

INPUT or OUTPUT.

The subattribute “loType”
is mandatory if the
attribute “Address” exists.

(AttributeDataTyp
e="xs:string”)

The subattribute
“BitOffset” defines the

“BitOffset” offset within a
(AttributeDataTyp | StartAddress.
e="xsint)" The subattribute

“BitOffset” is optional.
The default value is “0”.

“PlantDesignation IEC”
(AttributeDataType=" xs:string” and

RefSemantic=" IEC 81346-1:2009-
07#5.3 - Function-oriented structure
IEC81346")

The attribute “PlantDesignation IEC” defines
the function designation for this device item
according IEC81346. The attribute shall
contain in the subattribute refSemantic the
value “IEC 81346-1:2009-07#5.3 - Function-
oriented structure” to enable its identification if

attribute is bus specific.

the name is changed. The length of this

<AutomationML /> Application Recommendations: Automation Project
Confi

nfiguration

This attribute is optional.

The attribute “Locationldentifier IEC” defines

the location designation for this device item

“Locationldentifier IEC” according IEC81346. The attribute shall

(AttributeDataType=" xs:string” and contain in the subattribute refSemantic the
i . value “IEC 81346-1:2009-07#5.5 - Location-

(??LgeSm-aEgg;ti(llr:;-(z)r?(:r?t‘:e?j-;?L?S?J-re oriented structure” to enable its identification if

IE08.1346“) the name is changed. The length of this

attribute is bus specific.

This attribute is optional.

The attribute “ProductDesignation IEC” defines
the product designation for this device item

“ProductDesignation IEC” according IE081346._The attribute sh'aII

) R o contain in the subattribute refSemantic the
(AttributeDataType=" xs:string” and value “IEC 81346-1:2009-07#5.4 - Product-
RefSemantic=" IEC 81346-1:2009- oriented structure” to enable its identification if
07#5.4 - Product-oriented structure”) the name is changed. The length of this

attribute is bus specific.
This attribute is optional.

The attribute “InstallationDate” defines the
date of the installation of the Deviceltem.

This attribute is optional.

“InstallationDate”
(AttributeDataType=" xs:dateTime

“ModuleAssignment” This interface is used to link a module to a

Interfaces (RefBaseClassePath=" CPU in case of multiple CPU
AutomationProjectConfigurationinterface | configurations.The direction of the link is
ClassLib/ModuleAssignment”) irrelevant.

Note: The Address attribute is a finite list of variable length. The number of list elements is application
case dependent.

Note: The attribute “Typeldentifier” has a prefix which describes the semantic of the following identifier
separated by “:” The following prefixes are allowed: “OrderNumber”, “GSD”, "System", “CSP+”.

Examples:

Typeldentifier = “OrderNumber:3RK1 200-0CE00-0AA2”
Typeldentifier = “GSD:SIEM8139.GSD/DAP/DAP 1”
Typeldentifier = "System:Rack.Generic”

Typeldentifier = “CSP+:AJ65VBTCE2-8T”

Templateldentifier =
" GlobalLib://TemplateLibrary/Master copies/S7-1500/preconfigured/DIs/16x24VDC BA_Advanced”

Note:

If Buildin=true then the identification shall result from the UUID of the first Deviceltem in the parent
hierarchy with Builtin=False and the Position-Number of the Deviceltem.

Note:

ECAD and Automation Engineering Systems have different perspectives on the structure of devices and
modules. An exchanged AML file must ensure that both perspectives can be derived from an its content.
Two scenarios have to be distinguished:

e A device or module is composed of two device items. The two device items appear in an
automation engineering system at the same level but the second is modelled as part of the first
one (main device item). In the ECAD system the composition of the two device items is treated

as one module. (hierarchical scenario)

<AutomationML /> Application Recommendations: Automation Project
Confi

nfiguration

e A device or module is modelled by independent artifacts in the automation system while it is
handled as a single physical entity in the ECAD system. This is often used to model various
configurations of the same module / device. (flat scenario)

Both scenarios can be handled by using the product administration of the ECAD system. For this aim
the ECAD system uses one of the two defined properties on device items, which are handled as built-in
by the ECAD system:

e GSD-index
e sub-module order number

At least one property has to be defined. If both are given, sub-module order number takes preference
over GSD-index. The actual names of these properties are ECAD system specific. They are reflected in
the value of type identifier attribute of the corresponding built-in device item.

For the flat scenario for all device items the value of its type identifier is used. For the hierarchical
scenario the main device item uses the value of its type identifier while the built-in device item uses the
type identifier of the main device item appended with “#BUILTIN” as value for sub-module order number.

An ECAD export algorithm shall work as follows:

e If no property is defined for the built-in device item, it will be exported from the ECAD system as
child of the main device item (hierarchical model)

e |fatleast one property is defined, the built-in device item will be exported at the level of the main
device. Built-in device items shall always be positioned following the main device item. If the
order number possesses “#BUILTIN” as part of its order number for the device item, the built-in
flag will be set in the AML file.

In case of the flat scenario, PLC engineering systems must export the corresponding type identifier
value for each device item. For the hierarchical scenario for the main device item its type identifier value
is exported, while for the built-in device item the value of the main device item’s type identifier value
appended with with “#BUILTIN” is exported.

Remarks:

e Version information of built-in devices will be ignored during import. The importing system may
issue a warning.

Depending on the different communication systems and bus systems some Deviceltems may contain
additional, unused or restricted attributes. These attributes and the bus specific parameters are
described in separate bus specifications. Please refer to these bus specifications for more information.

5.1.6 TagTable

A “TagTable” is derived from a “VariableList” according to AutomationML Whitepaper - Communication.
Therefore, the VariableList must be mandatory according AutomationML Whitepaper Communication.
It is defined as follows.

