

Description of Automation Components

©AutomationML consortium
Version 1.0, October 2020

Contact: www.automationml.org

<AutomationML/> Part 6 AutomationML Component

Content
LO70] 01 (=] o 1 TP TP P PR 3
I o) T 0= PSR 8
ISy o) 1= 1] [P PPPRPPRPRPN 13
(@] 0111 011 (o] S TP PPPRRR 15
L1101V O PEERRR 16
1 L gL 0T [Tox i o] o 1 TP RRRT 18
R R @ V= g PP 18
N = 7 1 o] PSPPSR 19
R S Vol o1 PO TR PPPPPT PR 20
R S C =T = g ot PP 20
2 AUtOMALION COMPONEINT ...ttt et et e e s bb e e e s aabe e e e s bbb e e e s nbbeeesaanneeas 22
N R = 1= To] [0 [T o3 T T N I =T o Yo = P 23
A A U LTS G2 1 =L S PP PPRPRR 26
2.2.1 Materials Management and Warehousingcccccccveviviiiiiiiiceeeeee 26
2.2.2 Component Description as Base for XCADccccccveviiiiiiiiiiieeeeeeee e, 26
2.2.2.1 Electrical Engineering and software design............cccceeviieeeiiiieeiiieee e 27
2.2.2.2 Mechanical ENGINEEIINGuviiiiiiieiiiiie ettt 28
2.2.2.3 FlUIdIC ENQGINEEIINGetiiiiiiieiiiiee ettt ettt e et e e e e 29
2.2.3 Simulation and Virtual COMMISSIONINGccoevvviiiiiiiiiiiiicicceceeeeeeee e 29
2.2.4 Maintenance and DOCUMENTALIONooiiiiiiiiiiiiiiiie e 30
2.2.5 Device Description Files for Field DeVICES.........coocuveeiriiiieiiiiee e 32
2.3 Considered Information and sub-model of Automation Components...........cccevvvvvvvvieieeninnnnn. 33
2.4 Views on Automation Components and SYSIEMS.........vieiiiiiieiriiie et 34
2.5 AutomationML Base Technology CAEX 2.15 and CAEX 3.0uuviuivivimimimirininrninininininnnnnn, 36
3 Representation in AULOMALIONMLouuiiiiii e 37
3.1 Structuring of AutomationML Components and Composite COmpPoNeNnts..........cccceevveeeeenee 37
3.2 Composition of AutomationML Automation COMPONENES............evvveirreirimrrinieiernrnininrn. 38
3.2. 1 GENEIaAl PrOVISIONSceeiiiieiiiiieee e e e ettt e e e e s ettt e e e e e e e sttt e e e e e e sennnnteeeeeaeeeannsnneees 38
3.2.2 Example simple AutomationML COMPONENt..........cccevvviviiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeee 38
3.2.3 Example nested AutomationML Component with AutomationML Objects 39
3.2.4 Example AutomationML Composite COMPONENLcovurieeiriiieeiiiiie et 39
3.2.5 Example nested AutomationML Composite Component with hierarchies................ 40
3.3 Mapping Of GENEIal DAtA........coocuuiiiiiiiii ettt 41
I T a1 = Y oL [=T I [0 1 (=To [ir= L1 0] o PP 42
3.5 AutomationML Component LogiC Representationccccevvieeeiiiiee e 43
T A 1T o 1= = | PP PPPRTT 43
3.5.2 LOQIC MOUEIS ...ttt e e e e e e e e e 44
3.5.3 Usage Of LOGIC MOUEIS......ccoiiiiieiiiee e a7
3.5.4 BERAVIOUL .ottt e e e ettt e e e e e e e e e e e e nnaeees 49
3.5.4.1 PLCopen XML based Behaviour Model ... 50
3.5.4.2 AMLLogic based Behaviour MOGEl...........cooouiiiiiiiiiiiiiieice e 51
3.5.4.3 FMI based Behaviour MOEIuuuiiiiiiiiiiiiiiiee et 52
.55 SIMUIALION ...ttt e e e e ettt e e e e e e s n e e e e e e e e e nnneees 53
3.5.5.1 PLCopen XML based Simulation MOdel.............ccooueiiiiiiiiiiiiiieiiee e 54

<AutomationML/> Part 6 AutomationML Component

3.5.5.2 AMLLogic based Simulation MOElcccuuiiiiiiiiiiiiei e 54
3.5.5.3 FMI based Simulation MOdEl...........c..ooiiiiiiiiiiiiiiiee e 54
G S SIS T=To (U 1T o Tod Vo O PP PUP PP PTPPPN 54
3.5.6.1 PLCopen XML based SequencingElementsccccceiiiiiiiiiiiniiniicici 56
3.5.6.2 AMLLogic based SequencingEIEMENtS..........ccvviiiiiiiiie e 56
3.5.6.3 FMI based SequencingEIEMEeNtsccoceoviiiiiiiiiiiiic e 56
357 FUNCHON. ...ttt 56
3.5.7.1 PLCopen XML based FUNCHONccociiiiiiiiiiiiiccicc e 57
3.5.7.2 AMLLOGQIC based FUNCHON.........c.cociiiiiee et e e e 57
3.5.7.3 FMIDased FUNCHON......ccoiiiiiiiiiie ettt 57
3.5.8 SKIlISLOGIC ...ttt 57
3.5.8.1 PLCopen XML based SKillLOGICMOELcceeveiiimiiiiiiiieeniee e 58
3.5.8.2 AMLLogic based SKillLOGICMOGEL............ceeiiiriiiiiiiiee e 58
3.5.8.3 FMI based SKIlILOGICMOELcccuuviiiiieiiiiiiieiiee et 59
3.6 Geometry and Kine€matiC MOUEIcuuiiiiiiie e e e e et e e e e e e e e eaes 59
GG A =T o 1 1 [1 PP P PP PPRTPT PPN 59
3.6.1.1 Collada Geometry MOUEL.........ccuvviiiiiieiiiiii e 59
1 705 0 7 I |V o T [PRSP 61
G700 e] B I 1Y o T 1= RPN 62
3.6.2 KINEMALICS ...ttt e e e e e et e e e e e e s e b b br e e e e e e e e e annnnnees 63
3.6.2.1 Collada Kinematic MOGEL.........cueiiiiiiieeiiii e 64
T A €1 = o [ol =T o = ET= 1] €= 11 0] o I 69
IS T B o Tod U [4= 01 =i o o SRS 70
O B 0= T4 11 [ox= 1 (L PO PP TP PP UPPTPUPTPPN 71
3.10 Additional DeVICEe DESCIIPLONeieiiiiieeiiiie ettt et e e e 71
3.11 MainteNaNCe DESCHIPLIONueiiiitiieeiiiiie ettt et e e e bt e e et e e e nebe e e e e aneee 72
3.12 Skill Description for AutomationML COMPONENLSuuuvvrrririririririeininirenrrrernreenrernn... 73
3.13 Connector for AutomationML COMPONENESuvviiiiiiiieeiiiiie ettt 74
3.13.1 General 74
G0 I T2 |V =Tl F= g Tl @ T 1= o] o PR 76
1 700 1 70 T o To | [@01 1 =Tox (o PP 77
IO I Y A [T o ¢ Tol 0] o [T (o PP PPPPT PP 78
I 0 ot R 1= o 1= = | T PP TP PR PPPPPPRPP 78
3.13.4.2 General modelling provisions for electric CONNECIOIScoevviiiiiiiieeeeeiiiiiieeeeenn 79
10 I R ST W o [T @] o 1= o (o SR 81
0 700 16 78 ST I To [1 o [T @0 o1 U=Td (o | PRSP 81
3.13.7 PneumatiC CONMECION.......c.uuiiiiieee e e ittt e e e e e sttt e e e e e e s st e e e e e e e ssnnnnteeeeeaeeesannnnneees 82
3.13.8 HydrauliC CONMNECION.........iiiiiiiiee ettt ettt et e e e 83
3.13.9 SENSOI CONNECLON ...cceviiiiiiiiiiet ettt 83
0 I 0 0 1] (1| @] =X (o) PR 84
0 o 0 I 1Y W | (@]] g =Tod (o] £ PP PPTUT P 84
3.14 Connecting AutomationML Components and Composite COmponentscccceeevveeeeennee 85
3.14.1 Relations between the contents within an AutomationML Component..................... 85
3.14.1.1 Relations between Connectors and Models within an AutomationML
COMPONENL.....eeeeee e e e e e e e e e e e e e e e e eaeaeeas 86
3.14.1.2 Relations between Models within an AutomationML Component.............cccceeeeeeennn. 86
3.14.2 Composite Components: Relations between different AutomationML
COMPONENTS ... 86
4 S =TT F= T o I o = T 1= T SRR 88
o R o | [O P TR I o] = T 1 TP PT TP 88

4.2

<AutomationML/> Part 6 AutomationML Component

4.1.1 Overview new Role Class Librariescccccccv i
4.1.2 AutomationMLCOomMPONenNtBASERCLcooiiiiiiiiiiiiie e
4.1.2.1 RoleClass AdditionalDeviceDescription

41.22
41.2.3
41.2.4
41.25
41.2.6
4.1.2.7
4.1.2.8
41.29
4.1.2.10
41.2.11
4.1.2.12
4.1.2.13
4.1.2.14

RoleClass Connectorcccovcvvveevnnenne
RoleClass Documentation
RoleClass GEOMEtrYMOUEIoooiiiiiiiiiiicit s
RoleClass GraphiCREPreSeNntationc.eeeirrererrieieeniee e
ROIECIASS ICON ...ttt sttt e et e e et e e nenes
ROIECIASS LOGICMOUEL........eeeiiiiiiieieee ettt
RoleClass PLCopenXMLLogic
RoleClass AMLLogic
RoleClass FMILOQICcccvvvveeeeeeinns

RoleClass KiNneMatiCMOE!ocuueeiiiiieiiiiee e
RoleClass MaintenanceDESCIIPLONc.ueveiiiiieiiiie e
ROIECIASS MOGEI ...t
ROIECIASS SYMDOL..... .o s

4.1.3 AutomationMLComponentStandardRCLccoviiiiiiiiiieiiiiiiee e

413.1

4.1.3.2

4133

4134

4.1.35

4136

4137

4.1.3.8

4139

4.1.3.10
41311
4.1.3.12
4.1.3.13
4.1.3.14
4.1.3.15
4.1.3.16
4.1.3.17
4.1.3.18
4.1.3.19
4.1.3.20
4.1.3.21
4.1.3.22
4.1.3.23
4.1.3.24
4.1.3.25
4.1.3.26
4.1.3.27
4.1.3.28
4.1.3.29
4.1.3.30
4.1.3.31
4.1.3.32
4.1.3.33
4.1.3.34
4.1.3.35

RoleClass AutomatioNnCOMPONENTcuurieiiiiieiiiee et
RoleClass AutomationComponentSemantiCSYSIEMcoccvverrieieeiiiiee e 104
RoleClass BehaviourModel
RoleClass Functioncccceeevveennee.
RoleClass SimulationModel
RoleClass SKIlILOGICMOGEIooiiiiiiiiiiiee e
RoleClass SequencingMOUAElcccuuiiiiiiiieiiiiie e
ROIECIASS SEUUENCEciiiiiiee ittt e e
RoleClass SeqUENCEEIBMENT..........ccuiiiiiiiieiiiee e
RoleClass COLLADAKinematicModel..
RoleClass COLLADAKInematicJoint..........c...cceeennee.
RoleClass COLLADAKinematicAttachment
RoleClass COLLADAGEOMEITYMOEL........cccoiuiieiiiiiiieiiiiee e
RoleClass COLLADAGeometryAttachment
RoleClass JTGeometryModel
RoleClass 2DGeometryModel
RoleClass ComponentPicture
RoleClass ElectricSymbol
RoleClass HydraulicSymbol..................
RoleClass PneumaticSymbol
RoleClass ManufaCtureICONuuuiiiieiiiiiiiiiee e
ROIECIasS COMPONENLICON.uiiiiiiiiiiiiee ettt
ROIECIASS SKIlMOUEL........eviiiieeeieieei et eaeere e e e
ROIECIASS CrtifiICALE........eeiieiieee e
RoleClass MeChaniCCONNECIONuiiiiiiieiiiiee et
RoleClass LogicConnector...................
RoleClass ElectricConnector................
RoleClass FluidicConnector
RoIeClass LiqUIdICCONNECIONcocueiiiiiiiee ittt
RoleClass PneumatiCCONNECIONcciiuiiieiiiiie ettt
RoleClass HydrauliCCONNECIONcoiiiiiiiiiiiiiee ettt e e
ROIECIASS SENSOTCONNECIONviieiiiiiee ittt ettt e e e
RoleClass SKillCONNECtOr..........c.cvevvieeeiiiieeeniieee

RoleClass MaintenanceDescriptionGroup
RoleClass MaintenanceDescCriptionItem.............coooiiiiiiiiiiiiiiiieee e

4.1.4 AutomationMLFMILOGICROIECIASSLIDvvveveiiiiiieiiiceee e

4141

ROIECIASS FMILOGICODJECT......ceeiiiiiiiiiie ettt

INTEITACE ClASS LIDIATIES ...ue ettt et et et e e e et e et et e e e e et e e e e e et et e e eeanes
O R O Y=Y AV = VTR
4.2.2 AutomationMLComMpPONENtBASEICL...........ceiiiiiiiiiiiiiiiie e

<AutomationML/> Part 6 AutomationML Component

4.2.2.1 InterfaceClass GraphicRepresentationReferencecccccoeiviiiiniiiiiiiieenn. 123

4.2.2.2 InterfaceClass 2DREFEIENCEccoiiiiiiiiiiie it 124

4.2.2.3 InterfaceClass JTREEIENCEooviiuiiiiiie e 124

4.2.2.4 InterfaceClass SKIllINTErfaCe...........ooiuuiiiiiie e 124

4.2.2.5 InterfaceClass DeviceDescriptionReference..........ccccccovvcvivieeeeccieciiieee e 125

4.2.2.6 InterfaceClass MaintenanceDescriptionLinKcccccooeciiiiiieeeeiiiiiiiieee e 125

4.2.2.7 InterfaceClass Mechaniclnterfaceccccoooiiiiiiiiiiiiiie e 125

4.2.2.8 InterfaceClass EleCtriCINtErface.........cuvoviiiiiiiiiii e 126

4.2.2.9 InterfaceClass LiqUidiCINtErfaceccuvevieeiiiiiiiiiiie e 126

4.2.2.10 InterfaceClass PneumaticINterfaceccccooiuiiiiiiiiiiiiiieieee e 126

4.2.2.11 InterfaceClass PNeumatiCCONNECIONceuiiiiiiiiee e 127

4.2.2.12 InterfaceClass CondensateDrainCONNECIONoccuviiiiieeeiriieeesieeesiieee e 127

4.2.2.13 InterfaceClass HydrauliCINterfaceccceeeiiiiiiiiiiii e 128

4.2.2.14 InterfaceClass SeNSOrINIErfaCecc.uueiiiiei i 128

4.2.2.15 InterfaceClass JOININTEITACEcoiuiiiiiiiie e 128

4.2.3 AutomationMLFMIINterfaceClassLib...........cooiiiiiiiiiiiiii e 129
4.2.3.1 InterfaceClass FMIREEIENCE.cccoiuiiiiiiiie et 129

4.2.3.2 InterfaceClass FMIVariablelNterfacecccoouveiiiiiiii i 130

Exchange of AutomationML Components as AMLX CONtaiNercocceevviveenniieee e 131
5.1 Use Cases for AMLX CONAINETcoiiiiiiiiiite e eiiiiee e e st a e e e s e snntaeee e e e e e s e snnreeeeeeee s 131
5.2 AMLX Container types for AutomationML COMPONENES...........uuvvvrrvinimimirrrrninerrernrnennnnninn. 131
5.2.1 AMLX Container for single AutomationML COMPONENTcueeeeeriiieeeeiiieeeeiiiieeens 131

5.2.2 AMLX Container for AutomationML Component cataloguescccccevvvevevenennn. 132

5.2.3 AMLX Container for single AutomationML Composite Component..............cceeene 133
Manufacturer Specific Extensions of Component DeSCription............occoeeviiiieeiiieiee e 135
Semantics in AUtOMAtioN COMPONENTSccccii i 136
7.1 Concept of Semantic System INTEGrationcceeeiiiiiiiiiiiiee e 136
7.1.1 Definition of used Semantic SYSIEMSccvviiviiiiiiii 136
7.1.2 Referencing Attributes SEMANTIC.........ooouiiiiiiiiie e 137

A A = e 0] o] [(o] 7= Vo TS 139
Automation Components iN CAEX 3.0..ccocviiiiiiiiiiiie e 141

S 0 I =T o1 -SSP 141
8.2 CAEX Schema TranSfOrMAatiONcouiiiiiiieiie ettt ee e e s 141
8.3 AutomationML Version Transformationcoooiiciiiiiiee e 141
8.3.1 Exchange of used libraries........cccccvvvviviiii 141
8.3.2 Adaptation of the component libraries..........ccccccvvvvviiii 141

8.4 Modelling of electrical interfaces With CAEX 3.0cocuiiiiiiiiiiiiiiieee e 142
S O A Vo F= L RS 1= PP OO PP PUPTRR PP 142
8.4.2 Example: M12 interface class lirary ... 142
8.4.3 Example: Mini 7/8 interface class library.........ccccccocviviiiii 147
8.4.4 Example: RJ45 interface class library ... 147
8.4.5 Application role Class Irary ... 148
8.4.6 Application Example: Automation component with multiple electric connectors 148
8.4.7 Application Example: M12 t0 M12 Cable........c.cooiiiiiiiiiiiiieiiee e 149
Practical examples for Automation COMPONENEScooiiiiiiiiiiie e 151
9.1 Example of a typical Automation Component: Pneumatic Cylindercccccceevvvvvvvnnnnnnnn. 151
9.1.1 CONAINEr PACKAGEcoiieetiieeiie ettt e e e e ee e e e e e e nbeeee s 151
9.1.2 Model Overview as ODJECE TrEE.........uuuiiiiiiiiiiiee et 152

1S TR0 I T o T 1 = ox (] T 153
9.1.4 BERAVIOUL ..ttt ettt e e e et e e e e e e e e e e e e e e e nnreees 153

<AutomationML/> Part 6 AutomationML Component

9.1.5 KinematiCS and GEOMEIIYcuieeeiiiiiiiiieii e e e e e cteree e e e e e s s ssreeer e e e e s s snnnreeer e e e e e s enneneeees 153
1S 0 I G N1 1] o JU) L= PP PERTT 154
9.1.7 Graphical REPreSENIALIONcceeeiiiiiiiiieii e e e e s e e e e s s e e e e s rr e e e e e s eneeees 154
1S 0 I S I B o Tod W =T o] = o o PR 154
LS T LS TR U | 4 4= T YA 155
9.2 Skill Example based on VDMA SOArc and VDI 2860 standardscccccceeeeeeiiiinveeeeennnn. 155
9.2.1 Generic model of a skill based on VDMA SOArc and VDI standards..................... 155

9.2.2 Modelling the provided skill of a component/system based on VDMA SOArc and
VDI 2860 SANUAITS ...oivveiieeiiiiee ettt e et e et e e et ee e s sbeeeessbaeeeesbeeeaeans 156
9.3 CoNNECEION Of COMPONENESoiiiiiiiieiitiiie et e ettt e e st e e e e st e e e e sbeeeeesbreeeeaas 157
1S 10 S Vo (o g TaTo I = = To [=T o To A @0 V7= o T SRR 158
9.4.1 EXAMPIE MOTOK ..ottt e et e e st e e e b ee e 158
9.4.2 Example FrequenCy CONVEITETciiiiiiiie ittt sttt et 161
9.4.3 MOLOT / DIIVE / PLC ..ottt ettt et e e sttt e e e st e e e snbaeeeean 163
9.5 User Defined Simulation MOEIScc.evuiiiiiii e 165
9.5.1 Referencing Functional Mockup Units According to the FMI Standard 165
9.5.2 SIMIT SIimulation MOEIScoeeeiiiiiiiiiiie e 165
9.6 Additional DeVICE DESCIIPLIONvuiieiiiiiie et e e siiee e e sttt e et e e e staeee s stae e e e sbreeesabeeeeestaeeeeans 170
9.7 Geometry and Kinematic EXAMPIEcooiiuiiiiiiiiiiie et 171
0.7, 1 IMOUTOK e 171
L A X = Vo] (< GO PSP OTPRPUPRP 172
9.7.3 ElectromechaniCal DIVccoouiiiiiiiiiie et e e e e e e e 174
9.7.4 Interconnection of the components to a drive traiNccccovcveeeeiiiiee i 175
9.8 Semantic of AutomationML Component AttrbDULES...........ccuieeiiiiieeiiiiee e 176
9.9 Modelling of a library of electrical M12 CONNECLON tYPESeeiiiiuiieeeiiiiee et 176
0.9.1 GNEIAL it e e e 176
9.9.2 M2 r0le ClaSS lIDFAIYoeiiiiiiiiiiii et 176
9.9.3 Example application role class library ... 177
9.9.4 Application Example: Automation component with multiple electric connectors 177
9.9.5 Application Example: M12 t0 M12 Cable........ccooiiiiiiiiiiiieiiiee e 178
0.9.6 DISCUSSION ...ttt e e e ettt e ettt e e e e e bbbt e e e e e s s e bbb et e e e e e e e e abnbbeee e e e e e e e nnneees 179
10 Variants of Automation Components in AUtOMatioNMLccceiiiiiiiiiiiiiiee e 180

<AutomationML/> Part 6 AutomationML Component

List of Figures

Figure 1: Aspects of an automation component or production SyStem..........cccceveeeviiiciiieeeeeeensnnnns 22
Figure 2: Overview of tool use for AutomationML COMPONENTScuveveiriiiieiiiiiie e 23
Figure 3: Stakeholder of automation COMPONENL............uuiiiieeeii e e e e er e e e e eans 24
Figure 4: Data flow between stakeholders over the lifecycle.........ccooiiiiiiiiiiii 26
Figure 5: Use Case component description a base for XCADueevveeeiiiiciiiieiee e ciinieeeee e e 27
Figure 6: Schematic example of an FMI-based co-simulation model for VC including HIL............ 30
Figure 7: Use Case Maintenance and dOCUMENTALIONocoiuriiiiiiiire it 31
Figure 8: Principle of the AML-DD package with an example for an 10-Link device...................... 33
Figure 9: Information and sub-model integration into to the AutomationML Component............... 33
Figure 10: Overview structure of an automation component in AutomationML............ccccceveeernnnns 38
Figure 11: Example simple AutomationML COMPONENTccoiiiiiiiiiiiiie it 39
Figure 12: Example nested AutomationML Component with AutomationML Objects.................... 39
Figure 13: Example AutomationML Composite COMPONENLccoevvvvviiiiiiiiiieeeeeeeeee e, 40
Figure 14: Example nested AutomationML Composite Component with hierarchies 41
Figure 15: Representation of attribute groups as AutomationML attributes as UML diagram 42
Figure 16: AutomationComponent role class with attribute group definitioncccccoeviiieennn 42
Figure 17: Example an AutomationML Component with one “Model”...........ccccccceeeiiiiiiiiiinneeeennn, 43
Figure 18: AutomationML Representation of “Model” role Classccccccvecviviieeeeeiiiiiiiiieeee e 43
Figure 19: AutomationML Component 10giC MOEISc.uuiieiiiiiiiiii e 44
Figure 20: Role Classes for automation component Logic Model...........cccccccvvviviiiiiiiieeeeee, 45
Figure 21: Interface Classes for automation component Logic Modelccoccveiiiiiiiiiiieecnen 45
Figure 22: Inheritance structure for an AutomationML logic model integrationccccceveveeee. 46
Figure 23: Role Classes for automation component 10giC USE CaSES..........ccccvevvveveieieieieieieieeeeene, 47
Figure 24: Inheritance structure for an AutomationML |0giC USE CASES........ccceviuveeeiiiiiieeiiiiee e 48
Figure 25: Example integration of an FMI Logic Modelcccccoviviiiiii 48
Figure 26: Inheritance structure for an AutomationML “BehaviourModel”.............cccooviiiniiiiennnn 49
Figure 27: AutomationML Representation of “BehaviourModel” role classccccccevevevininnnnnn. 50
Figure 28: Example usage of the AutomationML role class “PLCLogic” and “BehaviourModel”

as AutomationML “PLCopenBehaviourModel” ... 50
Figure 29: Example AutomationML Representation of “PLCopenBehaviourModel” 51
Figure 30: Example usage of the AutomationML role class “AMLLogic” and “BehaviourModel”

as AutomationML “AMLBehaviourModel” ... 52
Figure 31: Example AutomationML Representation of “AMLBehaviourModel”...............cccceeenee 52
Figure 32: Example usage of the AutomationML role class “FMILogic” and “BehaviourModel”

as AutomationML “FMIBehaviourMOdel”oooiii i 52
Figure 33: Example AutomationML Representation of “FMIBehaviourModel”ccc.co.. 53
Figure 34: Inheritance structure for an AutomationML “SimulationModel”ccocviiiiiinennnnn 54
Figure 35: AutomationML Representation of “SimulationModel” role classcccocciiiieiiiinnnn. 54
Figure 36: Inheritance structure of AutomationML “Sequence” role Classcccccoecvveiniienennnnn 55
Figure 37: AutomationML representation of “Sequence” role classcccccovviiiiiii e 56
Figure 38: Inheritance structure for an AutomationML “Function”............occoiiiiiiiee 57
Figure 39: AutomationML Representation of “Function” role classccccccoviiiiiiiiiiiiiee e 57
Figure 40: Inheritance structure for an AutomationML “SkillLogicModel”...........cccccooiiiiiiiiannnnnnn. 58
Figure 41: AutomationML Representation of “SkillLogicModel”cccocovieiiiiiiiiiie e 58

<AutomationML/> Part 6 AutomationML Component

Figure 42: Example usage of the AutomationML role class “GeometryModel”cccccceeveeernnns 59
Figure 43: AutomationML representation of “Model” role class.............ccccocoiiiiiiiii 59
Figure 44: Example usage of AutomationML role classes to integrate an AutomationML
“COLLADAGEOMELIYMOAEI" ...ttt r e e e e e s e e e e e e s nnrnneees 61
Figure 45: AutomationML Representation of “COLLADAGeometryModel” role class.................... 61
Figure 46: AutomationML Representation of “COLLADAGeometryAttachment” role class 61
Figure 47: Example usage of the AutomationML role class “JTGeometryModel”...........cccccceennns 62
Figure 48: AutomationML Representation of “JTGeometryModel” role classcccccovviiiernnnn 62
Figure 49: Example usage of the AutomationML role class “2DGeometryModel”cccceennne 63
Figure 50: AutomationML Representation of “2DGeometryModel” role class...........ccccceviineennnn 63
Figure 51: Example usage of the AutomationML role class “Kinematic” role class........................ 64
Figure 52: AutomationML Representation of “KinematicModel” role classccccccoveiriinernnnn 64
Figure 53: Example usage of AutomationML role classes to integrate an AutomationML
“COLLADAKINEMAtICMOGEI” ... e e 66
Figure 54: AutomationML Representation of “COLLADAKinematicModel” role class.................... 66
Figure 55: AutomationML Representation of “COLLADAKinematicJoint” role class...................... 66
Figure 56: AutomationML Representation of “COLLADAKinematicAttachment” role class 66
Figure 57: Example of Connection between COLLADAKIinematicJoint und FMILogic 68
Figure 58: Example usage of the AutomationML role class “GraphicalRepresentation”................ 69
Figure 59: AutomationML Representation of “GraphicalRepresentation” role class 70
Figure 60: Example usage of the AutomationML role class “Documentation”cccocceveennen 70
Figure 61: AutomationML Representation of “Documentation” role class...........c.ccccoecvvvveereeennnnnns 70
Figure 62: Example usage of the AutomationML role class “Certificate”cccccoviiiiniiennnn 71
Figure 63: AutomationML Representation of “Certificate” role classcccooeviiiiiiiiiiiie e, 71
Figure 64: Example usage of the AutomationML role class “AdditionalDeviceDescription”........... 72
Figure 65: AutomationML Representation “AdditionalDeviceDescription” role class 72
Figure 66: Example usage of the AutomationML role classes “MaintenanceDescriptionltem”
and “MaintenanceDescriptionGroUR”ooiiviiiiiiii e 73
Figure 67: AutomationML Representation of “MaintenanceDescription” role classes.................... 73
Figure 68: General AutomationML Representation of Skill DeSCHptioncccccevvvieeeiiiiieeennnn 74
Figure 69: AutomationML Representation of skill model role and interface classes...................... 74
Figure 70: Role classes AutomationML Component connector definitionccccoeveiiiiieeeeee 75
Figure 71: Interface classes for AutomationML Component connector definition.......................... 75
Figure 72: Representation of functions as AutomationML entities (UML diagram)ccccccuee. 76
Figure 73: Example usage of an AutomationML “MechanicConnector” role class............ccccceeennee 77
Figure 74: AutomationML representation of “MechanicConnector” role classcccccceeeennne 77
Figure 75: Example usage of an AutomationML “LogicConnector” with one “Signalinterface”...... 77
Figure 76: AutomationML Representation of “LogicConnector” role classcccccooiiiiieiiiiinnnns 77
Figure 77: Examples Of €leCtrC CONNECLOISuiiiiiiiiie ittt 78
Figure 78: Electric connectors used in a cable or in an automation deviCes.............occcuvveeeeeeennnnne 78
Figure 79: CoNNeCctor VErsuS INTEITACEuuuiiiiiiii et 79
Figure 80: Example usage of an AutomationML “ElectricConnector” with one Electriclnterface
... 79
Figure 81: AutomationML Representation of “ElectricConnector” role class............cocccvvveeeiieinnnns 80
Figure 82: Example usage of an AutomationML “FluidicConnector”ccccooviiiiiiiiiniiee e 81
Figure 83: AutomationML representation of “FluidicConnector” role classcccoocciiiieiiinnnnis 81
Figure 84: Example usage of an AutomationML “LiquidicConnector”ccccceeiiiiiiiienieennnnne 81

<AutomationML/> Part 6 AutomationML Component

Figure 85: AutomationML Representation of “LiquidicConnector” role classcccvvvvereeennnnns 82
Figure 86: Example usage of an AutomationML “PneumaticConnector”cc.cocoiiniiinnn 82
Figure 87: AutomationML Representation of “PneumaticConnector” role classcccccceeeevenns 83
Figure 88: AutomationML Representation of “Pneumaticinterface” and “PneumaticConnector”

INTEITACE CIASS ..ottt e e et e e e e e e e e st b e e e e e e e s e snabaeeeeaaeas 83
Figure 89: Example usage of an AutomationML “HydraulicConnector”ccccccoviiiiiviineeennnnnns 83
Figure 90: AutomationML Representation of “HydraulicConnector” role classccccccccveeeinnnns 83
Figure 91: Example usage of an AutomationML “SkillConnector” role classccccceviiieeenne 84
Figure 92: AutomationML Representation of “SkillConnector” role class.........cccccccovvvcivveeeeeeennnnnns 84
Figure 93: Graphical visualization of the main contents of an AutomationML Component............. 85
Figure 94: CAD Model of a composite automation component and a graphical visualization of

the belonging AutomationML COMPONENTccciiiiiieiiiiiie ittt staee e sraee e e sereea e 87
Figure 95: Inheritance structure of “AutomationMLComponentBaseRCL” and

“AutomationMLComponentStandardRCL”...........coovei i 89
Figure 96: Overview “AutomationMLComponentBaseRCLccccceeiiiiiiiiiiiiie e 90
Figure 97: Overview AutomationMLComponentStandardRCL as AutomationML tree 98
Figure 98: Overview AutomationMLFMILogicRoleClassLib as AutomationML tree..................... 121
Figure 99: Overview AutomationMLComponentBaselCL..........cccccccevvviviiiiiieeeeeeee 123
Figure 100: Overview AutomationMLFMIInterfaceClassLibcccccccviviiii 129
Figure 101: Minimum AMLX Container for a single cComponentccoccvveeiiiiieeiniiee e 132
Figure 102: Minimum AMLX Container for a AutomationML Component catalogue.................... 133
Figure 103: Minimum AMLX Container for an AutomationML Composite Component................ 134
Figure 104: UML Representation of role class “AutomationComponentSemanticSystem”.......... 136
Figure 105: RefSemantic as AutomationML elementcccceeevvviiieeee 137
Figure 106: Examples for CAEX attribute “CorrespondingAttributePath”..............c.coccoin 138
Figure 107: Examples AutomationML Component with standard semantic system 139
Figure 108: Examples usage of semantic systems for attribute definitionc..ccccevviieennn 139
Figure 109: Examples AutomationML Component with own semantic system...............c.cc........ 140
Figure 110: Examples usage of own semantic systems for attribute definition................ccccoc... 140
Figure 111: Logic connector versus physical connector versus physical interface (pin).............. 142
Figure 112: AML interface class library modelling a subset of possible M12 interfaces

ACCONAING 0 TECBLOTE-2ceeiieiiiiiiiieeiie ettt ettt ettt e e e e e e s et eee e e e e e s nbnneees 143
Figure 113: General attributes of the abstract M12 class, inherited to every M12 variant 144
Figure 114: AML interface class library modelling a generic pin typeccccccveeeiiiiiiiieenncennnne 145
Figure 115: AML role class model of the M12 A coded with 4 pins and its male and female

OEBIIVALE ...ttt e oottt e e e s e e bbbt e e et e e e s e e b ab b et e e e e e e s e bnbreee e e e e e e nnnreees 146
Figure 116: AML InterfaceClass library for Mini 7-8 interfaces..........cccccovieiiiie i 147
Figure 117: AML InterfaceClass library for an RJ45 interface.........cccccccccviiiii 147
Figure 118: AML role class library modelling generic connector functionscccccceevviieeenee 148
Figure 119: AML SystemUnitClass of an AutomationComponent with two M12 Ethernet

(ofo] T T=Tox (0] £ T PP PUPPPUPPPTT 149
Figure 120: AML SystemUnitClass model of a single wire with two ends............ccoociiiiiiiinnnn. 150
Figure 121: AML SystemUnitClass model of a cable with 4 Wiresccccevviiiiiiiiie e 150
Figure 122: AML SystemUnitClass of an M12 to M12 cable with 3 WIirescccoiiiiiieeieeinnnns 150
Figure 123: Picture of the real pneumatic cylinder ADN-25-50-A-P-A that is modelled here as

an AutomationML COMPONENTceiiiiieeiiiiiee ittt e et e et e e e sbe e e s sbeeeessbeeeaeans 151
Figure 124: An unpacked tree view of the contained file of the AutomationML Component........ 151

<AutomationML/> Part 6 AutomationML Component

Figure 125: Object tree of the pneumatic cylinder with relations between models and

oo T3 g[=Tox (o] £= PP OO PPRRR PRI 152
Figure 126: Overview of the modelled connectors of the AutomationML Component 153
Figure 127: Contents of the AMLLogic behaviour model of the componentccccceveeeeens 153
Figure 128: Visualization of the kinematic model of the componentcccoccveeiiiieiiiiiie e 154
Figure 129: Excerpt of attributes attached to the top-level element...........cccoceveeeiiiiiiiiiieee e, 154
Figure 130: Content of “ComponentPicture”, “Componenticon”, “PneumaticSymbol”,

“Manufacturerlcon” (from left 10 right) ... 154
Figure 131: Class diagram showing different aspects of skill of an automation component........ 155
Figure 132: VDMA SOArc and VDI 2860 based SkillConnector RoleClass............ccccvvvvveeeeeninnns 156
Figure 133: Automation component providing a SKill ... 157
Figure 134: Example motor 10giC MOAELeeviiiiiiiiiiicee e e e 158
Figure 135: Example motor as internal element..............oovvv i 159
Figure 136: Example motor definition of electrical conNNeCtorscccoecvveeiiiiii i 159
Figure 137: Example motor integration of simulation modelccccccvvvii 160
Figure 138: Overview example freqUENCY CONVEITETcuuviiiiiiiieiiie et 161
Figure 139: Example frequency converter In-/Out interfaces..........cccccccevveveie 161
Figure 140: Example frequency converter connection t0 MOLOFccevrvieeeiriiiieeeniiiie e 162
Figure 141: Example integration AR APC ...t 163
Figure 142: Example integration AR APC project StruCtureccccccevvveviviiiiiiieeeeeeeeeeeeeeee 163
Figure 143: Example integration AR APC internal INKINGcccooriiiiiiiiiiiieeeeee e 164
Figure 144:. AutomationML Editor SimulationModel references an external FMU (left) —

pneumatic drive.fMu (FIGNT)c.oooii e 165
Figure 145: SIMIT InterfaceClassLibrarycccccccivviiii 166
Figure 146: SIMIT ROIECIASSLIDIAryccvviiiiiiiiie e 166
Figure 147: SIMIT Component Reference SINAMICS ..., 166
Figure 148: SIMIT Component Motor REfEIENCE.........ccoiiiiiiiiiiie e 167
Figure 149: SIMIT Component SINAMICS Referenceccccccevvviviii 167
Figure 150: SIMIT Component SINAMICS Reference with PLC Signals.........ccccccoviveiiniieeennn 168
Figure 151: SIMIT Component Motor REfEIENCE.........ccooiiiiiiiiiii e 169
Figure 152: SIMIT Component Motor Reference with PLC Signalscccccccvvvviiiiiiiiiiicenecen, 169
Figure 153: Complete PLC Configuration with SIMIT as extensioncccovceveeiniiieenniieeenne 170
Figure 154: CAD Drawing of a motor (red), adapter (blue) and linear positioning axis (grey) 171
Figure 155: SystemUnitClass describing a motor with its geometry and kinematic model 172
Figure 156: System unit class describing the motor-to-drive adapter with its geometry and

1 T=T 0 0 = o 4T To = PSR 173
Figure 157: SystemUnitClass describing the drive with its geometry and kinematic model 174
Figure 158: InstanceHierarchy of drive train build of single components............ccccoccceiviiiieenen 175
Figure 159: AML role class library modelling M12 connector types according to IEC61076-2. ... 176
Figure 160: AML interface class library modelling a generic pincccooceeeiiiie e 177
Figure 161: AML role class model of the M12 A coded with 4 pins and its male and female

L0 T 17 SR 177
Figure 162: AML role class library modelling communication protocolS...........ccccccoviiiiiieeneeennnne 177
Figure 163: AML SystemUnitClass of an AutomationComponent with two M12 Ethernet

(ofo] T T=Tox (0] £ T PP PUPPPUPPPTT 178
Figure 164: AML SystemUnitClass model of a single wire with two ends............cccoociiiiiiiinnns 178
Figure 165: AML SystemUnitClass model of a cable with 4 Wiresccococceiiiiiiiiiii e 178

Part 6 AutomationML Component

Figure 166: AML SystemUnitClass of an M12 to M12 cable with 3 Wirescccccceevcvvvieeeeeennins 179

<AutomationML/> Part 6 AutomationML Component

List of Tables

Table 1: Overview of AUtOMALIONML PAITS.......coiiiiiiiiiiiiiee ittt ee e 19
Table 2: Overview of Stakeholders and ACIOIS.........cooiiiiii i 25
Table 3: Examples for possible Connector to Model relations ..., 86
Table 4: RoleClass AdditionalDeVviCeDESCIPLON.ccccii e e et e e e e sreree e e 90
Table 5: ROIECIASS CONNECIONcciiiiiiiiiiiie ettt e e e e e st e e e e e e s st eeaee e e e snnbeeeeeeaens 91
Table 6: ROIECIASS DOCUMENTALIONcuvviiiiiiiiie ettt sttt e et e et e e e st ee e e snbeeeeesnbeeeeeans 91
Table 7: RoleClass GEOMEIYMOUEL.........ciiieiiiiiiiiiiiee e e e aeeeee s 92
Table 8: RoleClass GraphiCRepreSeNntationcooiviiiiiiiiieiiiiiiee e 92
Table 9: ROIECIASS ICOMN ...ciiiiiiiiie ittt ettt e et e e e st b e e e sbb e e e sbbeeeesnbbeeeean 93
Table 10: ROIECIASS LOGICMOUENcooiiiiiiiiiiiie ettt sbree e 93
Table 11: RoleClass PLCOPENXMLLOGICccoiiuriiiiiieee e e iiiiiieeee e e e e e st e e e e e e s e st e e e e e e s e annranneeeees 94
Table 12: ROIECIASS AMLLOGIC.etiiiiiiieiititee ettt ettt e e et e e s st e e e e sbre e e e sbneeeeans 95
Table 13: ROIECIASS FIMILOGIC.......vuiiiiiiiiiee ittt ettt e et e b e e s snreeeean 95
Table 14: RoleClass KinemMatiCMOAELcooi it 96
Table 15: RoleClass MaintenanCeDEeSCIIPLIONciiiiiiiieeiiiiee ettt sereee e 96
Table 16: ROIECIASS MOUEL........coooiiiiii et e e 97
Table 17: ROIECIASS SYMDOL......coouiiiiiiiie et anee e 97
Table 18: RoleClass AUtOMatioNCOMPONENT.........uuuuuuiureiiieriieieiereiniererererernrere——————————————. 99
Table 19: Sub-Attributes “IdentificationData”.............cooiuiiiiiiiiii i 99
Table 20: Sub-Attributs “CommercialData”.............ccoeeiiiiiii e 100
Table 21: Sub-Attributs “ ProductDetailS”oueiiiiiiiiiie e 101
Table 22: Sub-Attributs “ ProductOrderDetailS”cooiiiiiiiiiie e 102
Table 23: Sub-Attributs “ ProductPriCeDetallS”coooiiiiiiiiiiieie e 102
Table 24: Sub-Attributs “ ProdUCIPIICE” ..o 103
Table 25: Sub-Attributs “ManufacturerDetailS”cooiiiiiiiiiieee e 103
Table 26: RoleClass AutomationComponentSemantiCSYSIEMuuuvuiermiminimiminriinrnininern. 104
Table 27: Sub-attributes of the “ClassificationSystem” attribute..............cccconii, 105
Table 28: Attribute values “SemanticSysStems”....... ..o 105
Table 29: RoleClass BEhaVIOUIMOUE!coiieiiiiiiiie et e e eneaee e e 106
Table 30: ROIECIASS FUNCHIONoiiiiieiiiee ettt e e e e e e eer e e e e e e s e nnrrneeeeeens 106
Table 31: RoleClass SIimulatioNMOTE].........cooiiiiiiiiiiie e 106
Table 32: RoleClass SKIllLOGICMOUEIcouiiiiiiiiiii e 107
Table 33: RoleClass SequUeNCINGMOUEL............uuuuuiuimiiiiiiiiiiieiei e 107
Table 34: ROIECIASS SEUUENCEeiiiiiiiiie ittt ettt sttt bb e bb e e e s nanneeas 107
Table 35: RoleClass SEQUENCEEIEMENTuuuuuiiiiiiiiiiiiiieieieiriereeerareae e 108
Table 36: RoleClass COLLADAKINEMAtICMOEcooiiuiiiiiiiiiiiiiiiee e 108
Table 37: RoleClass COLLADAKINEMALICIOINTccvveeeiiiiiiiiieeeeeeiiiiiieie e e e s e ssinree e e e e e s e snneeneneeee s 109
Table 38: RoleClass COLLADAKinematiCAttaChment ..o 109
Table 39: RoleClass COLLADAGEOMELTYMOMELcouuiiiiiiiiiieiiiiie e 110
Table 40: RoleClass COLLADAGeomMetryAttaChMeNtcooiiiiiiiiiiiiiieee e 110
Table 41: RoleClass JTGEOMErYMOUEIcooiuuiiiiiiie et 111
Table 42: RoleClass 2DGe0MELIYMOUE!eiiiiiiiiiiiiiiie et 111
Table 43: RoleClass COMPONENTPICIUMoiiuiiiiieiie ettt e e e eae s 112
Table 44: RoleClass EIeCtriCSYMBDOL..........ooiiiiiiiiii e e 112
Table 45: RoleClass HydrauliCSYMDOIooo i 112

<AutomationML/> Part 6 AutomationML Component

Table 46:
Table 47:
Table 48:
Table 49:
Table 50:
Table 51:
Table 52:
Table 53:
Table 54:
Table 55:
Table 56:
Table 57:
Table 58:
Table 59:
Table 60:
Table 61:
Table 62:
Table 63:
Table 64:
Table 65:
Table 66:
Table 67:
Table 68:
Table 69:
Table 70:
Table 71:
Table 72:
Table 73:
Table 74:
Table 75:
Table 76:
Table 77:
Table 78:
Table 79:
Table 80:
Table 81.:
Table 82:
Table 83:
Table 84:
Table 85:
Table 86:

RoleClass PneumaticSymbBOlcoiiiiiiiiiicc e 113
RoleClass ManufaCtUreICON.........ccooiiii i 113
RoleCIass COMPONENTICONuuiiiiieei i e e e e e e e e s e e e e e e s e nnnreees 113
ROIECIASS SKIlIMOUEL ... 114
0] (1O TS O =T 11 To7= (= PSSR 114
RoleClass MechaniCCONNECTONccooiiiiiiii e, 114
ROIECIASS LOGICCONNECLONeeiiieiiiiie ettt sttt ettt e e e e e e 115
ROIECIASS EIECIICCONNECIONuuiiiieee i it e e e e e e s e e e s e e e e e e e s e nnnneees 115
RoleClass FIUIdICCONNECIOLccocoeieie i 115
[2J0] (=10 =TS I o [] To [ol @ o] g1 T Tox (o] SRR 116
RoleClass PNneumatiCCONNECIONccocieiiie i 116
RoleClass HydrauliCCONNECIONcciiiiiiieiiee e e sttt e e e e s e e e e e s s e e e e e e s 117
ROIECIASS SENSOICONNECION ...uuviiiiieeeiiiciiiie et e e e e s e e e e e s e s e e e e e s e s e e e e e e s sennneeees 117
ROIECIAsS SKIlICONNECIONcccoeieie e 118
RoleClass MaintenanceDesCriptioNGIrOUPccooieieie e e 118
RoleClass MaintenanceDesCrptioNITeIMocuuiii i 119
Values for AtDULE “CYCIE”uuviiiii e 119
Values for Attribute “ActivVityKey”oo i 120
Values for Attribute “EXeCUtionKey”oooiiiiiiiii e 120
Values for Attribute “FUNCLONKEYovviiiiii e 120
Values for Attribute “PersonnelKey” ... 120
RoleClass FMILOQICODJECLccceie e 121
InterfaceClass GraphicRepresentationReferenceccccvveeveviiiiiiiii e, 123
INtErfaceClass 2D REIEIENCE.u i ittt e b e e erarerarersrarsrsrsrsrsrnres 124
INterfaceClass JTREFEIENCEuuuiuiiiiiiiiiiiiiiiiiireaieee e arererererernrsrsrnrnrnnes 124
InterfaceClass SKIllINtEITACEuuuuiiiiiiiiiiiiiii bbb erebebaaarersrararare 124
InterfaceClass DeviceDescriptioNREfErenCeuvvviviviviiiiiiiiiiiiiiiiiieeeeerenens 125
InterfaceClass MaintenanceDescriptionLinkccooveiiiiiiiieiiie e 125
InterfaceClass MechaniCINIEIACEuuuuriiiiiiiiiiiiiiie e 125
InterfaceClass EleCtriCINtEITaCEuuuuuiiiiiiiiiiiiiiiiii e 126
InterfaceClass LiqUIdICINTEITACEciiuiiiiiiiiiii e 126
InterfaceClass PneumatiCINterface............uuuuvuiuiuiuiiiiiiiiieiiieieieieieieieieiereenenreeeenenennenenne 126
InterfaceClass PNeumMatiCCONNECIONcuieiieiiiiiiiee e eeieee e e e e eenee e e e 127
InterfaceClass CondensateDrainCONNECLONuuuuuuuririiinieiiieierneeininrnrerereene——.. 127
InterfaceClass HydrauliCINterfaceeoviiiiiiiiiiiii e 128
InterfaceClass SENSOMNEITACEuuiuiuiiiiiiiiiiiiiiie e araaaaararaaaaaee 128
InterfaceClass JOINLINEITACEuuuuiiiiiiiiiiiiiiiiiii e aenenenrnrarnrnnn 128
INterfaceClass FMIREFEIENCEuuuuiiiiiiiiiiiiiiiiiiit it erersbsrersrersrarerares 129
InterfaceClass FMIVariableINterfaCeuuuiuieiiiiiiiiiiiiiiiiieiiiiieieereereernennea. 130
Sub attributes for specifying the VDMA SOArc and VDI 2860 standards 156
Description of connector types according to | IEC61076-2cceeeevvviviieireeeeeiinienennn 176

<AutomationML/> Part 6 AutomationML Component

Contributor

Arndt Luder, Otto-von-Guericke Universitat Magdeburg
Sven Binder, Murrelektronik GmbH

Jorg Hinze, Murrelektronik GmbH

Joseph Briant, Schneider Electric

Mario Thron, ifak e.V.

Markus Rentschler, Balluff GmbH

Michael Dietz, Technische Hochschule Nirnberg
Michael John, Siemens AG

Rainer Drath, Hochschule Pforzsheim

Hiroschi Yoshida, OMRON Corporation

Joachim Burlein, Daimler AG

Mathias Wiegand, Festo SE & Co. KG

Matthias Muller, Mitsubishi Electric Europe B.V.

Milan Vathoopan, fortiss

<AutomationML/> Part 6 AutomationML Component

Glossary

Automation component

A component that supports partial or fully automated operation of industrial processes.
AutomationML Component Meta Model

The meta model of an AutomationML Component defines the model and structure of AutomationML
Component. This includes the role classes and interfaces class that shall be used to describe type model
and instance model of AutomationML Components, UML Diagrams defining the relations between
different elements of an AutomationML Component and the specification.

AutomationML Component Type Model

A type model of an AutomationML Component or Composite Component describes a automation
component or system. The root element of the Automation Component type Model shall be a
SystemUnitClass. Within type models of AutomationML Composite Components all child lower
AutomationML Components or Composite Components are modeled as InternalElements.

AutomationML Component Instance Model

AutomationML Component instance models of automation components are instances of AutomationML
Components or Composite Components. The root element of instance models shall be an
InternalElement. Instance models can be used within the InstanceHierarchies of an AutomationML file
or as InternalElement within an AutomationML Composite Component.

AutomationML Component

An AutomationML Component is an AutomationML object that describes an automation component or
system. This can be the type or the instance model of the automation component. Additionally, the
automation component has no sub components. An AutomationML Component can be stored as
SystemUnitClass or InternalElement.

AutomationML Composite Component

An AutomationML Composite Component is an AutomationML object that describes an automation
component that is composed of AutomationML Components. An AutomationML Composite Component
can be defined as type model or an instance model. An example for an AutomationML Composite
Component is a handling system that combines two motors and a valve.

Automation System

A group of automation components interacting to support partial or fully automated operation of industrial
processes.

Behaviour Model

A model that describes the responses or reaction of the component to sequencing information and/or to
their external interactions.

Simulation Model

A behaviour model with focus on simulation. E.g. an executable software component that is capable to
simulate a certain automation component’s behaviour in interaction with other automation components.
Usually it is run in a simulation environment with focus on evaluating the automation component
regarding physics or time, e.g. simulation tool calculates the velocity profile of a moving axis pushing a
heavy object vertically.

Sequencing Model

Sequencing model is information that describes the responses of the controlled system (or subsystem)
to the sequencing information and to other external interactions. It is often represented by a given model
which reacts on external input, e.g. behaviour of a gripper or valve. Those external inputs would trigger
the behaviour or signaling of the gripper’s states.

Part 6 AutomationML Component

Skill

Potential of an automation component/system to provide a functionality required for the automated
operation of industrial processes. Capability can be seen as a synonym for it. A skill can be made
executable via a service interface and used as a connection point between different functional units that
constitute an automated production system.

Technology DD
Device Description file according to the specification of a dedicated technology standard (i.e. a fieldbus).

<AutomationML/> Part 6 AutomationML Component

1 Introduction

1.1 Overview

The engineering data exchange format AutomationML has traditionally aimed at connecting engineering
software tools for planning and commissioning production plants. The focus of these engineering tools
was on larger composites than components fulfilling functional roles in a production process.

Increased digitalisation and the trend towards multi-disciplinary, model based, and reuse driven
engineering in the automation domain has had an impact on the engineering tool chains. For tasks like
virtual commissioning, a higher granularity and an increased level of detail is needed to be modelled in
the engineering process is needed.

In order to address the increased modelling demand on the automation component and system level,
this whitepaper specifies methods and model structures that can be used to exchange component
information as AutomationML Components in a way that allows the utilisation in complex, multi-
disciplinary tool chains without tool specific post engineering efforts.

This whitepaper addresses different aspects of automation component and system description and is
structured accordingly into the following sections.

Section 2 gives an overview of the concepts of AutomationML Components and Composite
Components, the addressed aspects and use cases.

Section 3 describes the structuring of AutomationML Components, how to model single aspects of them
and how to interlink single components.

Section 4 defines the standard libraries to describe AutomationML Components.

Section 5 describes a way how to exchange all information of an automation component or system in
one AutomationML container.

Section 6 describes the extension of the AutomationML Component concept.
Section 7 gives a general recommendation for how to store semantic links for automation components.
Section 8 gives an overview how to describe AutomationML Components in CAEX 3.0

Section 9 is offering different examples how to use different aspects of the AutomationML Component
description.

<AutomationML/>

Part 6 AutomationML Component

1.2 Basics

The data exchange format AutomationML is standardized in the IEC 62714 standard, which is a neutral,
free, and XML-based data format. It has been developed in order to support the data exchange between
engineering tools in a heterogeneous engineering tool landscape.

Due to the different aspects of AutomationML, the IEC 62714 consists of different parts.

Table 1: Overview of AutomationML parts?

Part

Title

Description

Part1/
WP Arch, V 2.0.0

Architecture and
general
requirements

This part specifies the general AutomationML
architecture, the modelling of the engineering data,
classes, instances, relations, references, hierarchies,
basic AutomationML libraries and extended
AutomationML concepts.

WP Logic V 1.5.0

Part 2 / Role class This part specifies additional AutomationML libraries.
WP Lib V 2.0.0 libraries

Part 3/ Geometry and This part specifies the modelling of geometry and
WP Geo V 2.0.0 kinematics kinematics information.

Part 4/ Logic This part specifies the modelling of logics, sequencing,

behaviour and control related information.

Whitepaper /
WP Comm V 1.0.0

Communication

This Whitepaper describes the modelling of
communication mechanisms in AutomationML

Whitepaper / AutomationML This Whitepaper describes the integration of eCl@ss in
WP eClass V 1.0.0 and eCl@ss AutomationML
integration
Whitepaper / OPC Unified This Whitepaper describes a OPC UA Information Model
WP OPCUAAML Architecture to represent the AutomationML models
V 1.0.0 Information
Model for
AutomationML
Application Automation This Application Recommendation describes a modelling
Recommendations/ | Project method of automation project configuration data by
AR APCV 1.2.0 Configuration means of the engineering data format AutomationML
Application Provisioning for This Application Recommendation describes a method to
Recommendations/ | MES and ERP — | link AutomationML objects to elements of IEC 62264.
AR MES ERP Support for IEC
V1.1.0 62264 and
B2MML
Further parts may be added in the future in order to e.g. interconnect further data standards to
AutomationML.
1 Additonal Best Practice Recommendation to the standard can be found

https://www.automationml.org/o.red.c/publications.html

<AutomationML/> Part 6 AutomationML Component

1.3 Scope

This whitepaper proposes a structure and method for modelling automation components and automation
systems in AutomationML. It is meant to be compatible with the documents on semantic referencing e.g.
eCl@ss integration, communication, automation project configuration and all standardized parts of
AutomationML. It focuses on the information needed for successfully handling automation components
in a digitalised engineering process.

1.4 References

The following documents are referenced in this document and are indispensable for its application. For
dated references, only the edition cited applies. For undated references, the latest edition of the
referenced document (including any amendments) applies.