Table 7 — Definition TagTable

<AutomationML /> Application Recommendations: Automation Project

Configuration

Role class name | TagTable
Description The role class “TagTable” shall be used in order to support the structure of tags
Parent Class CommunicationRoleClassLib/PhysicalDevice/VariableList
Path for Element
NG AutomationProjectConfigurationRoleClassLib/TagTable
The attribute “Name” defines the name of the
TagTable.
“Name” This attribute is mandatory. This attribute is
(AttributeDataType="xs:string") ignored if AssignToDefault is “true”.
Ibu ="XSs: 1
yp 9 Note: This attribute is modelled by the
Attributes standard attribute Name of the relevant CAEX
object.
The Attribute “AssignToDefault” defines if the
“AssignToDefault” Tags inside will be imported to an existing
(AttributeDataType="xs:boolean”) default TagTable.
This attribute is optional.
The Interface class “Tag” shall be used in
“ » order to represent the elements as symbolic
InCEEES Tag” [0..n] names of an I/O date and for linking the tags
to the Channel.

Note: While importing if the TagTable has an attribute with 'True' value, then all the Tags inside will be
imported to an existing default TagTable. In this case the Name of the TagTable is ignored by the
importing tool. By default, False value is assumed for 'AssignToDefault' attribute if it does not exist while
importing.

<AutomationML /> Application Recommendations: Automation Project
Confi

nfiguration

5.1.7 TagUserFolder

A “TagUserFolder” is derived from a “VariableList” according to AutomationML Whitepaper -
Communication. It is defined as follows.

Table 8 — Definition TagUserFolder

Role class name | TagUserFolder

The role class “TagUserFolder” shall be used in order to support the structure TagTables

iR within a Deviceltem.

Parent Class CommunicationRoleClassLib/PhysicalDevice/VariableList

PEM ol ElEmeEnt AutomationProjectConfigurationRoleClassLib/TagUserFolder

reference
The attribute “Name” defines the name of the
TagUserFolder.
“Name” . . .
Attributes .) o This attrlhbute |§ man.datory.
(AttributeDataType="xs:string") Note: This attribute is modelled by the
standard attribute Name of the relevant CAEX
object.

5.1.8 ComplexTag

A “ComplexTag” is derived from a “VariableList” according to AutomationML Whitepaper -
Communication. It is defined as follows.

Table 9 — Definition ComplexTag

Role class name | ComplexTag

The role class “ComplexTag” shall be used in order to represent the symbolic name of

rzsErpEel structured I/O data. ComplexTags shall only be used within a TagTable.

Parent Class CommunicationRoleClassLib/PhysicalDevice/VariableList

Pl Gen Element AutomationProjectConfigurationRoleClassLib/ComplexTag

reference
‘DataType” The attribute “DataType” defines the name of the structure.
(AttributeDataType= . . .
"xs:string”) This attribute is mandatory.

Attributes “c ¢ The attribute “Comment” defines a comment for the ComplexTag.

ommen
) _ | The attribute “Comment” follows the Best Practice

,(’Attntbyte%ataType- Recommendation Multilingual expressions in AutomationML.
xs:string

This attribute is optional.

The Interface class “Tag” shall be used in order to represent the
structured elements as symbolic names of an I/O date and for
linking the tags to the Channel. A ComplexTag represents the
Interfaces “Tag” [0..n] symbolic name of structured 1/O data. It provides the logical
structure and aggregates the tags for referencing the associated
channel directly. ComplexTags can be aggregated by a Tag Table
of a CPU or by ComplexTags.

5.1.9 Node

A “Node” is derived from a “logicalDevice” according to AutomationML Whitepaper - Communication. It
is defined as follows.

Table 10 — Definition Node

<AutomationML /> Application Recommendations: Automation Project
Confi

nfiguration
Role class name | Node
The role class “Node” shall be used in order to specify all the interface related networking
L information of a network node.

Description . .

Note: The name of the Node is modelled by the standard attribute Name of the relevant
CAEX object.

Parent Class CommunicationRoleClassLib/logicalDevice

Py or Elziment AutomationProjectConfigurationRoleClassLib/Node

reference
The attribute “Type” defines the type of the

“Type” network. The value of the type is defined in
(AttributeDataType="xs:string") the bus specific specification.
This attribute is mandatory.
“NetworkAddress” The attribute “NetworkAddress” defines the
)) o network address of this device item.
(AttributeDataType="xs:string") This attribute is mandatory.

Attributes The name of thg CustomAttribute defines the
property name in the target system. The
value defines the value of this
CustomAttribute. The AttributeName is

“CustomAttributes” “Attr?buteName“ mgndatory if thg attribute “CustomAttr_ibutes"
) (AttributeDataType exists. The AttributeName shall be unique.
(ListType)[0..n] ="xs:string”) Mapping of several custom attributes with the

same name can only be made by making the
key unique by appending a counter like #1,
#2, #3. Only simple data types in a flat list
are supported in this version.
“LogicalEndPoint” This interface is used to link the node to a
9 _» subnet. The direction of the link is irrelevant.
(RefBaseClassePath=)

Interfaces e . . In case of connection to more than one
CommunicationinterfaceClassLib/LogicalE b h d only logical endooi hall
ndPoint”) subnet the one and only logical endpoint sha

contain all connections.

Note: The identification shall result from the identification of the Communication Interface.

Depending on the different communication systems and bus systems a Node may contain additional,
unused or restricted attributes. These attributes and the bus specific parameters are described in
separate bus specifications. Please refer to these bus specifications for more information.

5.1.10 Communicationinterface

A “Communicationinterface” is derived from a “Deviceltem” according to AutomationML Whitepaper -
Communication. It is defined as follows.