[WP-Part1:2018] Whitepaper AutomationML Part 1 - Architecture and general requirements, V 2.1.0,
Jul 2018

[WP-Part1:2016] Whitepaper AutomationML Part 1 - Architecture and general requirements
Document Identifier, V 2.0.0 Apr 2016

State: April 2016
[WP-Part2:2014] Whitepaper AutomationML Part 2 - Role class libraries, V 2.0.0, Oct 2014
[WP-Part3:2017] Whitepaper AutomationML Part 3 - Geometry and Kinematics, V 2.0.0, Jan 2017

[WP-Part4:2018] Whitepaper AutomationML Part 4 - AutomationML Logic Description, V 1.5.0,
Jan 2017

[WP-eClassAML:2017] Whitepaper AutomationML and eCl@ss integration, V 1.0.1, Dec 2017
[WP-Comm:2014] Whitepaper Communication, V 1.0.0, Sep 2014

[WP- OPCUAAML:2016] Whitepaper OPC Unified Architecture Information Model for AutomationML,
V 1.0.0 Mar 2016

[BPR-EDRef:2016] BPR ExternalDataReference, V 1.0.0, Jul 2016

[BPR-MLA:2016] BPR Modelling of List Attributes in AutomationML, V 1.0.0, Jan 2016
[BPR-MIingExp:2017] BPR Multilingual Expressions in AutomationML, V 1.0.0, Mar 2017
[BPR-DatVar:2017] BPR DataVariable, V 1.0.0, May 2017

[BPR-Container:2017] BPR AutomationML Container, V 1.0.0, October 2017
[BPR-Units:2017] BPR Reference Designation, V 1.0.0, September 2017
[BPR-Units:2018] BPR Units in AutomationML, V 1.0.0, August 2018
[BPR-RefDes:2017] BPR Reference Designation, V 1.0.0, September 2017
[BPR-CLPAAML:2020] BPR CC-Link, V 1.0.0, June 2020

[W3C1:2008] Extensible Markup Language (XML), w3cC Recommendation,
https://www.w3.org/TR/xml/, Nov. 2008

[W3C2:2006] W3C: RFC 3986 - Uniform Resource Identifier (URI) Generic Syntax,
https://tools.ietf.org/html/rfc3986, Jan. 2006

[DIN77005-1:2018] DIN 77005 - Lebenslaufakte fur technische Anlagen providing a standardized
logical structuring of information on a production system component, 2018

[RFC2046:1996] Multipurpose Internet Mail Extensions (MIME) standard described in RFC 2046,
Nov. 1996

[RFC5646:2009] Language Tags, RFC 5646, Sep. 2009

[Cl@ss:2020] eCl@ss classification and product description, Version 11.0,
https://www.eclasscontent.com/, last visit February 2020

<AutomationML/> Part 6 AutomationML Component

[IEC 61360-4:2005] IEC 61360-4 Standard data element types with associated classification scheme
for electric components - Part 4: IEC reference collection of standard data element types and
component classes, 2005

[IEC62683-SC3D:2014] IEC 62683 - SC 3D / SC 17B - Common Data Dictionary (CDD -
V2.0014.0016), 2014

[IEC61131-10:2019] IEC 61131-10 Programmable controllers - Part 10: PLC open XML exchange
format, V 1.0, Apr 2019

[IEC 61987:2016] IEC 61987-11:2016 Industrial-process measurement and control - Data structures
and elements in process equipment catalogues - Part 11: List of properties (LOPs) of measuring
equipment for electronic data exchange - Generic structures, 2016

[I1SO 14306:2017] Industrial automation systems and integration - JT file format specification for 3D
visualization, Edition 2, Nov 2011

[FMI:2019] Functional Mock-up Interface for Model Exchange and Co-Simulation, (available at
https://fmi-standard.org/downloads/), Version 2.0.1, Oct 2019

[OPCUA-Part100:2020] OPC UA Part 100 - Device Information Model, Version 1.02.02., June 2020

[ISO/IEC 29500-2:2012] Information technology -- Document description and processing languages
-- Office Open XML File Formats -- Part 2: Open Packaging Conventions, 2012

[ISO 18582-2] ISO 18582-2:2018-11, Fluid power - Specification of reference dictionary, Part 2:
Definitions of classes and properties of pneumatics, 2018

<AutomationML/> Part 6 AutomationML Component

2 Automation Component

A mechatronic production system component (consisting of automation components) interacts with
other automation components within a complex production system in different ways. The design of
production systems involves different engineering disciplines covering -but not limited to- functional,
mechanical, electrical, control and HMI engineering. Each discipline needs specific information aspects
about an automation component. The approach of this whitepaper is to present a meta model for an
AutomationML Component that allows to describe such automation components and production
systems with all these aspects on different levels. Within these meta model, functional roles are applied
to identify information related to aspects by using role classes within AutomationML. Figure 1 gives an
overview about a selection of different aspects that belong to an automation component or production
system.

Behaviour

Control Logic

Motion / Path

=

Communication

Order Information

e

Figure 1: Aspects of an automation component or production system

Another aspect that is considered within the AutomationML Components is the relations the automation
component can be within. To model this, it is necessary to describe interfaces and connectors of
automation components to interlink them and to define internal linking of component aspects and
external information references.

The lifecycle of production systems encompasses various phases that can benefit from the use of
consistent component descriptions by providing consistent information to the applied tool chains.

Tools that are involved in this process may be:
Plant planning tools
Mechanical engineering tools (MCAD)
Electrical engineering tools (ECAD)
PLC programming tools
Robot programming tools
HMI programming tools
OPC UA system configuration tools
Device configuration tools
Bus configuration tools

Simulation tools

<AutomationML/> Part 6 AutomationML Component

SCADA systems

Virtual commissioning tools
Documentation tools

Communication system security tools
Communication system configuration tools
Communication system management tools
Communication system diagnosis tools

Figure 2 depicts a set of these tools using AutomationML Component information within the
development process.

Tool
Communication engineering

Tool
PLC programming

Tool
Vlrtual engineering

Tool

ZzZ
—
N

Vlrtual commissioning

Figure 2: Overview of tool use for AutomationML Components

2.1 Stakeholders and Lifecycle

The model of an automation component and production system described as AutomationML Component
has in general three stakeholder groups during its lifecycle.

The first stakeholder group is a Standardisation Consortium, here the AutomationML Association,
who defines the meta model of AutomationML Components.

Second stakeholder group encompasses the Component Manufacturers (Vendors), who create their
type model AutomationML Component libraries based on the meta model from the Standardisation
Organisation. In this way the meta model serves to ensure interoperability between different
manufacturers and consistency of the models throughout its life cycle.

This is assumed by the third stakeholder group, the Component Users e.g. System Integrator or
OEMs, who uses instances of the component description, the instance models, within their
engineering processes. The Component User can do the conception and engineering of the system
by interconnecting the interfaces of individual instance models of AutomationML Components, which
results in an AutomationML model of the system. Without in-depth knowledge, the domain related
engineering data can be generated automatically from the AML system model using generative
programming. Any reconfiguration data of the domain related tools can be exported back to the
AutomationML system model. The End User, can use the component models also for operation and

maintenance.

<AutomationML/> Part 6 AutomationML Component

Figure 3 depicts an overview about the stakeholder groups and the used models of an AutomationML
Component.

@ Metamodel @ Type Model ©) Instance Model
Stakeholder Stakeholder Stakeholder
Standardization Consortium Component Manufacturer Component User

Generic component

________ Specific component
Definition Library

Plant model

Generic component

Specific component

Specific component

Eng Eng Eng
Tool Tool Tool

Figure 3: Stakeholder of automation component

Within the context of the AutomationML Component description the meta model, the type model and the
instance model include the following AutomationML model element.

AutomationML Component Meta Model

The meta model includes all role classes and interface classes that shall be used to describe a
AutomationML Component or AutomationML Composite Component as type or instance model. It
additionally includes normative restrictions of the use of these elements and UML diagrams to define
the cardinalities between them. The meta model of AutomationML Components is defined within this
whitepaper.

AutomationML Component Type Model

The type model of an AutomationML Component or Composite Component is the generic description
of an automation component type as system unit class. Usually a type model is defined by the vendor
of the automation component and is stored and distributed within a system unit class library.

AutomationML Component Instance model

The instance model of an AutomationML Component or Composite Component is the representation
of an instance of an automation component within an AutomationML instance hierarchy as
AutomationML object.

The lifecycle of production systems consists of various phases. All these phases can benefit from the
use of consistent component descriptions by providing consistent information to the applied tool chains.

In the system development phase of the production system for example, the overall resource structure,
mechanics, electronical structure and software of the system are designed. Tools for plant and process
planning, CAD tools (including MCAD and ECAD), programming tools and configuration tools (especially
for communication systems) are utilized during this phase. In parallel to the design, system validation
activities are carried out. These validation activities can be divided into Virtual Engineering (VE) and
Virtual Commissioning (VC).

Table 2 gives an overview about the stakeholder groups, the stakeholder within these groups and
possible actors that can use the different AutomationML Component models during the lifecycle of a
production system.

<AutomationML/>

Part 6 AutomationML Component

Table 2: Overview of Stakeholders and Actors

Symbol o
Stakeholder (pr%vided by Free Industy | DESCription Actors
Illustration)
Stakeholder Group 1: Standardization Consortium
AutomationML . . -
Association <AutomationML/> Provides Meta Model Association Members
Stakeholder Group 2: Component Manufacturer
Vendor @ Provides products, such as | Manufacturer,
. devices or (sub-)systems OEM
(N to the System Integrator,
&). including firmware
Stakeholder Group 3: Component User
Application Provides Services and Application Product
Supplier ,g.;% Tools that use the Manager,
functionalities of the Application Developer,
! devices or Application User
(sub-)system.
System Integrates components, Plant Planner,
Integrator services and tools to Machine Builder,
(sub-)systems, e.qg. Solution Provider,
devices with higher-level Mechanical Engineer,
Q systems, to entire Electrical Engineer,
i " solutions Software Engineer,
p Sets HW components into | PLC Engineer
! operation, including Project Manager,
configuration MES/Process Engineer,
Application Engineer
Commissioning
Engineer
Operator ® Uses the facility by running | Operator,
A normal operations Facility Owner,
‘ End User,
1 Application engineer
Maintenance ® Maintains facility, including | Maintenance engineer,
Staff N q,/i exchange of components, | Application engineer
mn) firmware updates

In Figure 4, a typical engineering and operational data flow between stakeholders in the automation
component or production system lifecycle is indicated. Within this dataflow, the manufacturer of the
component delivers a type model of its automation component to the system integrator. The system
integrator specifies the instance model of the automation component as AutomationML Component and

http://industry-illustration.com/62-management/026-management.html

<AutomationML/> Part 6 AutomationML Component

uses it during the engineering and commissioning phase. Additionally, the AutomationML representation
of the automation component or system can be used during the start up and operation phases for
additional use cases.

Manufacturer System Integrator End User

1= 4 - k Operation / Maintenance
@

A — Engineering / Commissioning

Optimization

F Aﬁ AML, Repair
o

Figure 4: Data flow between stakeholders over the lifecycle

2.2 Use Cases

Component related information is relevant in various engineering activities along the engineering chain
of production systems. Within the engineering process of production systems, automation components
can be defined in the single engineering phases exploiting various tools. Thereby, automation
component information is created. This should subsequently be applied within the detailed design of
devices and the device commissioning. Within the different engineering activities, specialized
engineering tools are used and will have a relevant impact one the automation component information.

These tools will create and/or consume component related engineering information depending on the
use case within the engineering chain.

Within the following sub subchapters some relevant used cases for the exchange of automation
components will be introduced.

2.2.1 Materials Management and Warehousing

One of the results of an engineering workflow is a bill of material, that is used to order the needed spare
and wear parts for the stores. A proper identification of the parts is needed. Therefore, part numbers or
product code order number shall be exist to find existing parts.

Some companies prepare material release lists for bigger projects, to standardize the used parts. This
is a way to avoid uncontrolled growing of stores. Therefore, the standardized catalogue information is
necessary, including all relevant documents for the planning process, engineering process,
maintenance, commissioning and decommissioning. In an advanced engineering scenario, all
participating engineering tools can reference the same part, this is needed for an efficient data
processing at the end of an engineering process.

2.2.2 Component Description as Base for xCAD

This use case describes three examples of how data of the AutomationML Component description
provided in AutomationML files by Component Manufacturers can be used in engineering tools of
Component Users. Figure 5 depicts the data flow from two different AutomationML Components from
two Component Manufacturers to the engineering tools of a Component User (import). Out of this data

<AutomationML/> Part 6 AutomationML Component

and further engineering information these tools build a AutomationML system that virtually represents
the real automation system. The resulting engineering data can be a rich input for virtual commissioning.

Component
Manufacturer

|
|
|
|
|
|
|
| >
|
|
|
AutomationML |
Component |
|
T
|
|
|
|

Component User

Description Exchange

Manufacturer A

mport Fluidid Design Tool

gqﬁm hange—— % ~——Exchange—»
AutomationML

Electric Design Tool System lf stance PLC Tool Virtual Commissioning Tool
Exchange

£

AutomationML
Component
Description

Manufacturer B

Figure 5: Use Case component description a base for xCAD

The following three use cases describe the benefits of AutomationML Components in more detail.

2.2.2.1 Electrical Engineering and software design

ECAD tools and PLC tools have different views of automation system information. Whereas ECAD tools
depict all electrical detail information of devices applied within automation systems, in PLC tools only a
logical view of the automation devices is used. In ECAD tools there are defined devices which are
involved in an automation system e.g., power connectors that are used for the power supply of the
devices and wire types which are used to connect devices logically. But this information is not used in
PLC tools, where device and control application specific properties are used, e.g. baud rates within the
communication connections, control code variables that are associated to control device inputs and
outputs, and control application codes. This kind of information is not needed in ECAD tools.
Nevertheless, both types of tools have some information in common. For example, the wiring of a certain
automation device to a PLC defines the address to access the device within the PLC.

Recommended Workflow

In a production system engineering process, the construction phase in the PLC project usually begins
later than in the ECAD project, because the completion of the ECAD documents is the base for the
production of the control cabinet. The combination with the PLC software within the plant and the
following commissioning will not take place before all control cabinets are completed. So the PLC
engineer will usually start his project work later than the electrical engineer. Nevertheless, at an early
point of time (during ECAD engineering), the components of the plant must be defined because the
ECAD documents must be generated and the parts must be ordered.

ECAD systems normally can handle the components from a point of view of electrical hardware of
different PLC manufacturers, because they have certain analogies. For this, the components must be
defined in a neutral model. According to the described criteria, for most cases the following workflow

can be established.

<AutomationML/> Part 6 AutomationML Component

Engineering of the basic device configuration within the PLC project of the PLC programming tool
and exporting it to ECAD tool:

If no ECAD project exists so far, the electrical engineer first defines a raw project within the
engineering system of the PLC manufacturer, the PLC programming tool. The electrical engineer
selects all needed components and defines the fieldbus or network topology in close cooperation
with the PLC engineer who has to implement the requested functions later on. This close cooperation
ensures a high consistency regarding the selected hardware components. The automation project
configuration will be exported from the engineering system of the PLC manufacturer and imported
into the ECAD tool.

Importing PLC project to ECAD tool, engineering of the ECAD project, and exporting the ECAD
project to PLC programming tool:

Based on the existing ECAD project, the electrical engineer executes the complete hardware
construction, sometimes with slight adaptions. During this process the symbolic names for variables,
tags or signals can be defined too. So, the PLC configuration is done under the following conditions:

o PLC configuration can be imported from PLC programming system
o Configuration via graphical placement on overview page or navigator
o PLC-device selection carried out from ECAD database

Importing ECAD project into PLC programming tool and engineering of the PLC project: Now the
ECAD project can be exported to AutomationML dependent from the implementation in the ECAD
tool and imported to the PLC programming tool. Now the PLC programmer will begin the engineering
based on the already developed ECAD project. So, at this point of the engineering process all
components shall be defined regarding electrical and logical connections.

2.2.2.2 Mechanical Engineering

In the mechanical engineering of a machine it is necessary to combine various components of different
vendors. To be able to do that a lot of information regarding these components is hecessary. Some of
this information can be found in the CAD model of the component. But usually it is necessary to consult
additional documents such as manuals, catalogues, etc. to gather all the required information.

Assumed/Recommended Workflow:

The mechanical engineer creates the design of the machine. When the rough planning is finished it is
necessary to select the factory automation components that are required to fulfill the requirements of
the machine. E.g. a motor needs to be selected to move a ball screw.

In this case the mechanical engineer receives the component description from the FA component
supplier. This description contains all aspects of the component which is needed to add it to the
mechanical design. This includes the CAD data itself but additionally also parameters for the
components. It also includes a description of the mechanical connectors of the component. With this
information it is easily possible for the mechanical engineer to add this component into his design. He
can check whether the components fit to the machine, whether the mechanical connector fits to the
connector at the machine side, he can decide what kind of screw etc. he needs to attach the component
to the machine.

Example

The mechanical engineer wants to use a ball screw from Vendor A together with a servo motor from
Vendor B.

The AutomationML Component Description of the ball screw tells that there is a mechanical connector
for the motor shaft and its precise location in the CAD model. It also tells the certain type of screws
required to fix the motor.

The AutomationML Component Description of the servo motor tells also that there is the motor shaft as
a mechanical connector and that there is the mechanical connector for the screws.

<AutomationML/> Part 6 AutomationML Component .

With this description it is easily possible to check whether this motor fits to this ball screw and it can be
integrated into the mechanical design.

2.2.2.3 Fluidic Engineering

In the engineering of fluidic systems, components are put together by logically and physically
interconnecting them. There are several tools that can handle fluidic representations of components but
there is no standard way of importing fluidic component symbols or even logics into those tools. The
lack of exchanging fluidic system with tools from other domains, for example, ECAD or PLC is a burden
in efficient engineering.

Assumed/Recommended Workflow:

When engineering is at the stage of the fluidic construction the fluidic representation, e.g. the fluidic
symbols of the chosen components can be imported in the tool for fluidics. It doesn’t matter from which
vendor the components are, because the file format is standardized and the symbolics just as well.

If the fluidic tool supports simulation of the fluidic network, it benefits from the logic behavior that is
described in the component file too.

Example:

Each fluidic vendor provides a component description for his components. The machine builder can
download it and import it to the tools of his choice. He might make use of the additional information and
models inside the integrated component description in order to do some virtual functional tests and
timing calculations. After creating the fluidic network and applying changes to components he can save
the file and exchange it with other tools of the engineering process, for example with the mechanical
design tool, ECAD, PLC or virtual commissioning tool.

2.2.3 Simulation and Virtual Commissioning

Principle of Virtual Commissioning

The purpose of Virtual Commissioning (VC) is to validate the control code by use of a simulated process
environment instead of the real physical machines or plants. Thus, the overall system behavior can be
tested in virtual standard and extreme situations before deploying the control code to the controller
hardware and thus multiple tests are necessary.

A single test is a mapping of a test stimulus to an expected behavior of the process environment. The
test stimulus defines the start situation of the virtual environment and control system and a set of triggers,
that lead to changes in the simulated process environment. The expected behavior is defined by process
parameters, that have to be in a certain range after a specified time. An automated test system is able
to perform a variety of tests and to report about deviations of the observed simulated system behavior
from the expected one that indicate possible problems in the control code.

In VC scenarios, the control code can be interpreted by simulation blocks (software-in-the-loop, SIL) or
it can run directly on the target hardware (hardware-in-the-loop, HIL). In case of HIL, the controller is
represented by a proxy block within the overall simulation environment. That control proxy exchanges
all necessary signals between the simulation environment and the physical controller behind the scenes.
Figure 6 provides an overview of a simulation environment by use of the HIL pattern, while the controller
is represented by a control proxy block.

The simulation model is expected to be of modular nature, since it enables reuse of model parts that
represent components, which is essential for efficient VC of complex systems. It is a practical approach
to provide a simulation model with a corresponding mechatronic component, since it is related to the
type of the equipment. The developer of a simulation model for a component needs deep insight into
the behavior of the component. Thus, the manufacturer of the component becomes also a candidate for
the development of the corresponding simulation model.

One of the main questions is how to develop the component simulation models. AutomationML
whitepaper part 4 introduces languages like PLCopen XML to describe the behavior of components.

<AutomationML/> Part 6 AutomationML Component

The usage of a harmonized language, that describes the component behavior as open source often
provides insight into the construction of the component itself. This provides not only the benefits to the
operator of the production system, but it also provides access to construction details that the
manufacturer of the component wanted to be kept secret with regard to market competitors. To protect
this kind of intellectual property, an alternative model language based on the public available simulation
interface standard Functional Mockup Interface (FMI, version 2.0) can be used, which is adopted by
several simulation system vendors. Especially the co-simulation variant is selected, which enables a
better hiding of models and simpler co-simulation masters compared to the model exchange variant of
FMI. FMI for co-simulation defines Functional Mockup Units (FMUSs) in form of a ZIP file containing an
XML-based interface description (modelDescrition.xml) and one or more binaries of simulation files as
shared libraries for a variety of operating systems (Windows, Mac, Linux in 32-bit or 64-bit variants).

Controllers can be represented by proxy FMUs that communicate in background via fast communication
interfaces with the controller hardware as depicted by Figure 6.

Simulation Model for Virtual Commissioning
Including Hardware-in-the-Loop(HIL)

SIMULATION
TEST Component Component ontrol pro OBSERVATIONS
STIMULUS Model 1 Model 2 0

Figure 6: Schematic example of an FMI-based co-simulation model for VC including HIL
The use-case for VC by use of AutomationML-based information could be as follows:

1) Design the system by using XCAD systems that maintain the component structure and export this
structure as AutomationML.

2) Assign FMUs to the components and store that information in an enhanced AutomationML
Component container.

3) Interconnect the FMUs and store the interconnection information in a further enhanced
AutomationML container.

4) Use the result AutomationML file to configure the co-simulation master and define further simulation
parameters.

5) Configure the Stimulus Generator and Comparator.

6) Start the simulation.

7) Evaluate the test reports.

8) If there are reported problems, then adapt the component structure and/or the controller programs
accordingly (involves partially steps 1 to 4) and go to step 6. If there are no reported problems, then
the VC has been finished successfully.

Steps 2 and 3 contain tasks, which are related to the creation of AutomationML in context of VC based
on FMI for co-simulation. Thus, we will clarify how to represent FMUs, interconnections between FMUs
and how to address inputs and outputs of FMUs in chapter 3.5.5.

2.2.4 Maintenance and Documentation

After having the production system established it is utilized within the value creation process. This
utilization results in wear and tear of the production system components. Therefore, production system
maintenance is required enabling the system user to react proactively on potential or occurred system
failures.

Independent from the applied maintenance strategy, prerequisite for successful and efficient
maintenance is the availability of a detailed and up-to-date system documentation covering all relevant
details of the system design and utilization state. This must all be considered when defining component

descriptions.

<AutomationML/> Part 6 AutomationML Component

Currently the necessary maintenance tasks during the production phase are mostly created by hand.
Technical editors of the system integrator have to inspect all manuals of the used parts in a production
system to list all necessary tasks for preventive maintenance. This data is going to be copied to the
manual of the production system. Maintenance planers from the customer are inspecting the production
system manual to get all tasks for preventive maintenance. Almost the same process takes place for
technical documentation.

The optimal workflow for preventive maintenance tasks is to get the tasks in a standardized way, in our
case inside an automation component.

Engineering phase

Function
design
System or

([] e
MCAD
)=

ECAD

A 4

Documentation Legal authorities

$etup & use phase

1L

Control
programming |

system Commissioning Use Maintenance
engineering

Figure 7: Use Case Maintenance and documentation

Assumed/Recommended Workflow

The production system documentation process is usually started at the end of the engineering phase,
summarizing all relevant engineering information covering -but not limited to- function design,
mechanical engineering, electrical engineering, communication system engineering and control
programming. Therefore, the related engineering tools have to provide their results to the documentation
tool.

The documentation process is continued during production system commissioning by updating
engineering results following the changes made during the physical realization of the production system
and integrating information on the labelling of system components (like wire marking or printed reference
signs). Therefore, the related commissioning tools have to provide their results to the documentation
tool.

The documentation process is also continued during the production system use phase. Here
replacements of production system components and their impact in the mechanical, electrical, control,
etc. construction of the production system shall be documented to ensure an as-is documentation.
Therefore, the related engineering, commissioning, or maintenance tools have to provide their results

to the documentation tool.

<AutomationML/> Part 6 AutomationML Component ‘.

In addition, during the operational phase, KPIs representing the production system component utilization
can be collected. Therefore, the appropriately designed control applications need to provide the relevant
KPIs or their basic data to the documentation tool.

The documentation process ends after the disposal of the production system.

The created documentation can be exploited by maintenance tools to support maintenance staff in two
directions. In predictive maintenance scenarios the collected KPIs and the available as-is construction
data of the system are exploited to define maintenance schedules and to define maintenance
procedures. In reactive and predictive maintenance scenarios the available engineering information can
be exploited to support the maintenance staff within planning and execution of the relevant maintenance
activities. Therefore, production system component related KPI and as-is engineering and identification
data need to be exchanged between documentation tools and maintenance tools.

2.2.5 Device Description Files for Field Devices

Modern field devices for process and factory automation often have a number of identification and
configuration options and are customizable to their individual use case throughout the plant lifecycle.
For this purpose, they are equipped with a digital communication interface, such as 10-Link, HART,
PROFIBUS, Fieldbus Foundation, CC-Link, Ethernet/IP, PROFINET etc. Each of these communication
standards has developed its own dedicated software tool ecosystem to control and configure the
devices, usually based on a Device Description Language (DDL) approach, allowing generic software
tools to configure and control different devices through the interpretation of a Device Description (DD)
associated to the individual device type. The economic benefit of this approach is based on the fact that
the creation of a DD with the DDL requires much less effort than writing a dedicated software tool for
each device type.

The newer XML-based formats such as GSDML, FDCML, ESI, CSP+, IODD and others offer
advantages compared to the traditional text-based formats GSD, EDDL and EDS, because they can
rely on data model schematics (XSDs) and the related XML parser features for consistency checking of
both syntax and semantics.

The DD files are supplied by the device vendor for each device type. The DDs are loaded and interpreted
in the engineering software tool, providing user dialogs and functionality to enter property parameters in
order to configure the individual device instance. All devices of the same type have the same DD file,
but the individual parameters of individual devices may have different parameter values dependent on
the use case of a device. These “Technology DD” suffer from two following general limitations:

In many cases there is a strict split between type information and individual device information. This
implies that type specific information is stored in the DD file, while the individual parameters are
stored in the proprietary engineering tool. No tool independent storage of individual device confi-
guration across the devices life cycle is established.

The classic approach of device descriptions defined by fieldbus organizations is usually focused on
just modelling the primary fieldbus interface of a device and lack of modelling capabilities for many
other important aspects of a device, such as secondary interfaces, power sourcing interfaces,
functional models and mechanical models.

AutomationML provides mechanisms to reference third party files, which enables referencing these files
from within AML files, forming an AutomationML Component as Device Description. This would allow to
keep the standard third-party file as it is, but to model additional information on top of it within the
AutomationML part. The idea is therefore to add an AutomationML model on top of the respective third-
party models. Whereas the third party standards usually delivers only the e.g. fieldbus specific type
information like Device Descriptions of a device, AutomationML can provide additional model
descriptions, classes and also instances with individual configurations, plus the modelling of hierarchies
and links between object instances, which allows also the representation of modular devices.

The usage of AutomationML will enable the device and tool vendors to overcome the present limitations
in a standardized way. The device properties shall be based on the native device description information
that can be enriched with advanced modelling information as defined in this document. In the following
it is intended to define a standardized procedure for this approach. It is envisioned that these future

<AutomationML/> Part 6 AutomationML Component

AutomationML based Device Description can also form the building blocks of larger automation system
models for heterogeneous technologies.

To gain acceptance for this approach within the automation industry, also a generic and simple migration
path from current fieldbus DDs shall be defined and described to protect the stakeholder’s tool
investments.

AML,

refers to

I
1
I
I
I
|
I
|
I
|
I
I
I

Figure 8: Principle of the AML-DD package with an example for an 10-Link device

Recommended basis for the packaging method of the AutomationML based Device Description is via
AMLX Container, described in [BPR-Container:2017] and furthermore a detail description of packing
AutomationML Components via AMLX Container can be found in chapter 5.

2.3 Considered Information and sub-model of Automation Components

Within the scope of the use cases named above, different information and partial models of an
automation component must be mapped or integrated in the AutomationML Component.

This is done using two mechanisms. Firstly, information about the automation component is stored as
attributes of the component and secondly, sub-models of the component are modelled as
InternalElements of the AutomationML Component or linked via these

ar

Automation
Component

0

g

Attribut
General Data I:—I

—
Attribut

Semantic Syste

Figure 9: Information and sub-model integration into to the AutomationML Component

<AutomationML/> Part 6 AutomationML Component

Figure 9 shows schematically how information and sub-models are integrated into to the AutomationML
Component.