Table 11 — Definition Communicationinterface

<AutomationML/> éﬁp"

cation Recommendations: Automation Project

nfiguration
Role class name | Communicationinterface
The role class “Communicationinterface” shall be used in order to define the connection
. point of a device to a network.
Description S . .
Note: The name of the Communicationinterface is modelled by the standard attribute
Name of the relevant CAEX object.
Parent Class AutomationProjectConfigurationRoleClassLib/Deviceltem
Pl for Elzime AutomationProjectConfigurationRoleClassLib/Communicationinterface
reference
The attribute “Label” defines the name
“Label” printed on the item.
(AttributeDataType="xs:string") This attribute is mandatory if “Builtin” is
“true”.
The attribute “Type” defines the type of the
“Type” Communicationinterface. The value of the
yp type is defined in the bus specific
(AttributeDataType="xs:string”) specification.
The attribute is optional.

AT The name of the CustomAttribute defines the
property name in the target system. The
value defines the value of this
CustomAttribute. The AttributeName is

“CustomAttributes” “Attr@buteName” me}ndatory if th_e attribute “CustomAttr_ibutes"
. (AttributeDataType exists. The AttributeName shall be unique.
(ListType)[0..n] ="xs:string”) Mapping of several custom attributes with the

same name can only be made by making the

key unique by appending a counter like #1,

#2, #3. Only simple data types in a flat list

are supported in this version.

This interface is used to link the
“LogicalEndPoint” Communicationinterface to an 10System. The

Interfaces (RefBaseClassePath=" direction of the link is irrelevant.In case of

CommunicationinterfaceClassLib/LogicalE | connection to more than one I0OSystem the
ndPoint” one and only logical endpoint shall contain all

connections.

Note: The attribute “Type” is new from AR APC 1.1.0. If the attribute "Type" is missing, the interface is
handled as an external bus due to compatibility to AR APC V1.0.0.

Note: The identification shall result from the UUID of the first Deviceltem in the parent hierarchy with
Builtin=False starting with the interface or port itself, the Bus-System, if present the Label of the
Communication-Interface and if present the Label of the Communication-Port. Because if one of these
identifying attributes changes the bus-connector itself has changed.

Depending on the different communication systems and bus systems a Communicationinterface may
contain additional, unused or restricted attributes. These attributes and the bus specific parameters are
described in separate bus specifications. Please refer to these bus specifications for more information.

5.1.11 loSystem

An “loSystem” is derived from LogicalDevice. It is defined as follows.

Table 12 — Definition loSystem

<AutomationML/>

Application Recommendations: Automation Project
Confi

nfiguration
Role class name | loSystem
The role class “loSystem” shall be used in order to model the master — slave relationship
. typically found in fieldbus systems.
Description . .
Note: The name of the loSystem is modelled by the standard attribute Name of the
relevant CAEX object.
Parent Class CommunicationRoleClassLib/LogicalDevice
Path for Element
reference AutomationProjectConfigurationRoleClassLib/IOSystem
The attribute “Number” defines the unique
“Number” (AttributeDataType="xs:int") number of the loSystem.
This attribute is optional.
The name of the CustomAttribute defines the
property name in the target system. The
value defines the value of this
Attributes CustomAttribute. The AttributeName is
“CustomAttributes” “AttributeName” mandatory if the attribute “CustomAttributes”
) (AttributeDataType exists. The AttributeName shall be unique.
(ListType)[0..n] ="xs:string”) Mapping of several custom attributes with the
same name can only be made by making the
key unique by appending a counter like #1,
#2, #3. Only simple data types in a flat list
are supported in this version.
This interface is used to link the loSystem to
“LogicalEndPoint” a Communicationinterface.The direction of
Interfaces (RefBaseClassePath=" the link is irrelevant.In case of connection to
CommunicationinterfaceClassLib/LogicalE | more than one Communicationinterface the
ndPoint”) one and only logical endpoint shall contain all
connections.
Note: The identification shall result from the identification of the Communication Interface.

5.1.12 CommunicationPort
A “CommunicationPort” is derived from a Deviceltem. It is defined as follows.

Table 13 — Definition CommunicationPort

<AutomationML/>

Application Recommendations: Automation Project
Confi

nfiguration
Role class name | CommunicationPort
The role class “CommunicationPort” shall be used in order to model the device item
Descrintion applied to physically establish the connection to the network.
. Note: The name of the CommunicationPort is modelled by the standard attribute Name of
the relevant CAEX object.
Parent Class AutomationProjectConfigurationRoleClassLib/Deviceltem
Py or Elziment AutomationProjectConfigurationRoleClassLib/CommunicationPort
reference
The attribute “Label” defines the name
‘Label® ?:‘me(:to'g tthe'Port. dat if “Builtln” i
: —ryaratring” is attribute is mandatory if “Builtin” is
(AttributeDataType="xs:string") “true”. The attribute PositionNumber is
mandatory if “Builtln” is “False”
The name of the CustomAttribute defines
the property name in the target system. The
Attributes value defines the value of this
CustomAttribute. The AttributeName is
Py » mandatory if the attribute
“CustomAttributes” AttributeName _ | “CustomAttributes” exists. The
. (AttributeDataType= : . .
(ListType)[0..n] "xs:string”) AttributeName shall be unique. Mapping of
’ 9 several custom attributes with the same
name can only be made by making the key
unique by appending a counter like #1, #2,
#3. Only simple data types in a flat list are
supported in this version.
This interface is used to link the Port to
“CommunicationPortInterface” another port. The direction of the link is
Interfaces (RefBaseClassePath=" irrelevant. In case of connection to more
AutomationProjectConfigurationinterfaceCla | than one Port the one and only interface
ssLib/CommunicationPortInterface”) shall contain several logical endpoints for
the different connections.

Note: The identification shall result from the identification of the Communication Interface and the label

of the port.

Depending on the different communication systems and bus systems a CommunicationPort may contain
additional, unused or restricted attributes. These attributes and the bus specific parameters are
described in separate bus specifications. Please refer to these bus specifications for more information.