In general, the following categories can be distinguished.
1. General Data
This part incorporates component identification and classification data from the vendor, like the
product identification code, ordering information, serial number, version number, other technical
information. All this information is mapped to attributes of the root of an AutomationML
Component model.

2. External Data
This includes for example the documentation of the automation component and symbols and
pictures of it. The external data are linked to the AutomationML Component via an
Externallnterfaces that belong to a child InternalElement of the AutomationML Component root.

Note 1: It is highly recommended to align with specifications like VDI 2770 and the “VendorNameplate” concept
of OPC UA Device Integration companion specification [OPCUA-Part100:2020], including semantic references
for example to IEC 62683-1.

3. Model Information
The model information comprises different kinds of models representing the automation
component. Examples for such models are.
o Functional Data
o Simulation models
o 2D and 3D models
o Kinematic models

These Models are linked as well to the AutomationML Component via an Externallnterfaces that
belong to a child InternalElement of the AutomationML Component root as the external data.

4. Connectors
The connectors describe information to all logic, electric, pneumatic, hydraulic and other
interfaces of the component. These connectors are modelled as Externallnterfaces that belong
to an InternalElement of the AutomationML Component.

2.4 Views on Automation Components and Systems

The engineering and operational processes of automation components and systems are multi-
disciplinary. As a consequence, also the information related to automation components and systems
components are multi-disciplinary.

Therefore, there are various views on the system component related information depending on the
considered life cycle phase, activity or action. It is impossible to identify all possibly relevant views on
production system component data. Therefore, in the following, some main views and their relevance
for the AutomationML Component meta-model are sketched.

The general life cycle phases of a production system are establishing main views on production system
component data. These are the following:

The engineering view summarizes all engineering related information including function design,
mechanical engineering, electrical engineering, communication system engineering, and control
programming defining the as-designed be status of the production system including the virtual
representation of its expected status handled within virtual engineering and virtual commissioning.

The commissioning view summarizes the as-built information of the production system including the
function, mechanical, electrical, communication system, and control programming realization details.

The operations related view summarizes the as-is information of the production system including the
function, mechanical, electrical, communication system, and control programming state details

<AutomationML/> Part 6 AutomationML Component

including possible virtual representations of the production system components as well as
documented KPI histories.

Each of these general views can be divided in more specialized views following the life cycle activity
considered. There are for example (without being limited to):

Engineering related views on the production system are established by (for example):
o production system function architecture defining the component hierarchy,

o mechanical construction defining the mechanical structure of the production system
including for example mechanical joints between components,

o electrical construction defining the electrical structure of the production system
including for example the wiring,

o control programming defining the complete data processing infrastructure including all
relevant control applications on the different level of control,

o communication system engineering defining the complete communication system
including fieldbus configurations.

Commissioning related views on the production system are established by the documentation and
its substructures.

Operations and maintenance related views on the production system are established by (for
example):

o Production system KPIs for system utilization on manufacturing execution level,
o Production system KPIs for system utilization on component wear and tear out level,
o Production system maintenance actions.

These named more technical oriented views are summarizing all information relevant for the complete
discipline. But there are also very specialized views on production systems following the special needs
of an individual action within the production system life cycle.

Examples of such very specialized views (without claiming completeness) are:
Drive list required for the engineering (dimensioning) of power supply systems,

Multibody simulation model required for validation of the mechanical behaviour of system
components within virtual engineering,

Wring list required to document the planned clamping positions of individual wires for commissioning,
Utilization status list representing the number of use actions required for maintenance decisions.
All views have a common structure. They cover system components with their properties and relations.

In case of automation components as special components of production systems these views are
designated to the engineering and utilization of automation structures. Therefore, they cover but are not
limited to the following engineering activity related views:

Planning of the static structure of the production system requiring the spatial and hierarchical
relations among the components regarding their physical measures.

Planning of physical interconnections between automation components requiring the representation
of necessary physical connection points of automation components including their properties
regarding the physical measures themselves, or alternatively by referencing connector standards.

Planning of the functional behaviour of the automation system requiring the description of provided
functionalities, connection facilities and life cycle management rules of components within human
readable manuals.

Simulation of the interaction between automation components and their controlled objects
(mechatronical objects) to enable an efficient design and commissioning of complex plants requiring
behaviour models including component and dependency behaviour models.

<AutomationML/> Part 6 AutomationML Component

Manufacturers of components therefore should bundle manuals, physical connector information,
physical simulation models as well as 2D and 3D models within their component documentation.
AutomationML InstanceElements may be used to represent those components.

Additional views are defined and discussed on [DIN77005-1:2018] providing a standardized logical
structuring of information on a production system component.

The definition of specific views on AutomationML Components for different engineering disciplines will
be part of the further work of the AutomationML team.

2.5 AutomationML Base Technology CAEX 2.15 and CAEX 3.0

CAEX 2.15 is the basis for AutomationML Version 2.0, while CAEX 3.0 is the basis for AutomationML
Version 2.1. Currently there are no standardized libraries for version 2.1. The libraries already developed
refer to AutomationML Part 1 [WP-Part1:2018] and have not yet been released. Libraries of the other
parts are not yet defined. The libraries defined here for modeling components use basic libraries of all
previously published AutomationML parts. These libraries must therefore be created on the basis of the
existing AutomationML Version 2.0 libraries.

A pure schema conversion of the CAEX 2.15 version of the libraries to the CAEX 3.0 schema can be
done later without problems. For the transformation of the AutomationML version, which provides for a
transformation of the libraries to new versions of the standard libraries, there is as yet no software
solution that carries out the transformation automatically. Transformations may have to be performed
manually.

The following points must be taken into account during a later transformation:

Replacement of standard role classes (e.g. RoleClass Port), which are no longer included in version
2.1 by equivalent model elements (e.g. InterfaceClass Port).

Definition and replacement of attribute semantics by attribute types from the standard attribute type
library of version 2.1.

Enhancement of class instances based on enhancements of new versions of the instantiated
classes.

Transformation of the examples.

In the opinion of the authors, an upward transformation is easier to perform and more tolerable than the
creation of libraries on the basis of library versions that have not yet been released, have not been
agreed, and are partly missing.

Thus we only apply AutomationML 2.0. in this version of the document.

<AutomationML/> Part 6 AutomationML Component

3 Representation in AutomationML

3.1 Structuring of AutomationML Components and Composite Components

AutomationML Components and Composite Components are modelled using the file format Automation-
ML and its object-oriented modelling mechanisms. All information to an AutomationML Component or
Composite Component is stored as AutomationML object and may comprise a hierarchical sub struc-
ture. The modeling architecture for AutomationML Components or Composite Components is a
distributed file architecture by using standard AutomationML capabilities to store data of multiple known
or unknown domains by referencing known or unknown external files, The AutomationML model of an
automation component or automation system is called AutomationML Component.

Regarding the structuring of AutomationML Component or AutomationML Composite Component
information in AutomationML, the following provisions apply:

Each AutomationML Component or Composite Component shall have a dedicated root element in
the AutomationML file. For modelling an automation component type, the root element shall be a
SystemUnitClass, and for individual automation components, the root object shall be an Internal-
Element. The root element shall be a SystemUnitClass or InternalElement and reference the
RoleClass “AutomationComponent” defined in the standard role class lib
“AutomationMLComponentBaseRCL".

If an AutomationML Component is part of an AutomationML Composite Component the root of this
component shall be an InternalElement.

Note 1: This InternalElement should be an instance of a SystemUnitClass directly or indirectly derived by an
“AutomationComponent”.

Automation component information that belongs to one automation component shall be stored
directly at the root element of the AutomationML Component or at one child element of it.

Note 2: All child elements belong to the root element and can be nested without any limit in depth and
structuring.

Child elements describing an information aspect of the AutomationML Component or Composite
Component shall have a SupportedRoleClass defined in the standard role class lib
“AutomationMLComponentBaseRCL” or “AutomationMLComponentStandardRCL” or any role class
derived from a role class defined within this library.

Note 3: It is allowed to store any other additional AutomationML elements as child elements of the root element
or one of its child elements. These AutomationML elements do not belong to the AutomationML Component
definition within the AutomationML Component meta model.

Note 4: Between an AutomationML Component or Composite Component object and its child element there
are no other InternalElements also referencing the role class AutomationComponent as RoleRegirements or
SupportedRoleClass.

Figure 10 gives on overview of an AutomationML Component that contains its root element and four
child elements that contain information to the described automation component.

<AutomationML/> Part 6 AutomationML Component

or
Root of AutomationML %
Component

Legend

<<RC:AutemationComponent>>

i

Root of AutomationML Component

<<RC:AutomationComponent>>

D

Root of AutomationML Composite
Component

<<RC:FromRCL:

il Ci

.......... CL>>

AutoamtionML Component Aspect
<<AnyOtherRC>>

1

AutomationML Object

Figure 10: Overview structure of an automation component in AutomationML

This document does not define a certain hierarchical structure of the AutomationML Component model.
An electric interface or an Ilcon may be modelled as a direct child of the AutomationML Component or
may be positioned as a child in a deeper hierarchy. The identification of the objects happens by the
associated role, whereas the hierarchical position of a model aspect has no further semantic.

3.2 Composition of AutomationML Automation Components

3.2.1 General Provisions

An automation system or component may consist of a composition of automation components. For the
composition of such systems or components no structuring limitations exist made for the representation
of AutomationML Composite Components.

Regarding the assignment of information to automation systems or components following provisions
apply:

Information aspect of an automation system or component shall be modelled as InternalElement that
has a role requirement of a role class defined in the standard role class libs
“AutomationMLComponentBaseRCL” or “AutomationMLComponentStandardRCL” or derived from
these role classes.

Each InternalElement within automation system or component information aspect shall be assigned
to next higher InternalElement with the role requirement “AutomationComponent” or
SystemUnitClass with the supported role class “AutomationComponent”.

3.2.2 Example simple AutomationML Component

Figure 11 depicts an example of an AutomationML Component. The example contains an
AutomationML Component “Component 1” that consist of the root element and three child
InternalElements that contain information aspects. The root element may be an InternalElement with
the role requirement “AutomationComponent” for instance models or SystemUnitClass with the
supported role class “AutomationComponent” for type models.

<AutomationML/> Part 6 AutomationML Component

Legend

<<RC:AutemationComponent>>

Root of AutomationML Component

<<RC:AutemationComponent>>

Root of AutomationML Composite
Component

<<RC:FromRCL:
AutomationMLComponentBase/StandardRCL>>

AutoamtionML Component Aspect
<<AnyOtherRC>>

AutomationML Object

Figure 11: Example simple AutomationML Component

3.2.3 Example nested AutomationML Component with AutomationML Objects

Figure 12 shows an example that contains the AutomationML Component “Component 2”. This
AutomationML Component consist of the root element, three child InternalElements that contain
information aspects and an additional AutomationML object. Within the example the InternalElements
and the AutomationML object are nested.

Legend

<<RC:AutomationComponent>>

Root of AutomationML Component

<<RC:AutomationComponent>>

Root of AutomationML Composite
Component

<<RC:FromRCL:
AutomationMLComponentBase/StandardRCL>>

AutoamtionML Component Aspect
<<AnyOtherRC>>

AutomationML Object

AutomationML Component 2

Figure 12: Example nested AutomationML Component with AutomationML Objects

3.2.4 Example AutomationML Composite Component

Figure 13 shows an example of an AutomationML Composite Component. The AutomationML
Composite Component has one AutomationML Component as sub-component. Additional tree
information aspects are attached to the overall AutomationML Composite Component and one
information aspect is attached to the sub AutomationML Component.

<AutomationML/>

Part 6 AutomationML Component

AutomationML
Component

Composite AutomationML
Component 1

Legend

<<RC:AutemationComponent>>

Root of AutomationML Component

<<RC:AutemationComponent>>

Root of AutomationML Composite
Component

<<RC:FromRCL:
AutomationMLCompenentBase/StandardRCL>>

AutoamtionML Component Aspect
<<AnyOtherRC>>

AutomationML Object

Figure 13: Example AutomationML Composite Component

3.25 Example nested AutomationML Composite Component with hierarchies

Figure 14 shows an example of an AutomationML Composite Component that has two sub
AutomationML Components. Within this example the AutomationML Composite Component has

integrated hierarchies and is nested.

<AutomationML/> Part 6 AutomationML Component

Legend

<<RC:AutomationCemponent>>

Root of AutomationML Component

<<RC:AutomationComponent>>

4
D

i

Root of AutomationML Composite
Component

<<RC:FromRCL:

i C

AutomationML Component Aspect
<<AnyOtherRC>>

AutomationML
Component 1

1

AutomationML Object

AutomationML Composite
Component

Figure 14: Example nested AutomationML Composite Component with hierarchies

3.3 Mapping of General Data

General data of AutomationML Components or Composite Components are mapped to attributes of the
root element of the AutomationML Component or Composite Component. To structure the attributes
following main categories attributes are defined.

Identification data
This section contains all attributes to unambiguously identify an automation component (including
type and instance).

General technical data
This section contains all classifiable data of the component.

Commercial data
This section contains order and purchasing information.

Parameter Data
This section should contain configuration information for instances (e.g. IP Address).

Note: The attribute definition is align with the “VendorNameplate” concept of OPC UA Device Integration companion
specification [OPCUA-Part100:2020]

The categories of the attributes are defined as attributes of the role class “AutomationComponent”, see
Figure 15: Representation of attribute groups as AutomationML attributes as UML diagram Figure 15
and Figure 16 shows the UML representation of this role class and within the AutomationML.

<AutomationML/> Part 6 AutomationML Component

<<RoleClass>>
AutomationComponent

Q

A << Attribute= >
IdentificationData
A << Attribute= >

GeneralTechnicalData

k < <Attribute> >
CommercialData

\ < <Attribute>>
ParameterData

Figure 15: Representation of attribute groups as AutomationML attributes as UML diagram

4 @ AutomationMLComponentStandardRCL
AutomationComponent {Class: AutomationMLBaseRole }

Name DataType

p - IdentificationData Empty -

p - GeneralTechnicalData Empty -

p - CommercialData Empty v
ParameterData xs:string ~

Figure 16: AutomationComponent role class with attribute group definition
For the mapping of general data following rules shall apply:

General data of an AutomationML Component or Composite Component shall be defined as
attributes of the root element.

Note 1: If possible, the attributes should be stored as child elements of the attribute group defined in this
chapter.

The attribute shall be used according the definition of chapter 0
The unit definition of attributes shall follow the provisions of the [BPR-Units:2018].

An extended example for the definition of general data according to IEC 62683-1 can be found in chapter
9.8.

3.4 General Model Integration

An AutomationML InternalElement representing an automation component as AutomationML
Component or Composite Component may contain or reference model information to be used in different
application scenarios like requirement specification, virtual commissioning or maintenance. Therefore,
the representation of an automation component shall provide the ability to attach different partial models.

The model information should be described in a declarative manner without strong relations to a specific
usage scenario. This approach enables the generic usage of the model information for different
applications. This means for example, that in context of the application scenario “virtual commissioning”
different models are used like the simulation model of the automation component and its geometric and
kinematic models. But the same models may also be used for different application scenarios like floor

planning and plant construction.

<AutomationML/> Part 6 AutomationML Component

The following rules shall apply:

Partial model of an AutomationML Component or Composite Component representation of an
automation component shall be attached to an InternalElement, which shall be a child or sub child
element of the root element of AutomationML Component.

The InternalElement shall reference the role class “Model” of the role class library
“AutomationMLComponentBaseRCL” or a derived role class.

Figure 17 depicts the general inheritance structure of the used role classes to integrate partial models.
Additionally, Figure 18 depicts base role class “Model” as object tree.

A ionMLC .| .| l/
«InternalElement » <<realize>> N «RoleClass»
AutomationComponent AutomationComponent,|

AutomationMLComponentBaseRCL /

«InternalElement» _f_ff?_a_“_z_‘??> N «RoleClass»
PartialModel | T Model

Figure 17: Example an AutomationML Component with one “Model”

4 [AutomationMLComponentBaseRCL
Model {Class: AutomationMLBaseRole }

Figure 18: AutomationML Representation of “Model” role class
3.5 AutomationML Component Logic Representation

3.5.1 General

Automation components and systems are resources of an automated system that might be able to
execute a certain task or process in a production. Often the automation components are controlled
subsequently from one or many points for example by a PLC to achieve the desired behavior or process
of production.

This chapter describes how to model the logical elements of an automation component as
AutomationML Component that can be called from other logical entities of an automated system.
Additionally, the integration of simulation models describing the behavior of the automation component
based on logic description is part of this chapter.

In general, three different standardized logic models are supported for the description of a logic
representation and simulation of automation component. They are differing in integration and usage
within the AutomationML Component and the libraries they are based on. Figure 19 shows these
models.

<AutomationML/> Part 6 AutomationML Component

AutomationML Component LogicModels /J

LogicModel

v v

PLCLogicModel AMLLogicModel FMIlLogicModel

Figure 19: AutomationML Component logic models
The three models are:

PLCLogicModel that defines logic description on base of [[EC61131-10:2019] and the integration of
these models into AutomationML as defined in AutomationML Part4

AMLLogicModel that defines logic description and integration into AutomationML on base of
AutomationML [WP-Part4:2018].

FMILogicModel that defines logic description on base of the FMI standard [FMI:2019] the integration
of this model into AutomationML is defined within this Whitepaper.

These three possible models shall support different use cases for logics of an AutomationML
Components that might be realized by any of them and not be restricted to a certain kind of logic
representation. These uses cases for the model integration are in general the description of

Behaviour models

Simulation models

Functions

Sequences or sequence elements,

and Skill logic models.

3.5.2 Logic Models

To integrate the tree logic models PLCLogicModel, AMLLogicModel and FMILogicModel in the context
of an AutomationML Component description four role classes are defined in the role class library
“AutomationMLComponentBaseRCL". The role classes are:

“LogicModel” as abstract role class for logic description. This role class can be used for the
integration of own unspecific logic models.

Note 3: The specific logic models are not derived from “LogicModel” because they bring their own parent role
class defined in [WP-Part1:2018], [WP-Part4:2018] and the role class libaray
AutomationMLFMILogicRoleClassLib” see 4.1.4.

“PLCopenXMLLogic” as specific role class for the integration of PLCopen XML based PLC logic
models.

Note 1: The general integration of PLCopen XML models in AutomationML is defined in [WP-Part1:2018] and
[WP-Part4:2018].

“AMLLogic” specific role class for the integration of AMLLogic based logic models.
Note 2: The general integration of AMLLogic models in AutomationML is defined in [WP-Part4:2018].

“FMILogic” specific role class for the integration of FMI based logic models according to [FMI:2019].

<AutomationML/> Part 6 AutomationML Component

Figure 20 shows the role classes for integration of logic models as AutomationML tree. Additional
Figure 21 depicts the used interface classes within the role class definition. The inherence structure
between the role classes for the logic description and basic AutomationML role classes as well as the
relation to the different interface classes is shown in Figure 22.

4 LogicModel {Class: Model }
4 PLCopenXMLLogic{Class: LogicModelObject }
4 % PLCopenXMLLogic-Interfaces
+0 Variablelnterface {Class: Variablelnterface }
0 Logiclnterface {Class: Logiclnterface }
AMLLogic {Class: LogicModelObject }
4 FMILogic {Class: FMILogicObject }
4 % FMILogic-Interfaces
0 FMIReference {Class: FMIReference }

0 FMIVariablelnterface {Class: FMIVariablelnterface }

Figure 20: Role Classes for automation component Logic Model

4 f AutomationMLInterfaceClassLib
4 [ic] AutomationMLBaselnterface
4 [ic] ExternalDataConnector{Class: AutomationMLBaselnterface }
4 [ic] PLCopenXMLInterface {Class: ExternalDataConnector }

> [ic] Variablelnterface {Class: PLCopenXMlLlInterface }
4 AutomationMLPLCopenXMLInterfaceClassLib

ic] Variablelnterface

4 AutomationMLFMlInterfaceClassLib
[ic] FMIReference {Class: ExternalDataReference }
[ic] FMIVariablelnterface {Class: ExternalDataConnector }

4 AutomationMLLogiclnterfaceClassLib
ic] SequencinglLogicModellnterface {Class: LogicModellnterface }
ic] BehaviourLogicModelinterface {Class: LogicModelinterface }
ic] Variablelnterface {Class: LogicModelElementinterface }

Figure 21: Interface Classes for automation component Logic Model

t
@
c
o]
o
=
S
©)
_
p=
c
Q2
IS
S
S
o
=}
<
©
pt
]
o

<AutomationML/>

|AutomationMLBaseRoeClassLib \

<=RoleClass>>
AutomationMLBaseRole

AutomationMLComponentBaseRCL

<<RoleClass>>
Model

<<RoleClass>>
LogicObject

<<RoleClass> >
LogicModel

|AutomationMLFMILegicRoleClassLib \

<<RoleClass>>

<<RoleClass>>
PLCopenXMLLogic

FMIModel

|AutomationMLLogicRoleClassLib \

<<RoleClassz >

<<Externalinterface>>
LogicInterface

<<Externalinterface=>
VariableInterface

LogicModelObject

<<InterfaceClass>> | 4
ReferenceSequence

<<InterfaceClassz > |
ReferenceBehaviour|

<<realizes»

<<RoleClass==
FMILogic

<< Externallnterface>=
FMIReference

<< Externalinterface>>

<<RoleClass>>

AMLlogic

FMIVariableInterface

AutomationMLInterfaceClassLib \

«<<InterfaceClass>>
AutomationMLBaselnterface

<<lInterfaceClass>>
ExternalDataConnector

<<InterfaceClass= >
PLCopenXML Interface

<<InterfaceClass>>

<<realizes> i
................................ LogicInterface
H PLCopenXML lasstib_/
H <<realize> >
ES N S <<lInterfaceClass>>
VariableInterface _
|AutomationMLBPRINterfaceClassLib /7

<<InterfaceClass=>

ExternalDataReference _

LAY

AutomationMLFMIInterfaceClassLib \

......... <crealize>> <<InterfaceClass>> _
FMIReference _
““““““ serealizes>) <<InterfaceClass=> _
FMIVariableInterface _

AutomationMLLogicRoleClassLib \

([

<<InterfaceClass>> _

<<InterfaceClass>>

LogicModelInterface LogicModelElementInterface

<<InterfaceClass> >
erface

<<InterfaceClass> >
havi delInterface

<<InterfaceClass> >
VariableInterface

Inheritance structure for an AutomationML logic model integration

Figure 22

<AutomationML/> Part 6 AutomationML Component

3.5.3 Usage of Logic Models

For the usage of in logic models in a specific context additional to role classes that define the model
type, roles that specify the context are needed. These role classes are “BehaviourModel”,
“SimulationModel”, “Function”, “Sequence”, “SequenceElement” and “SkillLogicModel”. They are
defined in the role class library “AutomationMLComponentStandardRCL”. For these role classes and
their use following provisions apply:

The role classes shall be a child of the role class “LogicModel” of the role class library
“AutomationMLComponentBaseRCL” or derived role class.

An InternalElement that has a reference to one of the role classes shall have a second reference to
a role class defined in chapter 3.5.2 or a child of these role classes.

Figure 23 shows role classes that shall be used to define the context of a logic model integration as
AutomationML tree additional the Figure 24 depicts the inheritance structure of these role classes.

4 AutomationMLComponentStandardRCL
Function {Class: LogicModel }
BehaviourModel {Class: LogicModel }
SimulationModel {Class: LogicModel }
SequencingModel {Class: LogicModel }
Sequence {Class: SequencingModel }
SequenceElement {Class: SequencingModel }
SkillLogicModel {Class: LogicModel }

Figure 23: Role Classes for automation component logic use cases

<AutomationML/> Part 6 AutomationML Component

AutomationMLComponentBaseRCL /) AutomationM LCompunentStandardRCL/

<<RoleClass>=> <<RoleClass>=
Model g BehaviourModel

<<RoleClass>=
Function

<<RoleClass>> 4
LogicModel

A

he <<RoleClass>=
SimulationModel

b <«<RoleClass> >
SkillLogicModel

"o <<RoleClass> =
SequencingModel

<<RoleClass> >
Sequence

< «RoleClass> >
SequenceElement

Figure 24: Inheritance structure for an AutomationML logic use cases

Figure 25 shows an example. Within this Example an InternalElement “FMILogicModel” realize the role
class “SimulationModel” in combination with the role class “FMILogic”. This combination of role classes
has following result. The InternalElement shall be used to integrate a simulation model and the
integrated model shall be an FMI model.

Alutomalionl'-'lLCDmpunentBaseREL/

<<realize»=
<<RoleClass>> | ________ . | ______________ _|> <<«InternalElement > >
FMILogic FMILogicModel

AutomationM Ll.':vr.trﬂ.pumalltSl:a|1dardl1';l::L/J

<< Externallnterface> >

<<realize> EMIReference

<<RoleClass= > N

SimulationModel 0.

=< Externallnterface=>
FMIVariableInterface

<<realize»>

AutomationMLFMIInterfaceClassLib /

<<InterfaceClass>> N
FMIReference

<<InterfaceClass== | ____ |\ .. /
FMIVariableInterface

Figure 25: Example integration of an FMI Logic Model

<AutomationML/> Part 6 AutomationML Component

3.5.4 Behaviour

One model aspect of automation components and composite components is related to their behavior.
An InternalElement with the role class “BehaviourModel” or a derived role class shall be used in order
to refer the behaviour model.

Following provisions shall be applied in order to integrate the behaviour model of the automation
component into an AutomationML file:

Behaviour model integration information of an AutomationML Component shall be attached to an
InternalElement.

The InternalElement carrying the behavior model integration information shall reference the role
class “BehaviourModel” of the role class library “AutomationMLComponentStandardRCL” or a
derived role class.

The InternalElement carrying the behavior model integration information shall reference the role
class “LogicModel”’, “PLCopenXMLLogic”, “AMLLogic” or “FMILogic” of the role class library
“AutomationMLComponentStandardRCL” or a derived role class.

The InternalElement carrying the behavior model shall be a child or sub child element of that
AutomationML element representing the automation component.

Note 1: Each AutomationML Component representing an automation component may have references to zero
or more behaviour models.

Note 2: An automation component can be represented by different behaviour models. Where each behaviour
model is represented by its own file. These different behaviour models can be related to different environments.
The InternalElement carrying the behavior model information then will differ in the referenced role classes,
which must be derived role classes from the role class “BehaviourModel”.

If the complete behaviour model is stored in separated files, then each file shall have a separate
InternalElement carrying the behaviour model integration.

Note 3: If the files are linked within their specification scope one reference to the root of the behaviour model
shall be enough.

Figure 26 depicts the general inheritance structure of the role classes “BehaviourModel”. Additional
Figure 27 shows the role class as object tree.

AutomationMLComponentStandardRCL/
<<realize=>
<<InternalBlement=> | N <«RoleClasss =
BehaviourModel BehaviourModel
E [AutomationMLComponentBaseRCL /
i < <realize>»
b e e e N <<RoleClass>>
: i ' i LogicModel
! | <<Invariant> < <Invariant> <<Invariant>
H (XOR) (XOR) (XOR) i
H <<realize>=
[P R] <<RoleClass=>
i i i i PLCopenXMLLogic
i i i :. <realizes
S S A S S [y <<RoleClass>>
H | H AMLLogic
i <<Invariant= < <Invariant
' (XOR) (XOR) < <realize>>
N T . T <<RoleClass=>
B FMILogic

Figure 26: Inheritance structure for an AutomationML “BehaviourModel”

<AutomationML/> Part 6 AutomationML Component

4 @ AutomationMLComponentBaseRCL
BehaviourModel {Class: Model }

Figure 27: AutomationML Representation of “‘BehaviourModel” role class

3.5.41 PLCopen XML based Behaviour Model
For the integration of PLCopen XML based behaviour models following provisions apply:

A PLCopen XML based behaviour model of an automation component shall be referenced by an
InternalElement carrying the behaviour information.

This InternalElement shall realize the role class “PLCopenXMLLogic” of the role class library
“AutomationMLComponentBaseRCL”

This InternalElement shall realize the role class “BehaviourModel” of the role class library
“AutomationMLComponentStandardRCL” or a derived role class.