5.1.13 PowerPort
A “PowerPort” is derived from a PhysicalDevice. It is defined as follows.
Table 14 — Definition PowerPort

<AutomationML/>

Application Recommendations: Automation Project
Configuration

Role class name

PowerPort

Description

The role class “PowerPort” shall be used in order to model the physical connection
between modules for power transfer.

Note: The name of the PowerPort is modelled by the standard attribute Name of the
relevant CAEX object.

Parent Class

AutomationProjectConfigurationRoleClassLib/PhysicalDevice

Path for Element

AutomationProjectConfigurationRoleClassLib/PowerPort

reference
“ » The attribute “Label” defines the name
. Label .
Attributes . , o printed on the Port.
(AttributeDataType="xs:string") This attribute is mandatory.
“PowerPortinterface” This interface is used to link the Port to
Imeriaees (RefBaseClassePath=" another port. Only one PowerPortinterface

shall be allowed. The direction of the link is
not relevant.

AutomationProjectConfigurationinterfaceCla
ssLib/PowerPortinterface”)

5.1.14 SensorPort
A “SensorPort” is derived from a PhysicalDevice. It is defined as follows.

Table 15 — Definition SensorPort

Role class name SensorPort

The role class “SensoPort” shall be used in order to model the physical connection
between sensor modules for transfer of sensor signals.

Note: The name of the SensorPort is modelled by the standard attribute Name of the
relevant CAEX object.

Description

Parent Class AutomationProjectConfigurationRoleClassLib/PhysicalDevice

Pl ol ElemeEnt AutomationProjectConfigurationRoleClassLib/SensorPort

reference

« » The attribute “Label” defines the name
. Label .

Attributes . , o printed on the Port.
(AttributeDataType="xs:string") This attribute is mandatory.
“SensorPortInterface” This interface is used to link the Port to

Inieraees (RefBaseClassePath=" another port. Only one SensorPortinterface
AutomationProjectConfigurationinterfaceCla | shall be allowed. The direction of the link is
ssLib/SensorPortInterface”) not relevant.

5.1.15 DeviceltemBusExtension
A “DeviceltemBusExtension” is derived from a “AutomationMLBaseRole”. It is defined as follows.

Table 16 — Definition DeviceltemBusExtension

<AutomationML /> Application Recommendations: Automation Project
Confi

nfiguration

Role class name DeviceltemBusExtension

The RoleClass "DeviceltemBusExtension” is used to define additionally bus specific
attributes for a Deviceltem.

Description
Note: DeviceltemBusExtension shall only be used for Deviceltem objects not for derived
Deviceltem objects.

Parent Class AutomationMLBaseRole

Path for Element

AutomationProjectConfigurationRoleClassLib/DeviceltemBusExtension
reference

The abstract RoleClass "DeviceltemBusExtension” is used to define additionally bus specific attributes
for a Deviceltem. These bus specific attributes shall be defined in a derived class in a separate
RoleClassLibrary for deployment as an additional Supported Role Class.

Note: DeviceltemBusExtension shall only be used for Deviceltem objects.

5.1.16 NodeBusExtension
A “NodeBusExtension” is derived from a “AutomationMLBaseRole”. It is defined as follows.

Table 17 — Definition NodeBusExtension

Role class name NodeBusExtension

The RoleClass "NodeBusExtension” is used to define additionally bus specific attributes
Description for a Node.
Note: NodeBusExtension shall only be used for Node objects.

Parent Class AutomationMLBaseRole

Path for Element

S ETEE AutomationProjectConfigurationRoleClassLib/NodeBusExtension

The abstract RoleClass "NodeBusExtension” is used to define additionally bus specific attributes for a
Node. These bus specific attributes shall be defined in a derived class in a separate RoleClassLibrary
for deployment as an additional Supported Role Class.

Note: NodeBusExtension shall only be used for Node objects.

5.1.17 CommunicationinterfaceBusExtension

A “CommunicationinterfaceBusExtension” is derived from a “AutomationMLBaseRole”. It is defined
as follows.

Table 18 — Definition CommunicationinterfaceBusExtension

Role class name CommunicationinterfaceBusExtension

The RoleClass "CommunicationinterfaceBusExtension” is used to define additionally bus
specific attributes for a Communicationinterface.

Note: CommunicationinterfaceBusExtension shall only be used for
Communicationinterface objects.

Description

Parent Class AutomationMLBaseRole

Path for Element

ARG AutomationProjectConfigurationRoleClassLib/CommunicationinterfaceBusExtension

The abstract RoleClass "CommunicationinterfaceBusExtension” is used to define additionally bus
specific attributes for a Communicationinterface. These bus specific attributes shall be defined in a
derived class in a separate RoleClassLibrary for deployment as an additional Supported Role Class.

Note: CommunicationinterfaceBusExtension shall only be used for Communicationinterface objects.

<AutomationML /> Application Recommendations: Automation Project

Configuration

5.2 InterfaceClassLibrary

Second main basement of the modelling are the required interface classes. Facing the required model
elements there are interface classes especially required for Automation Project Configuration data
modelling derived from interface classes used from communication system modelling defined in
AutomationML Whitepaper — Communication or derived from AutomationML basic interface classes
defined in AutomationML Whitepaper — Architecture and general requirements

The following figures represent the interface class library.