This InternalElement shall be a child or sub child element of the AutomationML element representing
the automation component.

An Externalinterface with the interface class “Logicinterface” of the interface class lib
“AutomationMLInterfaceClassLib” shall be used to refer the model.

All provisions form Part 4 to reference logic shall apply.

Each published variable of the PLCopen XML based behaviour model shall be referenced with the
interface type “Variablelnterface” of the interface type library
“AutomationMLPLCopenXMLInterfaceClassLib”.

Figure 28 shows the example usage of the role classes “PLCopenXMLLogic” and “BehaviourModel” to
reference a PLCopen XML based logic model as behavior description to an internal element. Figure 29
shows additionally an example for the integration of a PLCopen XML behavior model as AutomationML
tree.

AutomationMLComponentBaseRCL /
< <realizes >
<«<InternalBlement>> |] N <<RoleClass==>
PLCopenBehaviourModel PLCopenXMLLogic
Q1
AutomationMLComponentStandardRCL /
1< <realizes
] N < <RoleClass==
BehaviourModel
AuiumationMLInterfaceClassLih/
__1 | =<Externalinterface== ___=_1_-E_r§_EI_|i_Z_E_:_>_:{____{:> <<InterfaceClass==
Behaviour LogicInterface
_0..” | <<Externallnterface=x ___°§-_~’~_F_E_i§|_i§?_33§>_____[} <<InterfaceClass>>
VariableInterface VariableInterface

Figure 28: Example usage of the AutomationML role class “PLCLogic” and “BehaviourModel” as
AutomationML “PLCopenBehaviourModel”

<AutomationML/> Part 6 AutomationML Component

4 [iE] BehaviourModel in PLCopenXML {Role: BehaviourModel, PLCopenXMLLogic}
4 % BehaviourModel in PLCopenXML-Interfaces
0 Variablelnterface {Class: Variablelnterface }
0 LogicInterface {Class: Logiclnterface }
AutomationMLComponentBaseRCL/LogicModel/PLCopenXMLLogic
AutomationMLComponentStandardRCL/BehaviourModel

Figure 29: Example AutomationML Representation of “PLCopenBehaviourModel”

3.5.4.2 AMLLogic based Behaviour Model
For the integration of AMLLogic based behaviour models following provisions apply:

An AMLLogic based behaviour model of an automation component shall be referenced by an
InternalElement carrying the behaviour information.

This InternalElement shall realize the role class “AMLLogic” of the role class library
“AutomationMLComponentBaseRCL”

This InternalElement shall realize the role class “BehaviourModel” of the role class library
“AutomationMLComponentStandardRCL” or a derived role class.

This InternalElement shall be a child or sub child element of the AutomationML element representing
the automation component.

An Externalinterface with the interface class “BehaviourLogiclnterface” of the interface class lib
“AutomationMLLogiclnterfaceClassLib” shall be used to refer the model.

All provisions form Part 4 to reference logic shall apply.

Each published variable of the AMLLogic based behaviour model shall be referenced with the
interface type “Variablelnterface” of the interface type library “AutomationMLComponentBaselCL”.

Figure 30 shows the example usage of the role classes “AMLLogic” and “BehaviourModel” to reference
AMLLogic based logic model as behavior description to an internal element. Figure 31 shows
additionally an example for the integration of an AMLLogic model as AutomationML tree.

p— .
<<InternalElement>> [<<realize>> o <<RoleClass>>
AMLBehaviourModel [T B AMLLogic
1
c)
< <realizes >
_____________________ > <<RoleClass>z
BehaviourModel

LogicInterfaceClassLib /

1 <<Externalinterface>> | <<realize>> > < <InterfaceClass>>
Behaviour I BehaviourlogicInterface

0..* | <<Externallnterface=> | <<realize>>| > <<InterfaceClass>>
VariableInterface VariableInterface

<AutomationML/> Part 6 AutomationML Component

Figure 30: Example usage of the AutomationML role class “AMLLogic” and “BehaviourModel” as
AutomationML “AMLBehaviourModel”

4 [ie] BehaviourModel in AMLLogic {Role: SimulationModel, AMLLogic}
4 % BehaviourModel in AMLLogic-Interfaces
-0 ReferenceBehaviour{Class: BehaviourLogicModellnterface }
AutomationMLComponentBaseRCL/LogicModel/AMLLogic
AutomationMLComponentStandardRCL/SimulationModel

Figure 31: Example AutomationML Representation of “AMLBehaviourModel”

3.5.4.3 FMl based Behaviour Model
Following provisions shall be applied for the integration of FMILogic models:

An FMILogic model of an automation component shall be referenced by an InternalElement carrying
the behaviour integration information.

This InternalElement shall realize the role class “FMILogic” of the role class library
“AutomationMLComponentBaseRCL".

This InternalElement shall realize the role class “BehaviourModel” of the role class library
“AutomationMLComponentStandardRCL” or a derived role class.

This InternalElement shall be a child or sub child element of the AutomationML element representing
the automation component.

An Externallnterface with the interface class “FMIReference” shall be used to refer the FMI-based
simulation model, which is called a Functional Mockup Unit (FMU).

All published variables of the FMILogic shall be referenced with the interface class
“FMIVariablelnterface” of the interface type library “AutomationMLFMIlInterfaceClassLib”.

Figure 32 shows the example usage of the role classes “FMILogic” and “BehaviourModel” to reference
FMI based logic model as behavior description to an internal element. Figure 33 shows additionally an
example for the integration of an FMI behavior model as AutomationML tree.

AutomationMLComponentBaseRCL)
<<realize>»
<<InternalElement>> | ___________________ T N < <RoleClass>>»
FMIBehaviourModel 5 FMILogic

O

AutomationMLComponentStandardRCL)

M e - <<RoleClass> >
BehaviourModel

AutomationMLComponentStandardICL /

L1 <<Externallnterface>> | __<<realize>> > < <InterfaceClasss>
FMIReference FMIReference
_0..*| <<Externalinterface>> | <=realize>> - <<InterfaceClass>>
FMIVariableInterface FMIVariableInterface

Figure 32: Example usage of the AutomationML role class “FMILogic” and “BehaviourModel” as
AutomationML “FMIBehaviourModel”

<AutomationML/> Part 6 AutomationML Component

4 [iE] BehaviourModel in FMILogic {Role: FMILogic, SimulationModel}
4 % BehaviourModel in FMILogic-Interfaces
0 FMIVariablelnterface {Class: FMIVariablelnterface }
0 FMIReference {Class: FMIReference }
AutomationMLComponentStandardRCL/SimulationModel
P AutomationMLComponentBaseRCL/LogicModel/FMILogic

Figure 33: Example AutomationML Representation of “FMIBehaviourModel”

3.5.5 Simulation

One model aspect of automation components and systems is related to their simulation models. An
InternalElement with the role class “SimulationModel” or a derived role class shall be used in order to
refer the simulation model.

Following provisions shall be applied in order to integrate the simulation model of the automation
component into an AutomationML file:

Simulation model information of an AutomationML Component shall be attached to an
InternalElement.

The InternalElement carrying the simulation model integration information shall reference the role
class “SimulationModel” of the role class library “AutomationMLComponentStandardRCL” or a
derived role class.

The InternalElement carrying the simulation model integration information shall reference the role
class “LogicModel”’, “PLCopenXMLLogic”, “AMLLogic” or “FMILogic” of the role class library
“AutomationMLComponentStandardRCL” or a derived role class.

The InternalElement carrying the simulation model shall be a child or sub child element of that
AutomationML element representing the automation component.

Note 1: Each automation component may have references to zero or more simulation models.

Note 2: An automation component can be represented by different simulation models each referring to its own
file. These different behaviour models can be related to different environments. The InternalElement carrying
the behavior model information then will differ in the referenced role classes, which must be derived role classes
from the role class “SimulationModel”.

If the complete simulation model is stored in separated files, then each file shall have a separate
InternalElement carrying the simulation model integration.

Note 3: If the files are linked within their specification scope one reference to the root of the simulation model
shall be enough.

Figure 34 depicts the general inheritance structure of the role classes “SimulationModel”. Additional
Figure 35 shows the role class as object tree.

<AutomationML/> Part 6 AutomationML Component

AutomationMLComponenlStandardRCL/
< <realize> =
<<InternalElement>>» | N <<RoleClass>>
SimulationModel SimulationModel
i AutomationMLComponentBaseRCL /
i < «<realize> >
M e e e e e N <<RoleClasss =
| i ' i LogicModel
1 | <<Invariant> <<Invariant> < «<Invariant=
! (XOR) (XOR) (XOR) .
! < <realize> =
[R R o <<RoleClass>>
| ! ' ' PLCopenXMLLogic
i i i :. <realizes |
S I A S S oy <<RoleClass>>
! L ' AMLLogic
i < <Invariant> < <Invariant>
: (XOR) (XOR) <<realize> >
S T e <<RoleClass> >
™ FMILogic

Figure 34: Inheritance structure for an AutomationML “SimulationModel”

K AutomationMLComponentStandardRCL
SimulationModel {Class: LogicModel }

Figure 35: AutomationML Representation of “SimulationModel” role class

3.5.5.1 PLCopen XML based Simulation Model

The same mapping rules, to integrate a PLCopen XML based “SimulationModel” as described for
PLCopen XML based behaviour models as described in 3.5.4.1, are applied here too.

3.5.5.2 AMLLogic based Simulation Model

The same mapping rules, to integrate a AMLLogic based “SimulationModel” as described for AMLLogic
based behaviour models as described in 3.5.4.2, are applied here too.

3.5.5.3 FMI based Simulation Model

The same mapping rules, to integrate a FMI based “SimulationModel” as described for FMI based
behaviour models as described in 3.5.4.3, are applied here too.

3.5.6 Sequencing

Sequencing is used for any logical element that describes the instructions to the controlled automation
component. Sequencing is class-divided in the role classes “Sequence” and “SequenceElement”. The
role class “Sequence” is used for sequences of logic models that consists of one or many
“SequenceElement’s.

The role class “SequenceElement” is used for objects that describe self-contained Functions that can
be called in a sequence from a “Sequence” element.

Following provisions shall be applied in order to integrate the Sequencing model of the automation
component into an AutomationML file:

Sequencing model integration information of an AutomationML Component shall be attached to an
InternalElement.

The InternalElement carrying the sequencing model integration information shall reference the role
class “Sequence” of the role class library “AutomationMLComponentStandardRCL” or a derived role

class.

<AutomationML/> Part 6 AutomationML Component

Note 1: Each automation component may have references to zero or more sequencing models.

Note 2: An automation component can be represented by different sequencing models each referring to its own
file. These different sequencing models can be related to different environments. The InternalElement carrying
the sequence model information then will differ in the referenced role classes, which must be derived role
classes from the role class “Sequence”.

The InternalElement with role class with reference “Sequence” shall have zero to n child
InternalElements. These InternalElements shall reference the role class “SequenceElement” of the
role class library “AutomationMLComponentStandardRCL” or a derived role class. These
InternalElements carrying the logic models for the single elements.

The InternalElement carrying the sequence element model information shall reference the role class
“LogicModel”, “PLCopenXMLLogic”, “AMLLogic” or “FMILogic” of the role class library
“AutomationMLComponentStandardRCL” or a derived role class.

The InternalElement carrying the sequence element model shall be a child or sub child element of
that AutomationML element representing the Automation Component.

Note 3: An automation component can be represented by different sequencing element models each referring
to its own file. These different sequencing element models can be related to different environments. The
InternalElement carrying the sequencing element model information then will differ in the referenced role
classes, which must be derived role classes from the role class “SequenceElement”.

If the complete sequence model is stored in separated files, then each file shall have a separate
InternalElement carrying the sequence model integration.

Note 4: If the files are linked within their specification scope one reference to the root of the sequence model
shall be enough.

Figure 36 depicts the general inheritance structure of the role classes “Sequence” and its derived role
classes. Additional Figure 37 shows the role class as object tree.

AutomationMLComponentStandardRCL
<<InternalElement>=> Ld /

AutomationComponent

<<RoleClass=>
SegquencingModel

<<RoleClass==>
Sequence

|« <InternalElement= =

< <realize>>
Sequence

@
0..* . -
<<InternalElement> > c<realizes > <<RoleClass=>

SegquenceEfement > SequenceElement

A ionMLC

:)
< <realize>>
__ > <<RoleClass= >
1

M : L LogicModel
< <Invariant> <<Invariant> <Invariant>
(X0R) (XOR) (XOR)
< <realize>>
________________________________ S IR <<RoleClass=>> .
H PLCopenXMLLogic

.......... L P <<RoleClass> >

' AMILLogic
<<Invariant>% <<Invariant>&‘
(XOR) (XOR)
<<realizes

e N I S > <<RoleClass>>
FMILogic

Figure 36: Inheritance structure of AutomationML “Sequence”role class

<AutomationML/> Part 6 AutomationML Component

4 @ AutomationMLComponentStandardRCL
SequencingModel {Class: LogicModel }
Sequence {Class: SequencingModel }
SequenceElement {Class: SequencingModel }
Figure 37: AutomationML representation of “Sequence” role class

3.5.6.1 PLCopen XML based SequencingElements

The same mapping rules, to integrate a PLCopen XML based “SequencingElement” as described for
PLCopen XML based sequence models as described in 3.5.4.1, are applied here too.

3.5.6.2 AMLLogic based SequencingElements

The same mapping rules, to integrate a AMLLogic based “SequencingElement” as described for
AMLLogic based sequence models described in 3.5.4.2, are applied here too.

3.5.6.3 FMI based SequencingElements

The same mapping rules, to integrate a FMI based “SequencingElement” as described for FMI based
sequence models described in 3.5.4.3, are applied here too.

3.5.7 Function

One model aspect of automation components and systems is related to function that they can execute.
An InternalElement with the role class “Function” or a derived role class shall be used in order to refer
the function.

Following provisions shall be applied in order to integrate the function of the automation component into
an AutomationML file:

Function integration of an AutomationML Component shall be attached to an InternalElement.

The InternalElement carrying the function integration information shall reference the role class
“Function” of the role class library “AutomationMLComponentStandardRCL” or a derived role class.

The InternalElement carrying the function integration information shall reference the role class
“LogicModel”, “PLCopenXMLLogic”, “AMLLogic” or “FMILogic” of the role class library
“AutomationMLComponentStandardRCL” or a derived role class.

The InternalElement carrying the function shall be a child or sub child element of that AutomationML
element representing the automation component.

Note 1: Each automation component may have references to zero or more functions.

Note 2: An automation component can be represented by different function models each referencing to its own
file. These different functions can be related to different environments. The InternalElement carrying the
function model information then will differ in the referenced role classes, which must be derived role classes
from the role class “Function”.

If the complete Function is stored in separated files, then each file shall have a separate
InternalElement carrying the Function integration.

Note 3: If the files are linked within their specification scope one reference to the root of the function shall be
enough.

Figure 38 depicts the general inheritance structure of the role classes “Function”. Additional Figure 39
shows the role class as object tree.

<AutomationML/> Part 6 AutomationML Component

AutomationMLComponenlStandardRCL/
< <realize> =
<<InternalElement>> | N <<RoleClass>>
Function Function
i AutomationMLComponentBaseRCL /
| <<realize» >
M e e e e e _[> <<RoleClasss =
i : : i LogicModel
1 | <<Invariant> <<Invariant> < «<Invariant=
! (XOR) (XOR) (XOR) .
| <=realize=>
[R R N <<RoleClass>>
| ! ' ' PLCopenXMLLogic
i i i :. <realizes |
S B A S S oy <<RoleClass>>
i | H AMLLogic
i < <Invariant> < <Invariant>
: (XOR) (XOR) <<realize> >
S T e <<RoleClass> >
i FMILogic

Figure 38: Inheritance structure for an AutomationML “Function”

4 fi AutomationMLComponentStandardRCL
Function {Class: LogicModel }

Figure 39: AutomationML Representation of “Function” role class

3.5.7.1 PLCopen XML based Function

The same mapping rules, to integrate a PLCopen XML based functions as described for PLCopen XML
based behavior models described in 3.5.4.1, are applied here too.

3.5.7.2 AMLLogic based Function

The same mapping rules, to integrate an AMLLogic based functions as described for PLCopen XML
based behavior models described in 3.5.4.2, are applied here too.

3.5.7.3 FMI based Function

The same mapping rules, to integrate a FMI based functions as described for FMI based behavior
models described in 3.5.4.3, are applied here too.

3.5.8 SkillsLogic

Skills are a standardized implementation of a self-contained Function of an automation component with
the aim to be interoperable and interchangeable.

Skills can be composed to higher level skills and put together to a sequence in order to describe full
processes in automation. The connection of skill logic models of different AutomationML Components
is not part of this whitepaper. So, a basic definition for skill logic models will be presented.

Following provisions shall be applied in order to integrate the skill logic model of the automation
component into an AutomationML file:

Skill logic model information of an AutomationML Component shall be attached to an
InternalElement.

The InternalElement carrying the skill logic model shall reference the role class “SkillLogicModel” of
the role class library “AutomationMLComponentStandardRCL” or a derived role class.

<AutomationML/> Part 6 AutomationML Component

The InternalElement carrying the behavior model integration information shall reference the role
class “LogicModel”’, “PLCopenXMLLogic”, “AMLLogic” or “FMILogic” of the role class library
“AutomationMLComponentStandardRCL” or a derived role class.

The InternalElement carrying the skill logic model shall be a child or sub child element of that
AutomationML element representing the automation component.

Note 1: Each automation component may have references to zero or more skill logic models.

Note 2: An automation component can be represented by different skill logic models each referring to its own
file. These different skill logic models can be related to different environments. The InternalElement carrying
the behavior model information then will differ in the referenced role classes, which must be derived role classes
from the role class “SkillLogicModel”.

If the complete skill logic model is stored in separated files, then each file shall have a separate
InternalElement carrying the skill logic model integration.

Note 3: If the files are linked within their specification scope one reference to the root of the skill logic model
shall be enough.

Figure 40 depicts the general inheritance structure of the used role class “Skill”. Additional Figure 41
shows the role class as object tree.

AutomationMLComponentStandardRCL)
<<realize> >
<<InternalElement>> | I I <<RoleClass=>
SkillLogicMadel SkillLogicModel
T
|
i
|
E [AutomationMLComponentBaseRCL)
|
| <realizes >
b 1 < <RoleClass> >
i i ; ; LogicModel
v | = <Invariant> < <Invariant> <<Invariant>
! (XOR) (XOR) (XOR) .
! <realizes =
O TS N <<RoleClass=>
i . | \ PLCopenXMLLogic
| ; ; ;
| ; H H
| : : i <realize>>
S e S S SO o <<RoleClass>>
! L [AMLLogic
i < <Invariant> < <Invariant>
! (XOR) (XOR) <<realize>=
|
| <«<RoleClass=>
_________________ L gy QP
> FMILogic

Figure 40: Inheritance structure for an AutomationML “SkillLogicModel”

A AutomationMLComponentStandardRCL
SkillLogicModel {Class: LogicModel }

Figure 41: AutomationML Representation of “SkillLogicModel”
3.5.8.1 PLCopen XML based SkillLogicModel

The same mapping rules, to integrate a PLCopen XML based skill logic models as described for
PLCopen XML based behavior models described in 3.5.4.1, are applied here too.

3.5.8.2 AMLLogic based SkillLogicModel

The same mapping rules, to integrate an AMLLogic based skill logic models as described for PLCopen
XML based behavior models described in 3.5.4.2, are applied here too.

<AutomationML/> Part 6 AutomationML Component

3.5.8.3 FMI based SkillLogicModel

The same mapping rules, to integrate an FMI based skill logic models as described for FMI based
behavior models described in 3.5.4.3, are applied here too.

3.6 Geometry and Kinematic Model

3.6.1 Geometry
One model aspect of automation components and systems is the geometry model.
The following rules shall apply:
The preferred format for modelling and exchanging geometry models shall be COLLADA

Geometry model of an AutomationML Component shall be attached to an InternalElement, which
shall be a child or sub child element of the AutomationML element representing the automation
component.

The InternalElement shall reference the role class “GeometryModel” of the role class lib
“AutomationMLComponentBaseRole” or a derived role class, which shall be a child or sub child
element of the AutomationML element representing the automation component.

Note 1: Each automation component may have references to zero or more geometry models.

Note 2: The geometry model of a component may consist of 1 or n separate partial models that are stored in
separate files.

If the complete geometry model is stored in separated files, each file shall have a separate reference.

Note 3: If the files are linked within their specification scope one reference to the root of the geometry model
shall be sufficient.

Multiple geometry model formats can be used to represent the component, but they shall be integrally
closed within each format and shall not reference each other.

Figure 42 depicts the general inheritance structure of the used role classes to integrate geometry
models. Figure 43 shows the role class as object tree.

A ionMLC: | d I/J

«InternalElements» <<realizes>| > «RoleClass»
AutomationComponent| AutomationComponent,

AutomationMLCom pnnentBaseRCl/

<<realize>>
«InternalElement» > «RoleClass»

GeometryModel GeometryModel

Figure 42: Example usage of the AutomationML role class “GeometryModel”

4 @ AutomationMLComponentBaseRCL
GeometryModel {Class: Model }

Figure 43: AutomationML representation of “Model” role class

3.6.1.1 Collada Geometry Model
For the integration of COLLADA the following rules shall apply:
All specifications form [WP-Part3:2017] shall apply.

A COLLADA geometry model of an automation component shall be attached with an
“COLLADAInterface” to an InternalElement, which shall be a child or sub child element of the
AutomationML element representing the automation component as AutomationML Component.

<AutomationML/> Part 6 AutomationML Component

The InternalElement shall reference the role class “COLLADAGeometryModel” of the role class lib
“AutomationMLComponentBaseRCL” or a derived role class.

If the InternalElement represents a coordinate system that shall be published, the Internal Element
shall additionally reference the role class “Frame” from “AutomationMLBaseRoleClassLib”.

If the InternalElement defines an offset in position to a direct parent COLLADAGeometryModel the
attribute “Frame” with the appropriate values shall be added to that Internal Element

Note 1: If the attribute “Frame” is missing all sub attributes X, vy, z, rx, ry, rz shall be assumed to be 0, see [WP-
Part3:2017]

Note 2: The translation of the InternalElement by the attribute “Frame” relates to the parent InternalElement,
SystemUnitClass, InstanceHierachy or SystemUnitClassLibrary.

Note 3: The elements InstanceHierarchy and SystemUnitClassLib specify a three-dimensional, orthogonal,
right-handed coordinate system with standard basis. The positive z axis is considered upward, the positive x
direction defines the right axis and the negative y direction defines the forward axis.

To refer the geometry model in a COLLADA document an Externallnterface with the interface class
“COLLADAInterface” shall be used that points to the COLLADA element visual_scene of an
COLLADA document

Note 4: If one COLLADA document contains geometry, kinematics and the binding of both, the importer tool
has to bind the COLLADAGeometryModel by matching over the same file name and the
bind_kinematics_model of the COLLADA kinematics_scene

The root COLLADA geometry model shall be an explicit COLLADA geometry model by setting the
attribute refType of the Externalinterface to “explicit”.

Note 5: An AutomationML Component might have zero or more root COLLADA geometry models

Note 6: A explicit COLLADA geometry model shall not be a child or sub child of an explicit COLLADA geometry
model

Note 7: An explicit COLLADA geometry model usually references the whole geometry of an object

The root of COLLADA geometry model might have zero or more “implicit” COLLADA geometry
models or COLLADA geometry attachments as a child or a sub child.

Note 8: An implicit COLLADA geometry model usually references a detail of the explicit COLLADA geometry
model

A COLLADA geometry attachment is an InternalElement that shall reference the role class
“COLLADAGeometryAttachment” that is derived from the role class “COLLADAGeometryModel”
from role class library “AutomationMLComponentStandardRCL”.

Note 10: A COLLADA geometry attachment represents a connectable coordinate system
Note 11: A COLLADA geometry attachment refers to the next parent COLLADA geometry model

The InternalElement of a COLLADA geometry attachment shall have one Externalinterface with the
InterfaceClass “COLLADAInterface” referencing the COLLADA visual _scene node and one
Externallnterface with the InterfaceClass “Attachmentinterface” of AutomationMLInterfaceClassLib.

Note 13: An Attachmentinterface can be connected with an InternalLink with other geometry objects in order to
create a geometrical coupling.

Note 14: The direction of the InternalLink defines the direction of the coupling of the Internal Link's elements.
The element on RefPartnerSideA moves the element on RefPartnerSideB, that means that a unidirectional
connection with two InternalLinks is needed for a fixed geometrical coupling.

If the COLLADA geometry model belongs to a composition of automation components or an automation
system and is not assigned to the root element of the automation component or system, the value
“implicit” of the attribute “refType” of the interface shall be allowed.

Figure 44 depicts the general inheritance structure of the role class “COLLADAGeometryModel”.
Additional Figure 45 shows the role class as object tree.

<AutomationML/> Part 6 AutomationML Component

c ./
<<InternalElement>> | ek > <<RolaClass>>
COLLADAGeometry Model fs COLLADAGeomatryMadel
4 7
1 <=Edernalinterface=>
COLLADAInterface S S : <<RoleClass>>
H 4 : . I COLLADAGeometryAttachment
refType = explicit

= <<zInternalElement:>
COLLADAGeometry Model

|AutomationMLBaseRoleClassLib,

==Bxternalinterface==
COLLADAInterface

<<RoleClass>>
Frame

reflype = implicit

<<zInternalElement:>
COLLADAGeometry Attachment

[AutomationMLInterfaceClassLibrary

COLLADAInterface COLLADAInterface

1 ==Exfernallnierface=> Rt g <<zInterfaceClass>>

[+ refType = implicit

<<InternalElement=> «<<InterfaceClass>>
AttachmentInterface |~~~ T [y AttchmentInterface

Figure 44: Example usage of AutomationML role classes to integrate an AutomationML
“COLLADAGeometryModel”

4 COLLADAGeometryModel {Class: GeometryModel }
4 % COLLADAGeometryModel-Interfaces
0 COLLADAInterface {Class: COLLADAInterface }

Figure 45: AutomationML Representation of “COLLADAGeometryModel” role class

4 COLLADAGeometryAttachment {Class: COLLADAGeometryModel }
4 % COLLADAGeometryAttachment-Interfaces
0 Attachmentinterface {Class: Attachmentinterface }

Figure 46: AutomationML Representation of “COLLADAGeometryAttachment” role class

3.6.1.2 JT Model

JT (Jupiter Tesselation) is an ISO-standardized 3D data format, used in industry for product
visualization, collaboration and CAD data exchange, see [ISO 14306:2017]. For the integration of JT
geometry models, the following rules shall apply:

The reference of a JT Model for an automation component shall be attached as an InternalElement,
which shall be a child or sub child element of the InternalElement representing the automation
component as AutomationML Component.

The InternalElement shall reference the role class “JTGeometryModel” of the role class lib
“AutomationMLComponentBaseRCL” or a derived role class.

To refer the model an Externallnterface with the interface class “JTReference” of the interface class
lib “AutomationMLComponentBaselCL” shall be used.

Figure 47 depicts the general inheritance structure of the role classes “JTGeometryModel”. Additional
Figure 48 show the role class as object tree.

<AutomationML/> Part 6 AutomationML Component

<<InternalElement>> <<realize>> > <<RoleClass>>
JTModel JTGeometryModel

1

AutomationMLL nterfaceClassLiIJ

<<Externallnterface>= <<realize>> [<<InterfaceClass>>

JTReference JTReference

Figure 47: Example usage of the AutomationML role class “JTGeometryModel”

4 @ AutomationMLComponentStandardRCL
4 [rq JTGeometryModel {Class: GeometryModel }
4 % JTGeometryModel-Interfaces
+0 ExternalDataConnector{Class: JTReference }

Figure 48: AutomationML Representation of “JTGeometryModel” role class

3.6.1.3 2D Model
For the integration of 2D geometry models, the following rules shall apply:

2D geometry model of an automation component shall be attached to an InternalElement, which shall
be a child or sub child element of the AutomationML element representing the automation component
as AutomationML Component.

The InternalElement shall reference the role class “2DGeometryModel” of the role class lib
“AutomationMLComponentBaseRCL” or a derived role class.

To refer the model an Externallnterface with the interface class “Reference2D” of the interface class
lib “AutomationMLComponentBaselCL” shall be used.

If the InternalElement represent a coordinate system that shall be published, the InternalElement
shall additionally reference the role class “Frame” from the role class library
“AutomationMLBaseRoleClassLib”.