4 [[@ AutomationProjectConfigurationinterfaceClassLib
[ic] Tag {Class: Variablelnterface }
[ic] CommunicationPortInterface {Class: PhysicalEndPoint }
PowerPortInterface {Class: PhysicalEndPoint }
[ic] SensorPortInterface {Class: PhysicalEndPoint }
[ic] Channel {Class: Signallnterface }
[ic] ModuleAssignment {Class: LogicalEndPoint }

Figure 19 — AutomationProjectConfigurationinterfaceClassLib in AutomationML Editor view

<InterfaceClassLib
Name="AutomationProjectConfigurationinterfaceClassLib">
<Description>Automation Markup Language Automation Project Configuration InterfaceClass Library</Description>
<Version>1.3.0</Version>
<InterfaceClass
Name="Tag"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataConnector/PLCopenXMLInter
face/Variablelnterface">
<Attribute
Name="DataType"
AttributeDataType="xs:string">
<Attribute
Name="Customized"
AttributeDataType="xs:boolean">
<DefaultValue>false</DefaultValue>
</Attribute>
</Attribute>
<Attribute
Name="loType"
AttributeDataType="xs:string"></Attribute>
<Attribute
Name="LogicalAddress"
AttributeDataType="xs:string"/>
<Attribute
Name="Comment"
AttributeDataType="xs:string"/>
</InterfaceClass>
<InterfaceClass
Name="CommunicationPortInterface"
RefBaseClassPath="CommunicationinterfaceClassLib/PhysicalEndPoint"/>
<InterfaceClass
Name="PowerPortInterface"
RefBaseClassPath="CommunicationinterfaceClassLib/PhysicalEndPoint"/>
<InterfaceClass
Name="SensorPortInterface"
RefBaseClassPath="CommunicationInterfaceClassLib/PhysicalEndPoint"/>
<InterfaceClass
Name="Channel"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaselnterface/Communication/Signalinterface">
<Attribute
Name="Type"
AttributeDataType="xs:string"/>
<Attribute
Name="loType"
AttributeDataType="xs:string"/>
<Attribute

Application Recommendations: Automation Project

Configuration

Name="Number"
AttributeDataType="xs:int"/>
<Attribute
Name="Length"
AttributeDataType="xs:int"/>
<Attribute
Name="CustomAttributes">
<RefSemantic
CorrespondingAttributePath="ListType"/>
<Attribute
Name="AttributeNamel"
AttributeDataType="xs:string"></Attribute>
<Attribute
Name="AttributeName2"
AttributeDataType="xs:string"></Attribute>
</Attribute>
</InterfaceClass>
<InterfaceClass
Name="ModuleAssignment"
RefBaseClassPath="CommunicationInterfaceClassLib/LogicalEndPoint"/>
</InterfaceClassLib>

Figure 20 — AutomationProjectConfigurationinterfaceClassLib as XML representation

<AutomationML /> Application Recommendations: Automation Project
Confi

521 Tag

nfiguration

A “Tag” is derived from a “Variablelnterface” according to AutomationML Whitepaper - Logic. It is

defined as follows.
Table 19 — Definition Tag

Role class name | Tag

Description

The Interface class “Tag” shall be used in order to represent the symbolic name of an 1/0
date. Tags shall only be used within a TagTable.

Parent Class Variablelnterface

Path for Element

AutomationProjectConfigurationinterfaceClassLib/Tag

reference

The attribute “Name” defines the name of the tag.

“Name” . . .

(AttributeDataType= This attribute is mandatory.

"xs:string”) Note: This attribute is modelled by the standard attribute Name of
the relevant CAEX object.

“DataType” The attribute “DataType” defines the type of

(AttributeDataType= the data.

"xs:string”) This attribute is mandatory.

The subattribute “Customized” indicates if
“ g the DataType contains vendor specific data
Customized : o« »
; _ | types (Customized = “true”) or not
(AttributeDataType= Customized = “false™). If tomized i
"xs:boolean”) (ustomized = “false). If customized is
’ omitted or set to “false” the DataType
contains already defined information
; according IEC 61131 (e.g. BOOL, BYTE,
Attributes WORD).

“loType” The attribute “loType” specifies the direction of the tag. This

(AttributeDataType= attribute has the value “Input” or “Output”.

"xs:string”) This attribute is optional.

“LogicalAddress”

(AttributeDataType=
"xs:string”)

The attribute “Logical Address” specifies the address of the tag.
This attribute shall not contain the direction (see Note below)

This attribute is optional.

“Comment”

(AttributeDataType=
"xs:string”)

The attribute “Comment” defines a comment for the tag.

The attribute “Comment” follows the Best Practice
Recommendation Multilingual expressions in AutomationML.

This attribute is optional.

Tags without assigned channels and channels without assigned tags are possible (incomplete
engineering). In case of Tags without assigned channels it is recommended to use Tag-name for
identification if UUID does not match.

Note: The attribute “loType” is new from AR APC 1.1.0. Due to upward compatibility with AR APC V
1.0.0 the attribute “LogicalAddress” may contain the direction (e.g. "I" or "O") and the attribute “loType”
may be missed. In this case the following rule from AR APC 1.0.0 shall be applied furthermore:

The exporting ECAD tool defines the language mnemonic of the attribute. The importing PLC tool may
change this mnemonic.

The exporting PLC tool may follow the international mnemonic. The importing ECAD tool doesn’t change
this mnemonic.

Therefore, in case of round trip engineering the use of the international or independent mnemonic in all
participating tools is recommended.

Use cases see appendix A

<AutomationML /> Application Recommendations: Automation Project
Confi

nfiguration

5.2.2 Channel

A “Channel” is derived from a “Signallnterface” according to AutomationML Whitepaper - Architecture
and general requirements. It is defined as follows.

Table 20 — Definition Channel

Role class name Channel

The role class “Channel” shall be used in order to define the process interface. A channel
shall only be used within a Deviceltem.

Description . .
Note: The name of the Channel is modelled by the standard attribute Name of the relevant
CAEX object.

Parent Class Signalinterface

Path for Element

reference AutomationProjectConfigurationinterfaceClassLib/Channel

The attribute “Type” defines the analog or
“Type” digital type of the channel (e.g. “Digital”,
(AttributeDataType="xs:string”) “Analog”).

This attribute is mandatory.

The attribute “loType” specifies the direction
(e.g.”Input”, “Output”).