If the InternalElement defines an offset in position to a direct parent 2D geometry the attribute
“Frame” with the appropriate values shall be added to that Internal Element the value for z and rz
shall be “0”.

Note 1: If the attribute “Frame” is missing all sub attributes X, vy, z, rx, ry, rz shall be assumed to be 0, see [WP-
Part3:2017].

Note2: The translation of the InternalElement by the attribute “Frame” relates to the parent InternalElement,
SystemUnitClass, InstanceHierachy or SystemUnitClassLibrary.

Note 3: The elements InstanceHierarchy and SystemUnitClassLib specify a three dimensional, orthogonal,
right-handed coordinate system with standard basis. The positive z axis is considered upward, the positive x
direction defines the right axis and the negative y direction defines the forward axis.

Figure 49 depicts the general inheritance structure of the used role classes “2DGeometryModel”.
Additional Figure 50 show the role class as object tree.

<AutomationML/> Part 6 AutomationML Component

AutomationMLCompeonentStandardRCL /

<<InternalElement>> | <<realizes>| o < <RoleClass>
2DGeometryModel 2DGeometryModel

1

AutomationMLComponentBaselCL /

< <realize=>
<<Externallnterface=> | - - T | _____] > <<InterfaceClass>>

2DReference 2DReference

Figure 49: Example usage of the AutomationML role class “2DGeometryModel”

4 AutomationMLComponentStandardRCL
4 [rg] 2DGeometryModel {Class: GeometryModel }
4 % 2DGeometryModel-Interfaces
+0 2DRefrence {Class: 2DRefrence }

Figure 50: AutomationML Representation of 2DGeometryModel” role class

3.6.2 Kinematics

AutomationML Components might have parts that move or can be moved kinematically. The modelling
of these kinematic definitions and the attachment points to the kinematics of other components is
described in this chapter. Usually kinematics is closely related to geometry, but the concept shown here
also allows a separate modelling of kinematics even when the geometry is not known or used to that
point in time.

One model aspect of automation components and systems is the kinematic model.

For modelling a kinematic model of an automation component, the following rules shall apply:
The base format for modelling and exchanging kinematic models shall be COLLADA.
Note 1: see 3.6.1.1 for COLLADA specific modelling

Kinematic model of an automation component shall be attached to an InternalElement, which shall
be a child or sub child element of the AutomationML element representing the automation component
as AutomationML Component.

The InternalElement shall reference the role class “KinematicModel” of the role class lib
“AutomationMLComponentBaseRCL” or a derived role class.

Note 2: Each automation component may have zero or more kinematic models.
Note 3: The kinematic model of a component itself may consist of 1 or more kinematic sub models.
If the complete kinematic model is stored in separated files, each file shall have a separate reference.

Note 4: If the files are linked within their specification scope one reference to the root of the kinematic model
shall be sufficient.

Figure 51 depicts the general inheritance structure of the used role classes to integrate kinematic
models. Figure 52 shows the role class as object tree.

<AutomationML/> Part 6 AutomationML Component

c —y,

«RoleClass»
AutomationComponent

«InternalElement» <<realize>>|
AutomationComponent

v

C RCL /
<<realize>>
«InternalElement» > «RoleClass»
KinematicModel KinematicModel

Figure 51: Example usage of the AutomationML role class “Kinematic” role class

4 AutomationMLComponentBaseRCL
Model {Class: AutomationMLBaseRole }
KinematicModel {Class: Model }

Figure 52: AutomationML Representation of “KinematicModel” role class

3.6.2.1 Collada Kinematic Model
For the integration of COLLADA kinematic models the following rules shall apply:
All specifications form [WP-Part3:2017] shall be applied.

A COLLADA kinematic model of an automation component shall be attached to an InternalElement,
which shall be a child or sub child of the AutomationML element representing the automation
component as AutomationML Component.

The Internal Element shall reference the role class “COLLADAKinematicModel” of the role class lib
“AutomationMLComponentStandardRCL” or a derived role class

If the Internal Element represent a coordinate system that shall be published, the Internal Element
shall additionally reference the role class “Frame” from “AutomationMLBaseRoleClassLib”.

To refer the kinematic model in a COLLADA document an Externallnterface with the interface class
“COLLADAInterface” shall be used that points to a COLLADA element “kinematics_scene” of a
COLLADA document

Note 1: If one COLLADA document contains geometry, kinematics and the binding of both, the importer tool
has to bind the COLLADAGeometryModel and the COLLADAKinematicModel by matching over the same file
name and the bind_kinematics_model of the COLLADA kinematics_scene.

The root COLLADA kinematic model shall be an explicit COLLADA kinematic model by setting the
attribute refType of the Externallnterface to “explicit”.

Note 2: An AutomationML Component might have zero or more root COLLADA kinematic models.

Note 3: A explicit COLLADA kinematic model shall not be a child or sub child of an explicit COLLADA kinematic
model.

Note 4: An explicit COLLADA kinematic model usually references the whole kinematics of an object

The root of COLLADA kinematic model might have zero or more “implicit” COLLADA kinematic
models, COLLADA kinematic attachments or COLLADA kinematic joints as a child or a sub child.

Note 5: An implicit COLLADA kinematic model usually references a detail of the explicit COLLADA kinematic
model.

Kinematic Joint

A COLLADA Kinematic Joint is an InternalElement that shall reference the role class
“COLLADAKiInematicJoint” that is derived from the role class “COLLADAKinematicModel” from
AutomationMLComponentStandardRCL

<AutomationML/> Part 6 AutomationML Component

Note 6: A COLLADA kinematic joint represents a joint of the COLLADA model that is of interest in the CAEX
part.

The InternalElement of a COLLADA kinematic joint shall have one Externalinterface with the
InterfaceClass “COLLADAInterface” referencing the joint in the COLLADA file and one
Externallnterface with the InterfaceClass “Jointinterface” of AutomationMLInterfaceClassLib

Note 7: The Externallnterface “COLLADAInterface” is inherited from “COLLADAKinematicModel”.

Note 8: A Joint Interface can be connected by an InternalLink with other objects in order to represent a relation.
E.G. If a joint interface is connected by an internal link to an output of a behaviour model, the value of the joint
shall be set to the value of the behaviour model output value.

Note 9: The direction of the InternalLink defines the direction of the coupling of the Internal Link's elements. For
a unidirectional coupling two InternalLinks in opposite direction are needed.

Kinematic Attachment

A COLLADA Kinematic Attachment is an InternalElement that shall reference the role class
“COLLADAKiInematicAttachment” that is derived from the role class COLLADAKinematicModel from
“AutomationMLComponentStandardRCL

Note 10: A COLLADA kinematic attachment represents a connectable coordinate system
Note 11: A COLLADA kinematic attachment refers to the next parent COLLADA kinematic model

The InternalElement of a COLLADA kinematic attachment shall have one Externallnterface with the
InterfaceClass “COLLADAInterface” referencing the COLLADA kinematics_scene node and one
Externallnterface with the InterfaceClass “Attachmentinterface” of
“AutomationMLInterfaceClassLib”.

Note 12: An Attachmentinterface can be connected with an InternalLink with other kinematic objects in order
to create a kinematic coupling.

Note 13: The direction of the InternalLink defines the direction of the coupling of the Internal Link's elements.
The element on RefPartnerSideA moves the element on RefPartnerSideB, that means that a unidirectional
connection with two InternalLinks is needed for a fixed kinematic coupling.

If the COLLADA kinematic model belongs to a composition of automation components or an automation
system and is not assigned to the root element of the AutomationML Component or AutomationML
Composite Component, the value “implicit” of the attribute “refType” of the interface shall be allowed.

<AutomationML/> Part 6 AutomationML Component

. =y
<=InternalBlements> |] < <RoleClasss>
COLLADAKinematicModel - ; 5
N IS COLLADAKinematicModel
I h
1 <<Externallnterfaces= i %
| — COLLADAInterface - Y S, B <<RoleClass> >
|- reryoe = expiici i COLLADAKinematicAttachment
___________________________ <<RoleClass==
0= < <InternalElements i COLLADAKinematicAttachment
COLLADAKinematicModel
onMLBaseRoleClassLib
==Externallnterface=>
1 COLLADAImterface < cRoleClasss >
|+ refType = implicit Frame
A
H
0.~ <<InternalElement>
COLLADAKinematicAttachment

AutomationMLInterfaceClassLibrary

1 <<Externalinteriace== T <<InterfaceClass> >

COLLADAInterface | coLtApanterface

{+ refType = implicit A
1

<<Extermallnterface>> <«InterfaceClassz>

AttachmentInterface AttchmentInterface

0.* < <InterfaceClass> >

<<InternalElements = A P JointInterface
COLLADAKinematicJoint |
==Externallnterface=>
1 COLLADAInterface

[+ refType = implicit

<<Extemnallnterface> >
JointInterface

Figure 53: Example usage of AutomationML role classes to integrate an AutomationML
“COLLADAKiInematicModel”

4 COLLADAKinematicModel {Class: KinematicModel }
4 % COLLADAKinematicModel-Interfaces
0 COLLADAInterface {Class: COLLADAInterface }

Figure 54: AutomationML Representation of “COLLADAKinematicModel” role class
4 rd COLLADAKIinematicJoint {Class: COLLADAKinematicModel }
4 % COLLADAKinematicJoint-Interfaces
+0 Jointinterface{Class: Jointinterface }
Figure 55: AutomationML Representation of “COLLADAKinematicJoint” role class
4 COLLADAKinematicAttachment {Class: COLLADAKinematicModel }
4 % COLLADAKinematicAttachment-Interfaces

0 AttachmentInterface {Class: AttachmentInterface }

Figure 56: AutomationML Representation of “COLLADAKinematicAttachment” role class

An COLLADAKinematicAttachment might have multiple connections to other interfaces with
InternalLinks to model relations between the kinematic model and other models, objects or

connectors

<AutomationML/> Part 6 AutomationML Component

Note 15: The direction of the InternalLink defines the direction of the coupling of the Internal Link's elements.
The element on RefPartnerSideA moves the element on RefPartnerSideB, that means that a unidirectional
connection with two InternalLinks is needed for a fixed kinematic coupling.

= If an InternalLink is connected to an Externallnterface of an element with the role class “Connector’
or any derived, the InternalLink is handover to the Externallnterface

Note 16: RefPartnerSideA on the Attachmentinterface is implcitly connected to RefPartnerSideA to any
InternalLink on the Externallnterface of the Connector

Note 17: This can be used for coupling of e.g. mechanical connectors to the internal kinematics of an
AutomationML Component

AutomationML
Componentl
<COLLADA>
A
RoleClass: mplicit
COLLADAKinematicAttachment <node A=
RoleClass:
MechanicConnector
RefPartnersideB
1
RefPartnerSides, 1| :
11
I
I
[
(|
AutomationML I
Component2 | :
|
[
|1
11
11
I <COLLADA>
(| B
RoleClass: iy sliei
COLLADAKInematicAttachment RefPartnerSideA, : <node B>
|
|
|
|
|
|
|
|
|
RoleClass; ._.
M | COLLADAInterface
.—O Attachmentinterface
.—. Mechanicinterface

* Internallink

RefPartnerSided

—— Externallink

Figure 46: Fixed kinematic coupling of two AutomationML Components using Attachments over
MechanicConnectors as a proxy

Example of COLLADA kinematic joint connection with FMI behaviour interface.

A COLLADA kinematic joint might have multiple connections to other Interfaces with InternalLinks to
model relations between the kinematic model and other models, objects or connectors. A typical

<AutomationML/> Part 6 AutomationML Component

connection for the realization of virtual commissioning is to connect the kinematic CAD model to a
simulated behaviour model.

Figure 56 shows the example of a modelling of COLLADA kinematics connected with a FMILogic: The
joint interface that points to the variable of the joint inside the COLLADA file can be connected to the
corresponding variable interface of the FMI, that represents the certain value of the joint position.

AutomationML
Component

<COLLADA>

implicit{refUri ->KinematicScene, target ~>Paramialue)
RoleClass:

COLLADAKinematicloint RefPartnerSideA

Y

<KinematicScene/
ParamValue>

<FMU>

Y

:::ﬂ:::: RefPartnerSideA

|
|
|
I
|
|
|
+
|
(Causa\'\‘ty:Outputl!

RefPartnerSideB
(Causality: Input)

._. COLLADAInterface

.—o FMIReference
.—O lointinterface
.—. FMIVariableInterface

= = # Internallink

———p Externallink

Figure 57: Example of Connection between COLLADAKinematicJoint und FMILogic

<AutomationML/> Part 6 AutomationML Component

3.7 Graphic Representation

One aspect of automation components and systems is the graphic representation in different authoring
and engineering tools. To reference the graphic representation, model an Internallnterface with the role
class “GraphicRepresentationReference” or a derived role class shall be used. Within the description of
automation components and systems three types of graphical representations are distinct:

Symbols
Component pictures
Icons
The following rules shall apply:

Graphical Representations for an automation component shall be attached as an InternalElement,
which shall be a child or sub child element of the InternalElement representing the automation
component.

For a symbol, the InternalElement shall reference the role class “Symbol” of the role class lib
“AutomationMLComponentStandardRCL” or a derived role class.

For a picture, the InternalElement shall reference the role class “ComponentPicture” of the role class
lib “AutomationMLComponentStandardRCL” or a derived role class.

For an Icon, the InternalElement shall reference the role class “Ilcon” of the role class lib
“AutomationMLComponentBaseRCL” or a derived role class.

Figure 58 depicts the general inheritance structure of the used role classes to graphical representation.

AutomationMLComponentRCL /

<<InternalElement>> <<realize=>
GraphicalRepresentation

<<RoleClass>>
GraphicalRepresentation

v

AuvtomationMLCom pnnélltﬂaselcy

<<Externallnterface>= <<realize>>] «<<InterfaceClass>>
= GraphicRepr tation D GraphicRepresentation
Reference Reference

Figure 58: Example usage of the AutomationML role class “GraphicalRepresentation”

<AutomationML/> Part 6 AutomationML Component

4 @ AutomationMLComponentBaseRCL
- GraphicRepresentation {Class: ExternalData }
4 % GraphicRepresentation-Interfaces
=0 GraphicRepresentationReference {Class: GraphicRepresentationReference }
Icon {Class: GraphicRepresentation }
Symbol {Class: GraphicRepresentation }

4 @ AutomationMLComponentStandardRCL
ComponentPicture {Class: GraphicRepresentation }
Manufacturerlcon {Class: Icon }

Componentlcon {Class: Icon}
ElectricSymbol {Class: Symbol }
HydraulicSymbol {Class: Symbol }
PneumaticSymbol {Class: Symbol }

Figure 59: AutomationML Representation of “GraphicalRepresentation”role class

3.8 Documentation

The integration of documentation information for automation components and systems is an important
aspect. To reference documentation information the provisions defined in [BPR-EDRef:2016] shall be
followed.

The following rules shall apply additionally:

Documentation for an automation component shall be attached as an InternalElement, which shall
be a child or sub child element of the InternalElement representing the automation component as
AutomationML Component.

For documentation items, the InternalElement shall reference the role class “Documentation” of the
role class lib “AutomationMLComponentBaseRCL” or a derived role class.

Figure 60 depicts the general inheritance structure of the used role classes to graphical representation.

C I Ia::lib/

< <InternalElement= > < <realize>> N <<RoleClass>>

Documentation Documentation

1

BPRInterfaceClassLib /

1| <<Externalinterface>> <<realize>> > < <Externallnterface=>
ExternalDataReference ExternalDataReference

Figure 60: Example usage of the AutomationML role class “Documentation”

4 @ AutomationMLComponentBaseRCL
4 Documentation {Class: ExternalData }
4 % Documentation-Interfaces

0 ExternalDataReference {Class: ExternalDataReference }

Figure 61: AutomationML Representation of “Documentation”role class

<AutomationML/> Part 6 AutomationML Component

3.9 Certificates

The integration of certificate information for AutomationML Component and Composite Components is
an important aspect. To refer certificate information the provisions defined in [BPR-EDRef:2016] shall
be followed.

The following rules shall apply additionally:

Certificates for an automation component shall be attached as an InternalElement, which shall be a
child or sub child element of the InternalElement representing the automation component as
AutomationML Component.

For certificate items, the InternalElement shall reference the role class “Certificate” of the role class
lib “AutomationMLComponentStandardRCL” or a derived role class.

Figure 60 depicts the general inheritance structure of the used role classes to graphical representation.

C leCla: Iily/

<<InternalElement: > _““<"<_[\°::fl_|_zg_>“>”

_____ [>| <<RoleClass>>
Certificates

Certificates

1

AutomationMLBPRInterfaceClassLib /J

<<Externallnterface»> | <<realize>> | [ExternalInterface>>
ExternalDataReference ExternalDataReference

Figure 62: Example usage of the AutomationML role class “Certificate”

4 @ AutomationMLComponentStandardRCL
Certificate {Class: Documentation }
Figure 63: AutomationML Representation of “Certificate” role class

3.10 Additional Device Description

The communication interface of a modern field device is usually described by a technology related
device description file such as GSDML, FDCML, ESI, CSP+, IODD and others.

The integration of such existing device descriptions information for automation components and systems
is an important aspect and the following rules shall apply:

An Additional Device Description for an automation component shall be attached as an
InternalElement referencing a role class derived from the abstract role class
“AdditionalDeviceDescription”, which shall be a child or sub child element of the InternalElement
representing the automation component as AutomationML Component.

To reference to the external file itself, the refURI attribute from interface class
“DeviceDescriptionReference” shall be used. Same as with the role class above, the interface class
is a basic abstract interface which shall not be used directly. A derived interface class referring to the
specific type of the device description file shall be used.

An automation component can contain multiple InternalElements that represent a Device
Description, each of them having exactly one Externalinterface to refer to a file. The following
scenarios for multiple Additional Device Descriptions for one automation component are possible:

For a field device different versions of the device description files are available

Different versions of the device description language/xsd schema are existing and for each of
them a device description file is provided for the field device

A gateway module has communication interfaces for different networks and therefore a device

description file for each of them

<AutomationML/> Part 6 AutomationML Component

A combination of the above

The attribute “SpecVersion” in the role class shall be used to define the version of the device
description language/xsd schema, respective the technology DD specification.

The attribute “Version” in the interface class defines the version of the actual device description file
that is referenced.

The attribute “DocLang” in the role class shall be used to specify the language of the referenced
device description file according to [RFC5646:2009].

<<RoleClass>>
AdditionalDeviceDescription

<<InternalElement:> > <<realize> >
DeviceDescription

v

1

c L/
1 <<Externallnterface> > [c<realize>> > <<InterfaceClass >
DeviceDescriptionReference DeviceDescriptionReference

Figure 64: Example usage of the AutomationML role class “AdditionalDeviceDescription”

4 @ AutomationMLComponentBaseRCL
4 AdditionalDeviceDescription {Class: ExternalData }
4 % AdditionalDeviceDescription-Interfaces
0 DeviceDescriptionReference {Class: DeviceDescriptionReference }

Figure 65: AutomationML Representation “AdditionalDeviceDescription” role class

3.11 Maintenance Description

For an automatic generation of a production line maintenance plan, it is necessary to have a computer
readable component maintenance description in a computer readable way.

A maintenance description should be implemented as one or more MaintenanceDescriptionGroup,
which describes the main topic of the maintenance. The details of the maintenance description are
described as a MaintenanceDescriptionltem which is always a child of a MaintenanceGroup.

The following rules shall apply additionally:

A maintenance description shall be modeled as an InternalElement with the role class
“MaintenanceDescriptionGroup” or any derived role class as a child of an AutomationML Component
root element.

A maintenance item shall be modeled as an InternalElement with the role class
“MaintenanceDescriptionltem” as a child of an MaintenanceDescriptionGroup element.

<<InternalElement>=>
AutomationComponent

tStandardRCL /

Aut ionMLComp
<<InternalElement>> [< _{_r_e_'z_ll_ig_e_;;____D <<RoleClass>>
MaintenanceDescriptionGroup MaintenanceDescriptionGroup

<<InternalElement=> | ~_:_<_r_g§1i;_e_?_>___{> <<RoleClass>>
MaintenanceDescriptionItem MaintenanceDescriptionItem

<AutomationML/> Part 6 AutomationML Component

Figure 66 depicts the general inheritance structure of the used role classes to maintenance description
representation.

<<InternalElement>=
AutomationComponent

Aut ionMLComp tStandardRCL)
<<InternalElement>- | . < _<_r_e_2_||_igje_g_>____[> <<RoleClass>=>
MaintenanceDescriptionGroup MaintenanceDescriptionGroup

<<InternalElement>> | f_g[e_glli;_e_?_{__{} <<RoleClass>>
MaintenanceDescriptionItem MaintenanceDescriptionItem

Figure 66: Example usage of the AutomationML role classes “MaintenanceDescriptionltem” and
“MaintenanceDescriptionGroup”

4 i AutomationMLComponentBaseRCL
P MaintenanceDescription {Class: AutomationMLBaseRole }
4 AutomationMLComponentStandardRCL
MaintenanceDescriptionGroup {Class: MaintenanceDescription }
MaintenanceDescriptionltem {Class: MaintenanceDescription }

Figure 67: AutomationML Representation of “MaintenanceDescription” role classes

3.12 Skill Description for AutomationML Components

One model aspect of automation components and systems is related to their provided skills. Platform4.0
defines skill as “Potential of an Industrie 4.0 component to achieve an effect within a domain”. Additional
notes as follows are given on the definition of skill allowing the interpretation of skills in different ways:

Skills can be described as the sum of all properties (see IEC61360).
The comparison between requirements and assurances is realized via properties of the skill.
Skill can be orchestrated and hierarchically structured.
Capability is often used as synonym to skill.
Skills can be made executable via services
The impact manifests in a measurable effect within the physical world.
This document adopts the definition of skill from platform 4.0 [Platform4.0 Glossary]

Accordingly an internal element with the role class “SkillModel” or a derived role class shall be used in
order to refer a skill of the automation component.

An InternalElement with the role class “SkillModel” or a derived role class shall be used in order to refer
a skill of the automation component.

Within this version of the document basic concepts of modelling skills for automation components and
systems are defined. A detail definition how to model skills in AutomationML Components will be
part of Version 2 of the document.

Following basic provisions shall be applied in order to integrate model skills of automation components
into an AutomationML file:

Skills model information of an AutomationML Component shall be attached to an InternalElement.

<AutomationML/> Part 6 AutomationML Component

The InternalElement carrying skill information shall reference the role class “SkillModel” of the role
class library “AutomationMLComponentStandardRCL” or a derived role class.

The InternalElement carrying the skill logic information shall reference the role class
“SkillLogicModel” of the role class library “AutomationMLComponentStandardRCL” and one of the
role classes “PLCLogic”, “AMLLogic” or “FMILogic” or a derived role class of the role class library
“AutomationMLComponentBaseRCL”.

The InternalElement describing the connections of skills shall reference the role class
“SkillConnector” or a derived role class library “AutomationMLComponentStandardRCL”.

Note: The connection could be a connection within an AutomationML Component between different models or
between skills of different AutomationML Components process or products.

The InternalElement carrying the skill logic and the InternalElement describing the connection shall
be child elements of an InternalElement with the role class “SkillModel”.

The InternalElement carrying the RoleClasses for specific models defined in chapter 4.1.3.6 shall be
used, if additional properties of the component is integrated within skill.

Figure 68 depicts the general AutomationML representation of skill description as UML structure.
Additional Figure 69 shows the role class as object tree.

c ancs
«InternalElement » __________________”7””""""””7m.___________{f_rf_a_"_z_%_}_)__ - «RoleClass»
AutomationComponent AutomationComponent
1
0.=
«InternalElement » . .<<realize>> - «RoleClass»
SkiliModel [ttt SkillModel
«InternalElements | <<realizex> | «RoleClass»
SkillLogicModel SkillLogicModel
«InternalElement» __=<«realizex> [«RoleClass»
SkillConnector | skiliConnector
c L /
«Externallnterface» _<<rea\|%s>> «RoleClass»
skillConnector SkillInterface

Figure 68: General AutomationML Representation of Skill Description

4 [AutomationMLComponentBaselCL
[ic] Skilllnterface {Class: AutomationMLBaselnterface }
4 fi AutomationMLComponentStandardRCL
SkillModel {Class: Model }
SkillConnector {Class: Connector }
SkillLogicModel {Class: LogicModel }

Figure 69: AutomationML Representation of skill model role and interface classes
3.13 Connector for AutomationML Components

3.13.1 General

Automation Systems and Components are resources of an automated system that might have logic or
physical connections to other systems or components. These connections shall be described with a
separate AutomationML object that has a well-defined role class. This chapter describes how to model
theses connectors and which role classes an interface types are defined to model them.

<AutomationML/> Part 6 AutomationML Component

A set of role classes and interface classes for semantical tagging of AutomationML objects as
connectors is defined. Figure 70 and Figure 71 depict these classes in an AutomationML tree view.

4 AutomationMLComponentBaseRCL
Connector{Class: AutomationMLBaseRole }
4 [AutomationMLComponentStandardRCL
> MechanicConnector {Class: Connector }
> LogicConnector {Class: Connector }
> ElectricConnector {Class: Connector }
FluidicConnector {Class: Connector }
> LiquidicConnector {Class: FluidicConnector }
> HydraulicConnector {Class: FluidicConnector }
P PneumaticConnector {Class: FluidicConnector }
SensorConnector {Class: Connector }
> SkillConnector {Class: Connector}
P MultiConnector {Class: Connector }

Figure 70: Role classes AutomationML Component connector definition

4 @@ AutomationMLComponentenBaselCL
0 Mechaniclnterface {Class: AutomationMLBaselnterface }
*0 Electricnterface {Class: AutomationMLBaselnterface }
*0 Pneumaticlnterface {Class: AutomationMLBaselnterface }
*0 Hydrauliclnterface {Class: AutomationMLBaselnterface }
=0 LiquidicInterface {Class: AutomationMLBaselnterface }

Figure 71: Interface classes for AutomationML Component connector definition

For the use of connectors following basic rules shall apply:

An AutomationML Component connector shall be modeled as an InternalElement with the role class
“Connector” or any derived role class as a child of an AutomationML Component root element.

Any InternalElement defined as connector shall have at least one Externallnterface.

Figure 72 depicts the example usage of AutomationML Component connector to describe
AutomationML Component connectors.

<AutomationML/> Part 6 AutomationML Component

<<InternalElement>>
AutomationComponent

O foniLC ancL/ fonMLG arcL/
0.*
h__Y" |<<InternalElement>:> < crealizas> <<RoleClass> > D <<RoleClass>z
LogicConnector Sl Y LogicConnector r Connector
0. |+ cInternalElements = RoleCl
— H i <<RoleClass>>
ElectricConnecior || <<reslize>> .| Electricconnector
0.*
k <<InternalElement> i <<RoleClass>>
Skillconnector |---{---~=rRalzeas [Sskillconnector
0.* <<RoleClass>>
h <<InternalElement: > . I
MechanicConnector <<realizer> . [MechanicConnector
<<RoleClass> >
FluidicConnector
0. |<<InternalElements= l_ | <<RoleClass>=
LiguidicConnector | _ | _s<realizes> -[> LiquidicConnector
0.
h, < <InternalElement>> i L | <<RoleClass>>
PneumaticConnecton__ | ___<<realizez> ... > PneumaticConnector)
0.*
h <<InternalElement>> i __| <<RoleClass>>
HydraulicConnector| . | . S3fealzez= . [>] HydraulicConnector
|0~ < <InternalElement>= . <<RoleClass>>
MultiConnector | ___ | _<<redlize>> [MultiConnector
\0.." < <InternalElement>2 <<realize>> > < <RoleClass>> J
SensorConnector SensorConnector

Figure 72: Representation of functions as AutomationML entities (UML diagram)

A detailed description for the use of AutomationML Component connector to descript the interconnection
of AutomationML Components can be found in chapter 3.13.

3.13.2 Mechanic Connector

The mechanic connector is the representation of a mechanical fastening interface of an automation
component.

It mechanically affixes or fastens one or more objects in means of a non-permanent joint that can be
removed or dismantled without damaging the joining components. The joint can transfer energy (e.qg.
motion, force), that can be defined in detail, if a behaviour model is connected the mechanic connector.