This attribute is mandatory.

“loType”
(AttributeDataType="xs:string”)

The attribute “Number” specifies the number
of the channel starting with 0.

This attribute is mandatory.

“Number”
(AttributeDataType="xs:int”")

The attribute “Length” defines the total width
of the channel.

This attribute is optional.

“Length”
(AttributeDataType="xs:int”")

The name of the
AT ES CustomAttribute defines
the property name in the
target system. The value
defines the value of this
CustomAttribute. The
AttributeName is
mandatory if the attribute
“CustomAttributes”
“CustomAttributes” “AttributeName” exists. The

) (AttributeDataTy AttributeName shall be
(ListType)[0..n] pe="xs:string”) unique. Mapping of
several custom attributes
with the same name can
only be made by making
the key unique by
appending a counter like
#1, #2, #3. Only simple
data types in a flat list
are supported in this
version.

A channel references with an Internal Link the associated Tags which are stored at a CPU
Deviceltem. The direction of the link is not relevant.

Note: The identification shall result from the UUID of the first Deviceltem in the parent hierarchy with
Builtin=False, the Number of the Channel, the Type of the Channel and the IoType of the Channel.
Because if one of these identifying attributes changes the channel itself has changed.

Use cases see appendix A

<AutomationML/>

Application Recommendations: Automation Project
Configuration

5.2.3

CommunicationPortInterface

A “CommunicationPortinterface” is derived from a “PhysicalEndPoint” according to AutomationML
Whitepaper - Communication. It is defined as follows.

Table 21 — Definition CommunicationPortinterface

Role class name

CommunicationPortinterface

Description

The interface class “CommunicationPortinterface” shall be used in order to define the
physical connection to the network.

Parent Class

PhysicalEndPoint

Path for Element
reference

AutomationProjectConfigurationinterfaceClassLib/CommunicationPortInterface

5.2.4 PowerPortinterface

A “PowerPortinterface” is derived from a “PhysicalEndPoint” according to AutomationML Whitepaper
- Communication. It is defined as follows.

Table 22 — Definition PowerPortInterface

Role class name

PowerPortinterface

Description

The interface class “PowerPortinterface” shall be used in order to define the physical
connection between power modules.

Parent Class

PhysicalEndPoint

Path for Element
reference

AutomationProjectConfigurationinterfaceClassLib/PowerPortInterface

5.25

SensorPortInterface

A “SenorPortInterface” is derived from a “PhysicalEndPoint” according to AutomationML Whitepaper
- Communication. It is defined as follows.

Table 23 — Definition SensorPortinterface

Role class name

SensorPortInterface

Description

The interface class “SensorPortInterface” shall be used in order to define the physical
connection between sensor modules.

Parent Class

PhysicalEndPoint

Path for Element
reference

AutomationProjectConfigurationinterfaceClassLib/SensorrPortInterface

5.2.6

ModuleAssignment

A “ModuleAssignment” is derived from a “LogicalEndpoint” according to AutomationML Whitepaper -
Architecture and general requirements. It is defined as follows.

Table 24 — Definition ModuleAssignment

<AutomationML /> Application Recommendations: Automation Project
Confi

nfiguration

Role class name | ModuleAssignment

The interface class “ModuleAssignment” shall be used in order to define the assignment of

iz esljpiol modules to CPU’s.

Parent Class LogicalEndpoint

Path for Element

NG AutomationProjectConfigurationinterfaceClassLib/ModuleAssignment

The interface class "Module Assignment” is used to define the assignment of a module to a CPU in a
multi CPU system. By using an internal link between "Module Assignment" interfaces a module is
assigned to a CPU. A module can be assigned to several CPU’s and a CPU can control several modules.
Each Deviceltem shall have maximum one "Module Assignment" interface, which can be used by
several internal links. If only one CPU exists, the "Module Assignment" interface can be omitted and is
assumed that all modules are controlled by this CPU. The direction of the internal links is not relevant.

5.2.7 Naming and Escaping
For all CAEX-Path Expressions the CAEX naming and escaping rules are defined as follows:

¢ In a name within a path contains the characters “[* and “]” these characters have to be
escaped by replacing them with “\[* and “\]”
(e.g.: ,R1/R1.[1]/R1.1.1“ => [R1]/[R1.\[1\]]/[R1.1.1]).

LTI T)

e If one of the characters “‘@”, “.”, “.” or “/” appears in the value of a path each part of the path
must be enclosed by square brackets (“[and “]”). Example: RefPartnerSideA="[4EA36EBO-
8159-4829-8F4B-A829F3320E27]:[My.Tag]"

e Values of name attributes are not affected.

e Semantics of the operators “@” and “.” is not applied and must not be supported.

<AutomationML./> Application Recommendations: Automation Project
Confi

nfiguration

Appendix A Roundtrip Engineering and Identification of Logical
AR APC Objects

This appendix describes various use cases regarding the roundtrip engineering between ECAD and
PLC-Tools. Those use cases show the differences regarding the handling of the UUID of tags. In each
use case the first “Flow of Events” highlights the case that the PLC tool doesn’t keep the UUID persistent
which results in a finished life time of the Tag in each importing/exporting step.

The second “Flow of Events” highlights the case that the UUID of the Tag is kept persistent over the
whole bidirectional data exchange process which results that the Tag stays alive in each
importing/exporting step.

Use Case New tag without channel assignment and without further changes

UseCaselD 1

Extends -

Includes -

Actor ECAD Engineer, PLC Engineer

Brief The ECAD engineer creates a new tag with a new name (“rpm”) and a new UUID
Description (“4711”) without channel assignment.

Flow of Events

:‘?nicsiseedc;iffe 2. The PLC tool exports the tag with the same name (“rpm”) without
. channel assignment.
time of UUID

1. The PLC tool imports the tag. The PLC engineer does not change the
name.

3. The ECAD tool imports and identifies the tag by its name.

Flow of Events

1. The PLC tool imports the tag. The PLC engineer does not change the
name.

meriz?eﬁz life 2. The PLC tool exports the tag with the same name (“rpm”) without
Eme of UUID channel assignment.

3. The ECAD tool imports and identifies the tag by the UUID of the tag. If
the UUID cannot be found in the ECAD project, the ECAD tool can
identify the tag by its name and imprints the UUID (“4711”) for this tag or
can create a new tag with the given UUID.

Use Case New tag without channel assignment and change of tag

UseCaselD 2

Extends -

Includes -

Actor ECAD Engineer, PLC Engineer

Brief The ECAD engineer creates a new tag with a new name (“rpm”) and a new UUID
Description (“4711”) without channel assignment.

Flow of Events
in case of

1. The PLC tool imports the tag. The PLC engineer changes the name of

the tag (“rpm” -> “voltage”).

<AutomationML./> Application Recommendations: Automation Project
Confi

nfiguration

finished life 2. The PLC tool exports the tag with the new name (“voltage”) without
time of UUID channel assignment.

3. The ECAD tool imports the tag with the new name. This results in two
tags. The ECAD importer has to decide how to handle the duplication.

1. The PLC tool imports the tag. The PLC engineer changes the name of

Flow of Events h “rom” -> “vol »
in case of the tag (“rpm” -> “vo tage). _ . .
ersistent life 2. The PLC tool must decide (e.g. by user interaction, automatically, etc.),
tF;me of UUID if it's a new tag or an edited tag. If it is a new tag, the old tag would be
deleted and a new one with a new UUID (“4712”) is created. If the tag is
edited, the UUID (“4711”) is kept.

3. The PLC tool exports the tag without channel assignment with the new
name (“voltage”) and the original UUID (“4711”) or the new UUID
(“4712”) depending on PLC tool decision (e.g. the previous decision, by
user interaction, etc...).

4. The ECAD tool imports and identifies the tag by the UUID of the tag. If
the UUID cannot be found in the ECAD project, the ECAD tool can
identify the tag by its name and imprints the UUID (“4711” or “4712") for
this tag or can create a new tag with the given UUID.

Use Case New tag with channel assignment and without further changes
UseCaselD 3
Extends -
Includes -
Actor ECAD Engineer, PLC Engineer
Brief The ECAD engineer creates a new tag with a new name (“rpm”) and a new UUID
Description (“4711”) with channel assignment (“Channel 5”)
Flow of Events 1. ;rr]]iﬂl;hg tool imports the tag. The PLC engineer does not change
If?nicserlwseedc;iffe 2. The PLC tool exports the tag with the same name (“rpm”) and with the
time of UUID same channel assignment (“Channel 5”).
3. The ECAD tool imports and identifies the tag by its channel assignment.
1. The PLC tool imports the tag. The PLC engineer does not change
Flow of Events anything
In case of : 2. The PLC tool exports the tag with the same name (“rpm”) and with the
persistent life h | . t (“Ch | 5
time of UUID same channel assignmen (Channe).

3. The ECAD tool imports and identifies the tag by the UUID and the
channel assignment of the tag.

Use Case New tag with channel assignment and change of channel assignment
UseCaselD 4

Extends Roundtrip following after UseCaselD 3

Includes -

<AutomationML./> Application Recommendations: Automation Project
Confi

nfiguration

Actor ECAD Engineer, PLC Engineer
Brief The ECAD engineer changes the channel assignment (“Channel 5”->“Channel
Description 7).
Flow of Events 1. The ECAD eng!neer imports the result of “3”. _
in case of 2. The ECAD engineer changes the channel assignment (from “Channel 5”
finished life to “Channel 7”) of a tag (“rpm”).
time of UUID 3. The PLC tool imports the tag (“rpm”) and changes the channel
assignment to the new channel (“Channel 7”)
4. The PLC engineer doesn’t change anything.
5. The PLC tool exports the tag (“rpm”) with the channel assignment
(“Channel 77).
6. The ECAD tool imports and identifies the tag by the channel
assignment.
Flow of Events 1. The ECAD engineer imports the result of “3”
in case of 2. The ECAD engineer changes the channel assignment (from “Channel 5”
persistent life to “Channel 7’;) of a tag (“rom”).
time of UUID 3. The PLC tool imports the tag (“rpm”) and changes the channel
assignment to the new channel (“Channel 7”)
4. The PLC engineer doesn’t change anything.
5. The PLC tool exports the tag (“rpm”) with the channel assignment
(“Channel 7”) and maintains the UUID.
6. The ECAD tool imports and identifies the tag by the UUID and the
channel assignment.
Use Case New tag with channel assignment and change of tag
UseCaselD 5
Extends -
Includes -
Actor ECAD Engineer, PLC Engineer
Brief The ECAD engineer creates a new tag with a new name (“rpm”) and a new UUID
Description (“4711”) with channel assignment (“Channel 57).
1. The PLC tool imports the tag. The PLC engineer changes the name of
Flow of Events w o m » P ;
in case of El‘jg;:gn(elipsrzl) -> “voltage”) and maintains the channel assignment
I:mzh:de}IIJeID 2. The PLC tool exports the tag with the new name (“voltage”) with channel
assignment (“Channel 5”).
3. The ECAD tool imports and identifies the tag by the channel
assignment.
1. The PLC tool imports the tag. The PLC engineer changes the name of
Flow of Events the tag (“rom” -> “volt
in case of g (rom” -> vo age). . . .
persistent life 2. The PLC tool must decide (e.g. by user interaction, automatically, etc.),
time of UUID if it's a new tag or an edited tag. If it is a new tag, the old tag would be
deleted and a new one with a new UUID (“4712") is created. If the tag is
edited, the UUID (“4711”) is kept.
3. The PLC tool exports the tag without channel assignment with the new

name (“voltage”) and the original UUID (“4711”) or the new UUID

<AutomationML /> Application Recommendations: Automation Project
Confi

nfiguration

(“4712”), depending on PLC tool decision (e.g. the previous decision, by
user interaction, etc...).