For the description of a mechanic connector, the following provisions shall apply:

A mechanic connector of an automation component shall be attached to an InternalElement, which
shall be a child or sub child element of the AutomationML element representing the automation
component.

The InternalElement shall reference the role class “MechanicConnector” of the role class lib
“AutomationMLComponentStandardRCL” or a derived role class.

The mechanical interface shall be modelled as an “Mechanicinterface” from
AutomationMLComponentBaselCL or a derived Interface.

Figure 73 depicts the general inheritance structure of the used role classes define a mechanic
connector. Figure 74 shows the role class as object tree.

<AutomationML/> Part 6 AutomationML Component

A jonMLC i |/
<<InternalElement>= <<realize>> > <<RoleClass>>
MechanicConnector MechanicConnector

AutomationMLCom |x}||enl:liaseICL/J

<<Externallnterface>= <<realize>> N «<<InterfaceClass>=>

MechanicInterface MechanicInterface

Figure 73: Example usage of an AutomationML “MechanicConnector”role class

4 @ AutomationMLComponentStandardRCL
4 MechanicConnector {Class: Connector }
4 % MechanicConnector-Interfaces

0 Mechaniclnterface {Class: Mechaniclnterface }

Figure 74: AutomationML representation of “MechanicConnector” role class

3.13.3 Logic Connector

A logic connector is an interface that allows to connect virtual objects such as signal or process variables
to each other or to their physical representation such as an electrical or mechanical interface.

For the description of logic connectors, the following provisions shall apply:

A logic connector of an Automation Component shall be attached to an InternalElement, which shall
be a child or sub child element of the AutomationML element representing the automation
component.

The InternalElement shall reference the role class “LogicConnector” of the role class lib
“AutomationMLComponentStandardRCL” or a derived role class.

Figure 75 depicts the general inheritance structure of the used role classes to define a logic connector.
Figure 76 shows the role class as object tree.

AutomationMLComponent Standard Rlﬁlll,rJ

«IntemalElements | ==realize== | N «RoleClasss
LogicConnector LogicConnector

1

AutomationMLInterfaceClassLib /J

* =<realize==
0. «Extemnalinterfaces {> zInterfaceClass»

Signafinterface | | Signalinterface

Figure 75: Example usage of an AutomationML “LogicConnector” with one “Signalinterface”

4 AutomationMLComponentStandardRCL
4 LogicConnector {Class: Connector }
4 % |ogicConnector-Interfaces
-0 Signallnterface {Class: Signallnterface }

Figure 76: AutomationML Representation of “LogicConnector”role class

<AutomationML/> Part 6 AutomationML Component

3.13.4 Electric Connector
3.13.4.1 General

Electric connectors are essential part of almost every automation component. They are used to supply
energy to a device or to connect the device for engineering, configuration or data exchange with the
automation system. The industrial evolution has developed a variety of different electric connector types,
examples are shown in Figure 77.

2y,

!\\\‘

M12 RJ45 Mini 7/8

Figure 77: Examples of electric connectors

Electric connectors vary from mechanical connectors without any further function, e.g. a M12 or RJ45
plugs (Figure 78 a) to complex connectors with computational power, e.g. M12 or RJ45 Ethernet. For
flexible connectivity, modern automation devices may contain one or multiple electric connectors (see
Figure 78 b) used for a variety of purposes. Electric connectors may also be of non-physical nature, e.g.
a WIFI connection. This clause defines modelling principles for electric connectors.

Figure 78: Electric connectors used in a cable or in an automation devices

a) Example M12 to M12 cable with a male plug and a female socket connector with inner pins
(interfaces)

b) Example automation component with a variety of electric connectors with interfaces [source:
BALLUFF]

The first general principle is the separation between connector and interface. The connector is the
overall mechanical entity, while the electric interface is the concrete electrical pin that transfers electric
current. Pins form the end of electric wires and electric connectors allow to connect set of wires.

<AutomationML/> Part 6 AutomationML Component

Electric Connector Electric Connector
(InternalElement) (InternalElement)

Electric interface
(Interface)

Figure 79: Connector versus Interface

The second principle is the connector application. The following example illustrates this: an M12 plug
may be used either as energy supply or as Ethernet port. An M12 plug at the end of a cable does not
know its application, it might be plugged into an energy connector or an Ethernet port. An electric
connector is, by design, application independent. The application modelling requires additional mode-
lling effort, usually a parent InternalElement that models the application. The AutomationML modelling
of an electric connector focus on the application independent connector only. The application of an
electric connector is usually implemented by a logic circuit that is e.g. developed to support Ethernet.
This logic makes an M12 connector an ethernet connector. The circuit is not part of the present model.

Finally, an electric connector is an electro-mechanical provision used to join electrical terminations and
to create an electrical circuit. Electric connectors often consist of mechanical interfaces as male-ended
plugs and jacks or sockets (female-ended) that usually contain multiple electrical pins, and of logic
circuits that implement functionality for sending, receivoing or processing electrical signals. The
connection may be temporary or serve as a permanent electrical joint between devices.

An electric interface is an electro-mechanical provision modelling the connectable items of an electric
connector. This may be single pins, or mechanical plugs or sockets containing multiple pins with dedi-
cated geometry. Examples for electric interfaces are M12, RJ45, Mini 7/8 as shown in Figure 77, or
RJ232, USB 3, Thunderbold and many more (see Figure 77).

3.13.4.2 General modelling provisions for electric connectors

The Automation Component standard library provides two base classes for modelling electric con-
nectors: the role class “ElectricConnector” and the interface class “Electricinterface” (see Figure 80 and
Figure 81). An electric connector can contain one or more electric interfaces, whereas the electric inter-
faces correspond to the pins of the connector. The Externallnterface Figure 77 depicts the general
inheritance structure of the used role classes to define an electric connector. Figure 78 shows the role
class as object tree.

AutomationMLComponentStandard RCL/

zInternalElements ==realize== I «RoleClasss
ElectricConnector Connector

AutomationMLComponentBaselCL /

==realize==
zExternalinterfaces= _[> zInterfaceClass=

Electricinterface | [Electricinterface

Figure 80: Example usage of an AutomationML “ElectricConnector” with one Electricinterface

<AutomationML/> Part 6 AutomationML Component

4 fil AutomationMLComponentStandardRCL
4 ElectricConnector {Class: Connector}
4 % ElectricConnector-Interfaces

0 ElectricInterface {Class: Electricinterface }

Figure 81: AutomationML Representation of “ElectricConnector” role class
For the AutomationML modelling of electric connectors, the following provisions apply:

An electric connector of an automation component shall be attached to an InternalElement, which
shall be a child or sub child element of the AutomationML element representing the automation
component as AutomationML Component.

The InternalElement shall directly or indirectly reference the role class “ElectricConnector” of the role
class lib “AutomationMLComponentStandardRCL”.

The electric interface of the connector shall be modelled as CAEX Externallnterface.

If the connector has pins, the electric interface shall be modelled as CAEX Externalinterface of the
InternalElement which represents the connector.

If the connector has nested connectors, the child connectors shall be modelled as child InternalEle-
ments of the parent connector, which directly or indirectly references the RoleClass “Electric-
Connector”. Then, the sub interfaces of the children shall be modelled as CAEX Externallnterfaces
of the children or sub-children. This allows modelling complex and nested super-connectors with
inner sub connectors with arbitrary deepness. The ending leaves of this tree are electric interfaces.

Each CAEX Externallnterface that models an electric interface shall be directly or indirectly derived
from the InterfaceClass “Electricinterface” of the interface class library “AutomationMLComponent-
BaselCL”.

An electric connector shall describe its physical characteristics, consisting of the physical connector
type with its properties (i.e. M8, M12, RJ45, clamp, male, female, max voltage, max current etc.) and
the underlying single electrical pins with its properties.

Note 1: Only electric interfaces can be connected to each other. It is not possible to directly connect the connectors
with the present version of CAEX 2.15. The future modelling based on CAEX 3.0 allows this and is described in
clause 8.4.

Note 2: To model a complex interface in CAEX 2.15 the port concept defined in [WP-Part1:2016] according to
chapter A.1.2 should be used. Therefor the ElectricConnector shall reference the role class “Port” of the
“AutomationMLBaseRoleClassLib” including the Exterenallnterface “ConnetionPoint”. This Eterternal interface shall
be used the for the connection of the ElectricConnector.

<AutomationML/> Part 6 AutomationML Component

3.13.5 Fluidic Connector

The Fluidic Connector is a base connector for modelling connectors of automation components that
handle fluidics. For the description of fluidic connectors, the following provisions shall apply:

A fluidic connector of an Automation Component shall be attached to an InternalElement, which shall
be a child or sub child element of the AutomationML element representing the Automation
Component.

The InternalElement shall reference the role class “FluidicConnector” of the role class lib
“AutomationMLComponentStandardRCL” or a derived role class.

Figure 82 depicts the usage of the role classes “FluidicConnector”. Additional shows Figure 83 the role
class as object tree.

AutomationMLComponentBaseRCL /

«InternalElements | ==reglize=> | > «RoleClassa
FiluidicConnector FluidicConnector

Figure 82: Example usage of an AutomationML “FluidicConnector”

4 @ AutomationMLComponentStandardRCL
FluidicConnector {Class: Connector }

Figure 83: AutomationML representation of “FluidicConnector” role class

3.13.6 Liquidic Connector

The Liquidic Connector models connectors of automation components that handle liquids. It derives
from the Fluidic Connector.

A liquidic connector of an Automation Component shall be attached to an InternalElement, which
shall be a child or sub child element of the AutomationML element representing the Automation
Component.

The InternalElement shall reference the role class “LiquidicConnector” of the role class lib
“AutomationMLComponentStandardRCL” or a derived role class.

The InternalElement shall have one or more interfaces from interface class “Liquidiclnterface” of
“AutomationMLComponentBaselCL”

Figure 84 the usage of the role classes “LiquidicConnector”. Additional shows Figure 85 the role class
as object tree.

AutomationMLComponentStandard RCI/

«InternalElements | c=credlize=> | N «RoleClasss
LiquidicConnector LiquidicConnector

AutomationMLComponentBaselCL /J

«Externalinterface= | | _____ N «InterfaceClassa
Liguidicinterface Liguidinterface

Figure 84: Example usage of an AutomationML “LiquidicConnector”

<AutomationML/> Part 6 AutomationML Component

4 f AutomationMLComponentStandardRCL
4 LiquidicConnector {Class: FluidicConnector }
4 "% |iquidicConnector-Interfaces

-0 LiquidicInterface {Class: Liquidiclnterface }

Figure 85: AutomationML Representation of “LiquidicConnector” role class

3.13.7 Pneumatic Connector

The Pneumatic Connector models connectors of an automation component that handle compressed air.
It is derived from the Fluidic Connector.

Base for the Pneumatic Connector will be the upcoming Application Recommendation Pneumatics of
the AutomationML consortium, which relies on [ISO 18582-2] standard.

For the description of pneumatic connectors, the following provisions shall apply:

A pneumatic connector of an Automation Component shall be attached to an InternalElement, which
shall be a child or sub child element of the AutomationML element representing the Automation
Component.

The InternalElement shall reference the role class “PneumaticConnector” of the role class lib
“AutomationMLComponentStandardRCL” or a derived role class.

The InternalElement shall have one or more Interfaces from interface class “PneumaticConnector”
or “CondensateDrainConnector” or both of “AutomationMLComponentBaselCL”.

The InterfaceClass PneumaticConnector has the attributes pneumatic port and connector type with
all values defined by [ISO 18582-2].

Figure 86 depicts the example usage of the role class “PneumaticConnector”. Additional Figure 87 and
Figure 88 show the role class and the used interface classes as object tree.

AutomationMLComponentStandard RCI_/

«InternalElements ==realize== N «RoleClass»
PneumaticConnector PneumaticConnector

AutomationMLComponentBaselCL /

«Externalinterfaces | «InterfaceClass»
PneumaticConnector ‘; Pneumaticinterface
D [> zInterfaceClasss»
PneumaticConnector

zInterfaceClasss»
CondensateDrainConnecto

Figure 86: Example usage of an AutomationML “PneumaticConnector”

4 f AutomationMLComponentStandardRCL
4 PneumaticConnector {Class: FluidicConnector }
4 % PneumaticConnector-Interfaces
0 Pneumaticinterface {Class: Pneumaticlnterface }

<AutomationML/> Part 6 AutomationML Component

Figure 87: AutomationML Representation of “PneumaticConnector” role class

4 f AutomationMLComponentBaselCL
ic] Pneumaticinterface {Class: AutomationMLBaselnterface }
ic] PneumaticConnector {Class: Pneumaticlnterface }
lic] CondensateDrainConnector {Class: AutomationMLBaselnterface }

Figure 88: AutomationML Representation of “Pneumaticinterface” and “PneumaticConnector” interface
class

3.13.8 Hydraulic Connector

The Hydraulic Connector models connectors of automation components that handle hydraulic fluid. It
derives from the Fluidic Connector. For the description of hydraulic connectors, the following provisions
shall apply:

A hydraulic connector of an Automation Component shall be attached to an InternalElement, which
shall be a child or sub child element of the AutomationML element representing the Automation
Component.

The InternalElement shall reference the role class “HydraulicConnector” of the role class lib
“AutomationMLComponentStandardRCL” or a derived role class.

The InternalElement shall have one or more Interfaces from interface class “HydraulicConnector” of
“AutomationMLComponentBaselCL” or a derived interface class.

Figure 89 depicts depicts the example usage of the role class “HydraulicConnector”. Additional shows
Figure 90 the role class as object tree.

AutomationMLComponemStandardR{:L/

«IntemalElements | ff_"_a_a_“f-f_’_’_ _________ > «RoleClasss
HydraulicConnector HydraulicConnector

AutomationMLComponentBaselCL /

==realize==
aExternalinterfaces N zlnterfaceClasss

Hydraulicinterface | [Hydraulicinterface

Figure 89: Example usage of an AutomationML “HydraulicConnector”

4 fi AutomationMLComponentStandardRCL
4 HydraulicConnector {Class: FluidicConnector }
4 % HydraulicConnector-Interfaces
-0 Hydrauliclnterface {Class: HydraulicInterface }

Figure 90: AutomationML Representation of “HydraulicConnector” role class

3.13.9 Sensor Connector

A Sensor Connector is a special case of a mechanical connector. It is the process interface to physically
sense the properties of interest (i.e. a mechanical movement or object presence within a spatial
detection area or mediums states like temperature or pressure). Sensors of many physical principles
have such a spatial detection area with a certain geometry and detection properties, which needs to be
specified both for mechanical construction and simulation environments. Properties of the model shall
be geometry, direction, attenuation over distance, type of medium, etc. Other sensor types (i.e. fluidic)
may use different properties. The details of sensor connectors will be described in Version 2 of this

document.

<AutomationML/> Part 6 AutomationML Component

3.13.10 Skill Connector

The skill connector shall be used to describe connections between different Automation Component
skills.

For the description of skill connectors, the following provisions shall apply:

A skill connector of an Automation Component shall be attached to an InternalElement, which shall
be a child or sub child element of the AutomationML element representing the Automation
Component. Additionally, the InternalElement shall reference the role class “SkillModel” of the role
class lib “AutomationMLComponentStandardRCL” or a derived role class.

The parent InternalElement shall reference the role class “SkillConnector” of the role class lib
“AutomationMLComponentStandardRCL” or a derived role class.

The InternalElement shall have one or more Interfaces from interface class “Skillinterface” of
AutomationMLComponentBaselCL or a derived interface class.

Figure 89 depicts the example usage of the role class “SkillConnector”. Additional shows Figure 90 the
role class as object tree.

c andardrcL /
< <InternalElement > <<realize>x D> <<RoleClass>>
SkillConnector SkillConnector
MLComponentBaseIC| L /
| <<Externallnterfaces» | <<realize>> > <<InterfaceClass> >
SkillInterface SkillInterface

Figure 91: Example usage of an AutomationML “SkillConnector” role class

4 AutomationMLComponentStandardRCL
SkillConnector {Class: Connector }

Figure 92: AutomationML Representation of “SkillConnector” role class

A detail specification of the usage of skill connectors will be described in Version 2 of this document.

3.13.11 Multi Connectors

A multi connector is a mechanical provision containing multiple of the previously described basic
connector types. Such multi connector will be described in Version 2 of this document.

<AutomationML/> Part 6 AutomationML Component

3.14 Connecting AutomationML Components and Composite Components

3.14.1 Relations between the contents within an AutomationML Component

The previous chapters have described the modelling of internal data models and connectors of an
AutomationML Component. A major strength of AutomationML is the representation of interconnected
information even if it is from other domains (interdisciplinary). For instance, AutomationML can set
relations between geometry, kinematics and behaviour in order to represent a full virtual commissioning
digital twin.

The relations described here are targeted to be specified in a second version of this document and are
just roughly sketched ad explained on examples here.

Figure 93 shows an abstract graphical visualization of the main contents of an example of an
AutomationML Component. In the lower half of the graphics InternalLinks between Connectors and
Models and between just Models are shown by different colored lines.

<AutomationML/>
komponenie ?‘®
Manuiaciurer: Feslo AG& [o.KG EI /b/
Tupelt CPEBAMISL 4 J 94
TupeDescription: Maonetventi CPEIB
Drdertio: =]
Instancelt I5TPIBIANBG
Bid (JPG}P_N;‘;-I Symiol [JPG/PNG) ICON (ICa/BMP)
.'": I'L; sl ‘: . l
Documentation (POF) ‘Wartung (POF/TXT)
. |
Verhalten jsmieson)
51““—” Fahigkeiten (Skills) __-
Sl _.VEV‘hBhEI'I{\uaxH |
|] -
GEDmE{;L%?) Kinematik (CAD)
— & |[TA

Figure 93: Graphical visualization of the main contents of an AutomationML Component.

For the modelling of relations within AutomationML Components the following rules shall apply:
A relation shall be modelled by an InternalLink between Interfaces of two relation partners
Note: Multiple relations between two relation partners can be realized by adding Internalinks
If the relation has no direction two InternalLinks shall be defined in each direction.

If the relation has a direction it is directed from “RefSideA” to “RefSideB” of the InternalLink.

Part 6 AutomationML Component

<AutomationML/>

3.14.1.1 Relations between Connectors and Models within an AutomationML Component

The connectors of an AutomationML Component represent virtual or real external interfaces of the real
Automation component. Mostly the connectors have a relation to the data models inside the
AutomationML Component. For instance, a “MechanicConnector”, like the flange on a movable piston
rod, has a relation/influence on the kinematic model of the Component, because if it is moved by an
external force, the piston rod might move alongside.

For the modelling of the relations between Connectors and Models within an AutomationML Component
the following rules shall apply:

The relation shall be modelled by an InternalLink between an Interface of the Connector and an
Interface of the model.

The linked connector and the linked model shall have a role requirement of a role class defined in
the role class libraries “AutomationMLComponentBaseRCL” or
“AutomationMLComponentStandardRCL” or any derived.

The following table shows some examples of possible relations between Connectors and Models and
their interfaces:

Table 3: Examples for possible Connector to Model relations

Connector Connector Interface Model Model Interface
BehaviourModel Variablelnterface
ElectricConnector Electricinterface GeometryModel Attachmentinterface

KinematicModel Attachmentinterface

BehaviourModel Variablelnterface

PneumaticConnector

Pneumaticinterface

GeometryModel

Attachmentinterface

KinematicModel

Attachmentinterface

LogicConnector

Signal Interface

BehaviourModel

Variablelnterface

MechanicConnector

Mechaniclnterface

KinematicModel

Attachmentinterface

Skill Connector

Skill Interface

BehaviourModel

3.14.1.2 Relations between Models within an AutomationML Component

The Models of an AutomationML Component represent data models for a specific domain or use case
of Automation component. This section describes the modelling of the relation of different data models
within an AutomationML Component.

For the modelling of relations between Models within AutomationML Component the following rules shall
apply:
The relation shall be modelled by an InternalLink between Interfaces of two models.

The linked models shall have a role requirement of a role class defined in the role class libraries
“AutomationMLComponentBaseRCL” or “AutomationMLComponentStandardRCL” or any derived.

An example for a relation between models can be found in the chapter about kinematics. There a relation
between the variable interface of logics is connected to the Jointinterface of a COLLADAKinematicJoint.
This interdisciplinary connects logics with kinematics and provide an added value that can simplify the
use of AutomationML Components e.g. in virtual commissioning software tools.

3.14.2 Composite Components: Relations between different AutomationML Components

Two or more AutomationML Components or Composite Components can be interconnected using
connectors in different or the same domain, building Composite Components.

<AutomationML/> Part 6 AutomationML Component

Figure 94 shows an example how to build a Composite Component out of single components. Multiple
single AutomationML Components connected with Internal Links on their Connectors build a resulting
AutomationML Composite Component with its own set of Connectors.

<AutomationML/>

B s — o - S - | komponente N
Merkmale 4 ‘e/})
?;;;::duren Festo AG & Co.KG g 4
TupeDescription L
Instanceld: . % L

Figure 94: CAD Model of a composite automation component and a graphical visualization of the
belonging AutomationML Component

For the interconnection of AutomationML Components or Composite Components via their connectors
the following rules shall apply:

= Two or more AutomationML Components shall be connected with InternalLinks between the
Interfaces of Connectors.

The Connectors shall have a role requirement of a role class defined in the role class libraries
“AutomationMLComponentBaseRCL” or “AutomationMLComponentStandardRCL” or any derived.

<AutomationML/> Part 6 AutomationML Component

4 Standard Libraries
4.1 Role Class Libraries

4.1.1 Overview new Role Class Libraries

Basement of the modelling AutomationML Components are the required role classes. Facing the
addressed aspects of AutomationML Components a set of role classes are defined in this whitepaper.

Therefore, three AutomationML role class libraries are defined. The name of the first role class lib is
“AutomationMLComponentBaseRCL”. Within the role class library basic abstract role classes are
defined that in general should not be used within an AutomationML Component description.

The second role class library is the “AutomationMLComponentStandardRCL” the role classes within the
library cover the concrete model and information aspects of an AutomationML Component. They shall
be used to within the definition AutomationML Components as InternalElements or SystemUnitClass.

The third role class library has the name “AutomationMLFMILogicRoleClassLib”. This library covers
some basic definitions to integrate FMU/FMI information into AutomationML structures. It is planned to
standardize the library within the next maintenance cycle of the IEC representation of [WP-Part4:2018].

The role classes are derived from role classes defined from AutomationML basic roles defined in
AutomationML Whitepaper — Architecture and general requirements and role classes defined in [WP-
Part1:2018].

Figure 95 gives an overview about the AutomationML role class libraries
“AutomationMLComponentBaseRCL” and “AutomationMLComponentStandardRCL” and the relation
between their role classes.

<AutomationML/>

Part 6 AutomationML Compone

|AutomationMLComponentBaseRCL)

«RoleClass»
AdditionalDeviceDescription

«RoleClass»

«RoleClass»
AutoamtionComponent

<«RoleClass»
KinematicModel

«RoleClass» <«RoleClass»
Connector A MultiConnector «RoleClass»
PneumaticConnector
«RoleClass» «RoleClass»
FluidicConnector HydraulicConnector
«RoleClass» «RoleClass»
«RoleClass» MechanicConnector LiguidicConnector
Model
<«RoleClass»
LogicConnector
«RoleClass»
«RoleClass» ElectricConnector
LogicModel <RoleClass»
SensorConnector
«RoleClass» «RoleClass»
PLCopenXMLLogic Sequence
«RoleClass»
SequencingModele
«RoleClass»
«RoleClass» SequenceElement
AMLLogic «RoleClass»
SimulationModel
«RoleClass»
«RoleClass» Function
FMILogic «RoleClass»
BehaviourMoedel
. «RoleClass»
<RoleClasss SkillLogicModel
GeometryModel R
«RoleClass»
JITGeometryModel
«RoleClass»

2DGeometryModel

«RoleClass»
COLLADAGeometryAttachment

«RoleClass»
COLLADAGeometryModel

«RoleClass»
COLLADAKinematicModel

«RoleClass»

«RoleClass»
COLLADAKinematicAttachment

RoleClass»
GraphicRepresentation

«RoleClass»
Icon

«RoleClass»

Picture
«RoleClass»
ManufacturerIcon
<«RoleClass»
ComponentIcon
<«RoleClass»
PneumaticSymbol

«RoleClass»

Symbol

HydraulicSymbol
<«RoleClass»
FElectricSymbol

«RoleClass»

—_|
—
L
L

«RoleClass»

laintenanceDescriptionGrouy

<«RoleClass»
|MaintenanceDescriptionItem

«RoleClass»

Documentation

Certificate

Figure 95: Inheritance structure
“AutomationMLComponentStandardRCL”

of

“AutomationMLComponentBaseRCL”

and

<AutomationML/> Part 6 AutomationML Component

4.1.2 AutomationMLComponentBaseRCL

Figure 96 present the normative role class library “AutomationMLComponentBaseRCL” as object tree.
Within this role class library abstract and base role classes are defined. This role classes are the parent
classes for the standard role classes specified in chapter 4.1.3.
4 [AutomationMLComponentBaseRCL
b AdditionalDeviceDescription {Class: ExternalData }
Connector {Class: AutomationMLBaseRole }
b Documentation {Class: ExternalData }
GeometryModel {Class: Model }
P GraphicRepresentation {Class: ExternalData }
Icon{Class: GraphicRepresentation }
4 LogicModel {Class: Model }
P PLCopenXMLLogic {Class: LogicModelObject }
AMLLogic {Class: LogicModelObject }
> [Rd FMILogic{Class: FMILogicObject}
KinematicModel {Class: Model }
MaintenanceDescription {Class: AutomationMLBaseRole }
Model {Class: AutomationMLBaseRole }
Symbol{Class: GraphicRepresentation }

Figure 96: Overview “AutomationMLComponentBaseRCL”

4.1.2.1 RoleClass AdditionalDeviceDescription
The role class “AdditionalDeviceDescription” shall be used as specified in Table 4.

Table 4: RoleClass AdditionalDeviceDescription

Class name AdditionalDeviceDescription

Description This is the base class for standard or user defined role classes referencing
technology-based device descriptions.

Parent Class AutomationMLBPRRoleClassLib/ExternalData

PEI 0 © Emisn? AutomationMLComponentBaseRCL/AdditionalDeviceDescription

reference

Attributes “SpecVersion” The version of the Specification or
Xs:string Schema of the device description file.
“‘DocLang” Language of the referenced description
Xs:string file according to [RFC5646:2009].

The attribute is optional.

Interfaces “DeviceDescriptionReference” This interface is used to reference a to a
(Path of Interface Type = technology related device description file
“AutomationMLComponentBaselC | according to the respective technology
L/DeviceDescriptionReference”) standard of an AutomationML

Component.

The use of the interface shall be
mandatory.

<AutomationML/>

Part 6 AutomationML Component

4.1.2.2 RoleClass Connector

The role class “Connector” shall be used as specified Table 5.

Table 5: RoleClass Connector

Class name

Connector

Description

The role class “Connector” is an abstract basic role class and the base class
for standard or user defined role classes describing connectors of
components.

Parent class

AutomationMLBaseRoleClassLib/AutomationMLBaseRole

Path for element

AutomationMLComponentBaseRCL/Connector

reference
Attribute None
InterfaceClass None

4.1.2.3 RoleClass Documentation

The role class “Documentation” shall be used as specified in Table 6.

Table 6: RoleClass Documentation

Class name

Documentation

Description

The role class “Documentation” shall be used to specify all AutomationML
objects referencing documentation related information of a component.

Parent class

AutomationMLBPRRoleClassLib/ExternalData

Path for element

AutomationMLComponentBaseRCL/Documentation

reference
Attribute None
Interfaces “ExternalDataReference” This interface is used to reference

(Path of Interface Type =
“AutomationMLBPRInterfaceClassLi
b/ExternalDataReference”)

the documentation of a component.

The use of the interface shall be
mandatory and shall have the
cardinality [1...n].

Note 1: All provisions of the [BPR-EDRef:2016] shall be used for role class “Documentation” and all derived classes

used in the context of Automation components.

<AutomationML/>

Part 6 AutomationML Component

4.1.2.4 RoleClass GeometryModel

The role class “GeometryModel” shall be used as specified in Table 7.

Table 7: RoleClass GeometryModel

Class name

GeometryModel

Description

The role class “GeometryModel” is a basic abstract role class and the base
class for standard or user defined role classes referencing component
geometry models.