The ECAD tool imports and identifies the tag by the UUID of the tag. If
the UUID cannot be found in the ECAD project, the ECAD tool can
identify the tag by its name and channel assignment and imprints the
UUID (“4711” or “4712”) for this tag or can create a new tag with the
given UUID.

Use Case New tag with channel assignment and change of channel assignment
UseCaselD 6

Extends -

Includes -

Actor ECAD Engineer, PLC Engineer

Brief The ECAD engineer creates a new tag with a new name (“rpm”) and a new UUID
Description (“4711”) with channel assignment (“Channel 57).

Flow of Events

1.

The PLC tool imports the tag. The PLC engineer changes the channel
assignment of the tag (“Channel 5”->"Channel 7”) by changing the

'f?nicsiseedo"ffe logical address (e.g. “11.17->"11.2”, “X4”->X6").
time of UUID 2. The PLC tool exports the tag with the same name (“rpm”) and with the
new channel assignment (“Channel 7).

3. The ECAD tool imports and identifies the tag by the name and changes

the channel assignment.

Flow of Events 1. The PLC tool imports the tag. The PLC engineer changes the channel

: assignment of the tag (“Channel 5”->"Channel 7”) by changing the

in case of . U[4 A8 M4 OF ey AP »

persistent life logical address (e.g. I1_.1 ->"[1.27, “X4 -_>X6)- _ _

time of UUID 2. The PLC tool must decide (e.g. by user interaction, automatically, etc.),
if it's a new tag or an edited tag. If it is a new tag, the old tag would be
deleted and a new one with a new UUID (“4712”) is created. If the tag is
edited, the UUID (“4711”) is kept.

3. The PLC tool exports the tag with the same name (“rpom”), the new
channel assignment (“Channel 7”) and the original UUID (“4711”) or the
new UUID (“4712”), depending on PLC tool decision (e.g. the previous
decision, by user interaction, etc...).

4. The ECAD tool imports and identifies the tag by the UUID of the tag. If
the UUID cannot be found in the ECAD project, the ECAD tool can
identify the tag by its name and channel assignment and imprints the
UUID (“4711” or “4712”) for this tag or can create a new tag with the
given UUID.

Use Case New tag with channel assignment and change of tag and channel assignment
UseCaselD 7
Extends -

<AutomationML./> Application Recommendations: Automation Project
Confi

nfiguration

Includes -

Actor ECAD Engineer, PLC Engineer

Brief The ECAD engineer creates a new tag with a new name (“rpm”) and a new UUID
Description (“4711”) with channel assignment (“Channel 5”).

Flow of Events
in case of
finished life
time of UUID

1. The PLC tool imports the tag. The PLC engineer changes the name of
the tag (“rpm”->"voltage”) and the channel assignment of the tag
(“Channel 5”->"Channel 7).

2. The PLC tool exports the tag with the new name (“voltage”) and with the
new channel assignment (“Channel 7).

3. The ECAD tool imports and identifies the tag by the name and changes
the channel assignment. The ECAD importer has to decide how to
handle the duplication.

Flow of Events

1. The PLC tool imports the tag. The PLC engineer changes the name of
the tag (“rpm”->"voltage”) and the channel assignment of the tag

'”efgztee?]‘; e (“Channel 5’->"Channel 7).

'ﬁme of UUID 2. The PLC tool must decide (e.g. by user interaction, automatically, etc.),
if it's a new tag or an edited tag. If it is a new tag, the old tag would be
deleted and a new one with a new UUID (“4712”) is created. If the tag is
edited, the UUID (“4711”) is kept.

3. The PLC tool exports the tag with the new name (“voltage”), the new
channel assignment (“Channel 7”) and the original UUID (“4711”) or the
new UUID (“4712”) depending on PLC tool decision (e.g. the previous
decision, by user interaction, etc...).

4. The ECAD tool imports and identifies the tag by the UUID of the tag. If
the UUID cannot be found in the ECAD project, the ECAD tool can
identify the tag by its name and channel assignment and imprints the
UUID (“4711” or “4712”) for this tag or can create a new tag with the
given UUID.

Use Case New tag with channel assignment and change of start address

UseCaselD 8

Extends -

Includes -

Actor ECAD Engineer, PLC Engineer

Brief The ECAD engineer creates a new tag with a new name (“rpm”) and a new UUID

Description (“47117) with channel assignment (“Channel 5”).

Flow of Events
in case of
finished life
time of UUID

1. The PLC tool imports the tag. The PLC engineer changes the start
address of the tag.

2. The PLC tool exports the tag with the new start address.

3. The ECAD tool imports and identifies the tag by its name and changes
the start address.

Flow of Events
in case of

1. The PLC tool imports the tag. The PLC engineer changes the start
address of the tag.

2. The PLC tool must decide (e.g. by user interaction, automatically, etc.),
if it's a new tag or an edited tag. If it is a new tag, the old tag would be

<AutomationML /> Application Recommendations: Automation Project

Configuration

persistent life
time of UUID

deleted and a new one with a new UUID (“4712”) is created. If the tag is
edited, the UUID (“4711”) is kept.

The PLC tool exports the tag with the new start address and the original
UUID (“4711”) or the new UUID (“4712”) depending on PLC tool
decision (e.g. the previous decision, by user interaction, etc...).

The ECAD tool imports and identifies the tag by the UUID of the tag. If
the UUID cannot be found in the ECAD project, the ECAD tool can
identify the tag by its name and channel assignment and imprints the
UUID (“4711” or “4712”) for this tag or can create a new tag with the
given UUID.