Parent Class

AutomationMLComponentBaseRCL/Model

Path for element

AutomationMLComponentBaseRCL/GeometryModel

reference
Attributes None
Interfaces None

4.1.2.5 RoleClass GraphicRepresentation

The role class “GraphicRepresentation” shall be used as specified in Table 8.

Table 8: RoleClass GraphicRepresentation

Class name

GraphicRepresentation

Description

The role class “GraphicRepresentation” is a basic role class and the base
class for standard or user defined role classes referencing graphic
representation of components.

Parent Class

AutomationMLBaseRoleClassLib/AutomationMLBaseRole

Path for element

AutomationMLComponentBaseRCL/GraphicRepresentation

reference
Attribute None
Interfaces “GraphicRepresentationReference” This interface is used to reference a

(Path of Interface Type =
“AutomationMLComponentBaselCL/
GraphicRepresentationReference”)

graphic of an AutomationML
Component.

The use of the interface shall
mandatory and shall have the
cardinality [1...n].

<AutomationML/> Part 6 AutomationML Component

4.1.2.6 RoleClass Icon
The role class “lcon” shall be used as specified in Table 9.

Table 9: RoleClass Icon

Class name Icon

Description The role class “Icon” is a basic role class and the base class for standard or
user defined role classes referencing icons of components.

Parent class AutomationMLComponentBaseRCL/GraphicRepresentation

PRI 20 2 St AutomationMLComponentBaseRCL/Icon

reference

Attribute None

Interfaces “GraphicRepresentationReference” Shall be used as described for parent
(inherited) class.

4.1.2.7 RoleClass LogicModel
The role class “LogicModel” shall be used as specified in Table 10.
Table 10: RoleClass LogicModel

Class name LogicModel

Description The role class “LogicModel” is a basic abstract role class and the base class for
standard or user defined role classes referencing component logic models.

Parent class AutomationMLComponentBaseRCL/Model

Path for element | AutomationMLComponentBaseRCL/LogicModel

reference
Attributes None
Interfaces None

<AutomationML/>

Part 6 AutomationML Component

4.1.2.8 RoleClass PLCopenXMLLogic
The role class “PLCopenXMLLogic” shall be used as specified inTable 11.
Table 11: RoleClass PLCopenXMLLogic

Class name

PLCopenXMLLogic

Description

The role class
PLCopenXMLLogic model.

“PLCopenXMLLogic”

shall be used for referencing a

Parent class

AutomationMLLogicRoleClassLib/LogicModelObject

Path for element

AutomationMLComponentBaseRCL/LogicModel/PLCopenXMLLogic

«

(Path of Interface Type =
AutomationMLPLCopenXMLInterfa
ceClassLib/Variablelnterface”)

reference
Attributes None
Interfaces Variablelnterface This interface shall be used to reference

PLCopen XML variables of an PLCopen
logic model that are used within an
AutomationML Component.

The use of the interface shall be optional
and shall have the cardinality [O...n].

LogicInterface

(Path of Interface Type =
AutomationMLInterfaceClassLib/Au
tomationMLBaselnterface/External
DataConnector/PLCopenXMLInterf
ace/Logiclnterface”)

This interface shall be used to reference
PLCopen XML logic model.

The use of the interface shall be mandatory
and shall have the cardinality [1].

ReferenceSequence This interface shall NOT be used to
(inherited) reference PLCopen XML logic model.
The interface has the cardinality [0].
ReferenceBehaviour This interface shall NOT be used to
(inherited) reference PLCopen XML logic model.

The interface has the cardinality [0].The
use of the interface is optional and has the
cardinality [0..1].

<AutomationML/> Part 6 AutomationML Component

4.1.2.9 RoleClass AMLLogic
The role class “AMLLogic” shall be used as specified in Table 12.
Table 12: RoleClass AMLLogic

Class name AMLLogic
Description The role class “AMLLogic” shall be used for referencing an AMLLogic model.
Parent class AutomationMLLogicRoleClassLib/LogicModelObject

Path for element | AutomationMLComponentBaseRCL/LogicModel/AMLLogic
reference

Attributes None
Interfaces ReferenceSequence This interface shall be used to reference
(inherited) AML logic model.
The use of the interface is optional and has
the cardinality [0..1].
ReferenceBehaviour This interface shall be used to reference
(inherited) AML logic model.
The use of the interface is optional and has
the cardinality [O..1].

Note: The use or one interface is mandatory and both interfaces have an xor relationship.

4.1.2.10 RoleClass FMILogic
The role class “FMILogic” shall be used as specified in Table 13.
Table 13: RoleClass FMILogic

Class name FMILogic

Description This RoleClass “FMILogic” describes an instance of a co-simulation Functional
Mockup Unit (FMU) according to the FMI standard (see https://fmi-
standard.org/), which is an open standard and is adopted by a variety of
simulation tools.

The type relation is modeled via a mandatory FMIReference, which is an
AutomationML interface attached to the InternalElement referencing this
FMISimulationModel-RoleClass.

Parent class AutomationMLFMILogicRoleClassLib/FMILogicObject

Path for element | AutomationMLComponentBaseRCL/LogicModel/FMILogic
reference

Attributes “Name” This is the instance name of the FMU.
xs:string
“Description” This is the description of the FMU
xs:string instance. It should describe unique

features (e.g. regarding performance or
precision) of this simulation model since
multiple FMISimulationModels may be

https://fmi-standard.org/
https://fmi-standard.org/

<AutomationML/>

Part 6 AutomationML Component

attached to an InternalElement
representing an automation component.

“FMIVersion”
xs:string

The FMI version used by the referenced
FMU. By today it must be one character
string out of the set [*v1.0”, “v2.0”; “v3.07]

Interfaces

FMIReference

(Path of Interface Type
AutomationMLFMIInterfaceClassLib/F
MIReference”)

«

This interface is used to connect the
logical behaviour of the FMI model to the
component description.
The use of the interface is mandatory
and shall have the cardinality [1].

FMIVariablelnterface

(Path of Interface Type
AutomationMLFMIInterfaceClassLib/
FMIVariablelnterface”)

This interface is used to connect the
variables for the specified FMI variable.
The use of the interface shall be
mandatory and shall have the cardinality
[1...n].

4.1.2.11 RoleClass KinematicModel
The role class “KinematicModel” shall be used as specified in Table 14.
Table 14: RoleClass KinematicModel

Class name

KinematicModel

Description

The basic abstract role class “KinematicModel” shall be used as base class
for standard or user defined role classes referencing component models.

Parent Class

AutomationMLComponentBaseRCL/Model

Path for element

AutomationMLComponentBaseRCL/KinematicModel

reference
Attributes None
Interfaces None

4.1.2.12 RoleClass MaintenanceDescription

The role class “MaintenanceDescription” shall be used as specified Table 15.

Table 15: RoleClass MaintenanceDescription

Class name

MaintenanceDescription

Description

The role class “MaintenanceDescription” is an abstract basic role class and the
base class for standard or user defined role classes defining maintenance

description.

Parent class

AutomationMLBaseRoleClassLib/AutomationMLBaseRole

Path for

element AutomationMLComponentBaseRCL/MaintenanceDescription
reference

Attribute None

InterfaceClass | None

<AutomationML/> Part 6 AutomationML Component

4.1.2.13 RoleClass Model
The role class “Model” shall be used as specified in Table 16.
Table 16: RoleClass Model

Class name Model

Description The basic abstract role class “Function” shall be used as base class for
standard or user defined role classes defining and referencing component
models.

Parent class AutomationMLBaseRoleClassLib/AutomationMLBaseRole

Path for

element AutomationMLComponentBaseRCL/Model

reference

Attribute None

Interfaces None

4.1.2.14 RoleClass Symbol
The role class “Symbol” shall be used as specified in Table 17.
Table 17: RoleClass Symbol

Class name Symbol

Description The role class “Symbol” shall be used for referencing a symbol of the Automation
component.

Parent class AutomationMLComponentBaseRCL/GraphicRepresentation

el for Clement AutomationMLComponentStandardRCL/Symbol

reference

Attribute None

Interfaces “GraphicRepresentationReference” Shall be used as described for parent
(inherited) class.

<AutomationML/> Part 6 AutomationML Component

4.1.3 AutomationMLComponentStandardRCL

Figure 97 provides an overview about the “AutomationMLComponentStandardRCL” role class library as
AutomationML object tree. The role classes shall be used to specify the single model and information
aspects of AutomationML Components and Composite Components. All role classes of this role class
library are derived for role classes of the “AutomationMLBaseRoleClassLib” or the
“AutomationMLComponentBaseRCL”. The “AutomationMLBaseRoleClassLib” is defined in [WP-
Part1:2018] and the “AutomationMLComponentBaseRCL”. Is defined in chapter 4.1.2 of this document.

4 AutomationMLComponentStandardRCL

AutomationComponent {Class: AutomationMLBaseRole }
AutomationComponentSemanticSystem {Class: AutomationMLBaseRole }
BehaviourModel {Class: LogicModel }

Function {Class: LogicModel }

SimulationModel {Class: LogicModel }

SequencingModel {Class: LogicModel }

Sequence {Class: SequencingModel }

SequenceElement {Class: SequencingModel }

SkillModel {Class: Model }

SkillLogicModel {Class: LogicModel }

SkillConnector {Class: Connector }

COLLADAKinematicModel {Class: KinematicModel }
COLLADAKinematicJoint {Class: COLLADAKinematicModel }
COLLADAKinematicAttachment {Class: COLLADAKinematicModel }
COLLADAGeometryModel {Class: GeometryModel }
COLLADAGeometryAttachment {Class: COLLADAGeometryModel }
JTGeometryModel {Class: GeometryModel }

2DGeometryModel {Class: GeometryModel }

ComponentPicture {Class: GraphicRepresentation }

ElectricSymbol {Class: Symbol }

HydraulicSymbol {Class: Symbol }

PneumaticSymbol {Class: Symbol }

Componentlcon {Class: Icon }

A VAR VA " a4

Manufacturerlcon {Class: Icon}
Certificate {Class: Documentation }
> MechanicConnector {Class: Connector }
MultiConnector {Class: Connector }
LogicConnector {Class: Connector }

v ¥

ElectricConnector {Class: Connector }
FluidicConnector {Class: Connector }
LiquidicConnector {Class: FluidicConnector }
PneumaticConnector {Class: FluidicConnector }
HydraulicConnector {Class: FluidicConnector }

A A VA v

SensorConnector {Class: Connector }
MaintenanceDescriptionGroup {Class: MaintenanceDescription }

MaintenanceDescriptionltem {Class: MaintenanceDescription }

Figure 97: Overview AutomationMLComponentStandardRCL as AutomationML tree

<AutomationML/> Part 6 AutomationML Component

4.1.3.1 RoleClass AutomationComponent
The role class “AutomationComponent” shall be used as specified in Table 18.

Table 18: RoleClass AutomationComponent

Role class AutomationComponent
Description The role class “AutomationComponent” specifies the root element of an
AutomationML Component. It defines a set of attributes to identify, classify and
describe an industrial product which serves specific functions, i.e. for industrial
process or factory automation.
Parent class AutomationMLBaseRoleClassLib/AutomationMLBaseRole
R OIF ST AutomationMLComponentStandardRCL/AutomationComponent
reference
“IdentificationData” The attribute shall be used as complex
complex attribute to specify the identification data of
the automation component type or
instance model. The attributes shall be
used according to Table 19.
The use of the attribute is optional.
“GeneralTechnicalData” The attribute shall be used as parent
complex attribute for all technical classification
attributes.
The use of the attribute is optional.
“CommercialData” The attribute shall be used as parent
complex attribute for all attributes defining
commercial data. The attributes shall be
used according to Table 20 to Table 22.
The use of the attribute is optional.
“ParameterData” The attribute shall be used as parent
complex attribute for parameter data (configurable
and read-only) of the AutomationML
Component.
The use of the attribute is optional.
Interfaces None

The attribute “IdentificationData” shall be used as complex attribute specified in Table 19.
Table 19: Sub-Attributes “IdentificationData”

Attribute AttributeDataType | Description

Manufacturer xs:string The attribute shall be used to define
the manufacturer of the described
AutomationML Component.

The use of the attribute is optional.

ManufacturerURI xs:string The attribute shall be used to define
the manufacturer URI of the described
AutomationML Component.

The use of the attribute is optional.

DeviceClass Xs:string The attribute shall be used to define
the device class or product family of
the described AutomationML
Component.

The use of the attribute is optional.

<AutomationML/> Part 6 AutomationML Component

Model Xs:string The attribute shall be used to define
the product or model name of the
described AutomationML Component.
The use of the attribute is optional.

ProductCode xs:string The attribute shall be used to define
the unique product code of the
described AutomationML Component.

The use of the attribute is optional.

OrderCode xs:string The attribute shall be used to define
the unique order code of the described
AutomationML Component.

The use of the attribute is optional.

HardwareRevision Xs:string The attribute shall be used to define
the hardware revision of the described
AutomationML Component.

The use of the attribute is optional.

SoftwareRevision Xs:string The attribute shall be used to define
the software or firmware revision of the
described AutomationML Component.
The use of the attribute is optional.

SerialNumber Xs:string The attribute shall be used to define
the serial number of the described
AutomationML Component instance
model.

The use of the attribute is optional.

FabricationNumber Xs:string The attribute shall be used to trace the
date, time and circumstances of the
fabrication of the described
AutomationML Component instance
model.

The use of the attribute is optional.

ProductinstanceURI xs:string The ProductinstanceURI shall be used
as defined in the
[OPCUA-Part100:2020]

The attribute “CommercialData” shall be used as complex attribute as specified in Table 19.
Table 20: Sub-Attributs “CommercialData”

Attribute AttributeDataType Description

PackagingAndTransportation | complex The sub attributes of the attribute shall be
used to define the properties characterizing
the packing and transportation (shipping) of
a product.

The use of the attribute is optional.

ProductDetails complex The sub attributes of the attribute shall be
used to define the product details of the
automation component. The sub attributes
shall follow the definitions of Table 21.
The use of the attribute is optional.

ProductOrderDetails complex The sub attributes of the attribute shall be

<AutomationML/>

Part 6 AutomationML Component

used to define the product order details of
the automation component. The sub
attributes shall follow the definitions of Table
22.

The use of the attribute is optional.

ProductPriceDetails complex The sub attributes of the attribute shall be
used to define the product price details of
the automation component. The sub
attributes shall follow the definitions of Table
23.

The use of the attribute is optional.

ManufacturerDetails complex The sub attributes of the attribute shall be

used to define the product price details of
the automation component. The sub
attributes shall follow the definitions of Table
25.

The use of the attribute is optional.

The attribute “ProductDetails” shall be used as complex attribute as specified in Table 21.
Table 21: Sub-Attributs “ ProductDetails”

The attribute shall be
defined as unordered
list type according to
[BPR-MLA:2016]

Attribute AttributeDataType Description

DescriptionShort Xs:string Contains a short description / designation of the
product (single line)

DescriptionLong Xs:string Contains a technical description / designation of
the product (multiple lines)

InternationalPID Xs:string Contains the international Order number of the
product according to the used standard

InternationalPIDType Xs:string Contains the abbreviation of the international
PID standard (e.g. gtin, EAN...)

ManufacturerPID Xs:string Contains the order number of the original
manufacturer

SpecicalTreatmentClass | xs:string Additional product classification used for

hazardous goods or substances, primary
pharmaceutical products, radioactive measuring
equipment, etc. The “type” attribute specifies the
dangerous goods classification scheme. The
value shall contain a special treatment class.
Additional the RefSemantic Element shall be
used to specify the system that defines the used
treatment classes.

The use of the attribute is optional.

Keyword Xs:string Keyword that supports product search in target
The attribute shall be systems.
defined as unordered
list type according to
[BPR-MLA:2016]
Remarks Xs:string Remark related to a business document.

The attribute “ProductOrderDetails” shall be used as complex attribute as specified in Table 22.

<AutomationML/> Part 6 AutomationML Component

Table 22: Sub-Attributs “ ProductOrderDetails”

Attribute AttributeDataType Description

OrderUnit Xs:string Unit in which the product can be ordered; it is only
possible to order multiples of the product unit.

ContentUnit Xs:string Unit of the product related to the order unit

PriceQuantity Xs:string If nothing is specified in this field the default value 1

is assumed, in other words the price refers to
exactly one order unit. If specified, a multiple or a
fraction of the order unit (element ORDER_UNIT)
which indicates the quantity to which all the
specified prices refer.

QuantityMin xs:float Minimum order quantity with respect to the order
unit (ORDER_UNIT); if not specified, the minimum
order quantity is 1.

QuantityInterval xs:float Maximum order quantity with respect to the order
unit (ORDER_UNIT); if not specified, the order
guantity is not limited.

QuantityMax xs:float Number indicating the quantity steps in which the
articles can be ordered. The first step always
corresponds to the minimum order quantity
specified. The unit of the quantity interval is the
same as the order unit.

PackingUnits Xs:string Information on the dependency of the packing unit
from the order unit. Example: Printing paper & 500
sheets has the order unit pack; ordering 5 packs
results in a new packing unit, carton; ordering 50
packs or 10 cartons results in another packing unit,
covering box; ordering 500 packs or 100 cartons
results in the biggest packing unit here, palette.

Note: The use of the units shall follow the [BPR-Units:2018].
The attribute “ProductPriceDetails” shall be used as complex attribute as specified in Table 23.
Table 23: Sub-Attributs “ ProductPriceDetails”

Attribute AttributeDataType Description

ValidStartDate xs:date The attribute shall be used to define the valid
start date of the product price of the automation
component.

The use of the attribute is optional.

ValidEndDate xs:date The attribute shall be used to define the valid
end date of the product price of the automation
component.

The use of the attribute is optional.

ProductPrice complex The sub attributes of the attribute shall be used
to define the product price of the automation
component. The sub attributes shall follow the
definitions of Table 24.

The use of the attribute is optional.

<AutomationML/> Part 6 AutomationML Component

The attribute “ProductPrice” shall be used as complex attribute as specified in Table 24.
Table 24: Sub-Attributs “ ProductPrice”

Attribute AttributeDataType Description

PriceAmount xs:string The attribute shall be used to define the price
amount of the automation component.
The use of the attribute is optional.

PriceCurrency xs:string The attribute shall be used to define the price
currency of the product price of the automation
component.

The use of the attribute is optional.

Tax xs:string The attribute shall be used to define tax of the
product price of the automation component.
The use of the attribute is optional.

PriceFactor Xs:string The attribute shall be used to define the price
factor of the product price of the automation
component.

The use of the attribute is optional.

LowerBound Xs:string The attribute shall be used to define the lower
bound of the product price of the automation
component.

The use of the attribute is optional.

Territory Xs:string The attribute shall be used to define the lower
bound of the product price of the automation
component.

The use of the attribute is optional.

The attribute shall be
defined as unordered
list type according to
[BPR-MLA:2016]

The attribute “ManufacturerDetails” shall be used as complex attribute as specified in Table 25.
Table 25: Sub-Attributs “ManufacturerDetails”

Attribute AttributeDataType Description

Name Xs:string The attribute shall be used to define the name of
the manufacturer of the automation component.
The use of the attribute is optional.

Addressl1 Xs:string The attribute shall be used to define the first
address line of the manufacturer of the automation
component.

The use of the attribute is optional.

Address2 Xs:string The attribute shall be used to define the second
address line of the manufacturer of the automation
component.

The use of the attribute is optional.

ZipCode Xs:string The attribute shall be used to define the zip code of
the manufacturer of the automation component.
The use of the attribute is optional.

City Xs:string The attribute shall be used to define the city of the
manufacturer of the automation component.
The use of the attribute is optional.

Country Xs:string The attribute shall be used to define the country of

<AutomationML/> Part 6 AutomationML Component

the manufacturer of the automation component.
The use of the attribute is optional.

ContactMail Xs:string The attribute shall be used to define the contact
mail of the manufacturer of the automation
component.

The use of the attribute is optional.

ContactPhone Xs:string The attribute shall be used to define the contact
phone number of the manufacturer of the
automation component.

The use of the attribute is optional.

Website Xs:string The attribute shall be used to define the website of
the manufacturer of the automation component.
The use of the attribute is optional.

4.1.3.2 RoleClass AutomationComponentSemanticSystem
The role class “AutomationComponent” shall be used as specified in Table 18.

Table 26: RoleClass AutomationComponentSemanticSystem

Class name AutomationComponentSemanticSystem

Description The role class “AutomationComponentSemanticSystem” shall be used to
define the semantic systems that are supported by the AutomationML
Component.

Parent class AutomationMLBaseRoleClassLib/

AutomationMLBaseRole

Path for element AutomationMLComponentStandardRCL/

reference AutomationComponentSemanticSystem
Attributes ClassificationSystem The attribute “ClassificationSystem” shall
complex be used to announce an own semantic

system or standardized system that is used
for the description of an AutomationML
Component. It shall follow the provisions of
Table 27. The attribute has the cardinality

0..n.
IEC 61987 The attribute “IEC 61987” shall be used to
complex announce the IEC 61987 as semantic

system for an AutomationML Component. It
shall follow the provisions of Table 28. The
attribute is optional.

IEC 61360-4 The attribute “IEC 61360-4” shall be used to

complex announce the 61360-4 as semantic system
for an AutomationML Component. It shall
follow the provisions of Table 28. The
attribute is optional.

IEC 62683 The attribute “IEC 62683” shall be used to

complex announce the IEC 62683 as semantic

system for an AutomationML Component. It
shall follow the provisions of Table 28. The

attribute is optional.

<AutomationML/>

Part 6 AutomationML Component

eClass The attribute “eClass” shall be used to
complex announce an epl@ss as semantic system
for an AutomationML Component. It shall
follow the provisions of Table 28. The
attribute is optional.
Interfaces None

The attribute “ClassificationSystem” shall be used as complex attribute specified in Table 27.

Table 27: Sub-attributes of the “ClassificationSystem” attribute

Attribute

AttributeDataType

Description

Name

Xs:string

The attribute “Name” shall be used to specify the
used classification system that is used to define
attributes of the component in detail. The attribute is
mandatory.

Version

Xs:string

The attribute “Version” shall be used to specify
particular version of the classification system that is
used. The attribute is mandatory.

RefSemanticPrefix

xs:string

The attribute “RefSemanticPrefix” shall be used to
specify the prefix used in the RefSemantic to define
the semantic systems. The attribute is mandatory,
and it shall follow the provisions of chapter 7.

URL

Xs:string

The attribute “URL” shall be used to specify the
URL where the semantic system can be found. The
attribute is optional.

The values for the sub-attributes of the attributes “IEC 61987”, “IEC 61360-4”, “IEC 62683” and “eClass”
shall be follow the specification in Table 28.

Table 28: Attribute values “SemanticSystems”

Values for attribute

Sub-attribute
IEC 61987 IEC 61360-4 IEC 62683 eClass

Version 2.0014.0016 2.0014.0016 2.0014.0016 11.0

RefSemanticPrefix | IRDI- IRDI- IRDI- IRDI-
PATH:0112/2///6 | PATH:0112/2///6 | PATH://0112/2/l PATH://0173
2683# 1360_4# 62683#)

URL https://cdd.iec.ch/ | https://cdd.iec.ch/ | https://cdd.iec.ch/
cdd/iec61987/iec | cdd/iec61360/iec | cdd/iec62683/iec
61987.nsf/TreeFr | 61360.nsf/TreeFr | 62683.nsf/TreeFr | https://www.eclas
ameset?OpenFra | ameset?OpenFra | ameset?OpenFra | scontent.com
meSet&ongletact | meSet&ongletact | meSet&ongletact
if=1 if=1 if=1

<AutomationML/>

Part 6 AutomationML Component

4.1.3.3 RoleClass BehaviourModel

The role class “BehaviourModel” shall be used as specified in Table 29.
Table 29: RoleClass BehaviourModel

Class name

BehaviourModel

Description

The role class “BehaviourModel” shall be used in order to specify a logic model
integration as behaviour model of AutomationML Component.

Parent class

AutomationMLComponentBaseRCL/LogicModel

Path for element

AutomationMLComponentStandardRCL/BehaviourModel

reference
Attributes None
Interfaces None

4.1.3.4 RoleClass Function

The role class “Function” shall be used as specified in Table 30.

Table 30: RoleClass Function

Class name

Function

Description

The role class “Function” shall be used in order to specify a logic model
integration as function of AutomationML Component.

Parent class

AutomationMLComponentBaseRCL/LogicModel

Path for element

AutomationMLComponentStandardRCL/Function

reference
Attributes None
Interfaces None

4.1.3.5 RoleClass SimulationModel

The role class “SimulationModel” shall be used as specified in Table 31.

Table 31: RoleClass SimulationModel

Class name

SimulationModel

Description

The role class “SimulationModel” shall be used in order to specify a logic model
integration as simulation model of AutomationML Component.

Parent class

AutomationMLComponentBaseRCL/LogicModel

Path for element

AutomationMLComponentStandardRCL/SimulationModel

reference
Attributes None
Interfaces None

<AutomationML/>

Part 6 AutomationML Component

4.1.3.6 RoleClass SkillLogicModel
The role class “SkillLogicModel” shall be used as specified in Table 32.
Table 32: RoleClass SkillLogicModel

Class name

SkillLogicModel

Description

The role class “SkillLogicModel” shall be used in order to specify a logic model
integration as behaviour model of AutomationML Component.

Parent class

AutomationMLComponentBaseRCL/LogicModel

Path for element

AutomationMLComponentStandardRCL/SkillLogicModel

reference
Attribute None
Interfaces None

Note: The final definition of AutomationML Component skill models will be part of Version 2 of this document.

4.1.3.7

RoleClass SequencingModel

The role class “SequencingModel” shall be used as specified in Table 33

Table 33: RoleClass SequencingModel

Class name

SequencingModel

Description

The role class “SequencingModel” shall be used in order to specify all the
interface related information of an sequence model of an AutomationML
Component or Composite Component.

Parent class

AutomationMLComponentBaseRCL/LogicModel

Path for element

AutomationMLComponentStandardRCL/SequencingModel

reference
Attributes None
Interfaces None

4.1.3.8 RoleClass Sequence

The role class “Sequence” shall be used as specified in Table 34.

Table 34: RoleClass Sequence

Class name

Sequence

Description

The role class “Sequence” shall be used in order to specify all the interface
related information of a PLCopen XML sequence model.

Parent class

AutomationMLComponentStandardRCL/SequencingModel

Path for element

AutomationMLComponentStandardRCL/Sequence

reference
Attribute None
Interfaces None

<AutomationML/>

Part 6 AutomationML Component

4.1.3.9 RoleClass SequenceElement

The role class “SequenceElement” shall be used as specified in Table 35.

Table 35: RoleClass SequenceElement

Class name

SequenceElement

Description

The role class “SequenceElement” shall be used in order to specify all the
interface related information of a sequence element.

Parent class

AutomationMLComponentStandardRCL/SequencingModel

Path for element

AutomationMLComponentStandardRCL/SequenceElement

reference
Attribute None
Interfaces None

4.1.3.10 RoleClass COLLADAKinematicModel
The role class “COLLADAKiInematicModel” shall be used as specified in Table 36.
Table 36: RoleClass COLLADAKinematicModel

Class name

COLLADAKinematicModel

Description

The role class “COLLADAKinematicModel” shall be used in order to specify all
the interface related information of a COLLADA kinematic model of an
AutomationML Component or Composite Component.

Parent class

AutomationMLComponentBaseRCL/KinematicModel

Path for element

AutomationMLComponentStandardRCL/COLLADAKinematicModel

“AutomationMLInterfaceClassLib/Auto
mationMLBaselnterface/ExternalData
Connector/COLLADAInterface”)

reference

Attribute None

Interfaces “COLLADAInterface” This interface is used to connect the
(RefBaseClassPath= COLLADA geometry model to the

AutomationML Component or
Composite Component.

The “refURI” attribute of the interface
shall reference to the origin of
COLLADA Model.

<AutomationML/>

Part 6 AutomationML Component

4.1.3.11 RoleClass COLLADAKiInematicJoint
The role class “COLLADAKiInematicJoint” shall be used as specified in Table 37.
Table 37: RoleClass COLLADAKinematicJoint

Class name

COLLADAKiInematicJoint

Description

The role class “COLLADAKiInematicJoint” shall be used in order to specify all
joint information of a COLLADA kinematic model of the AutomationML

Component.

Parent class

AutomationMLComponentStandardRCL/COLLADAKinematicModel

Path for element

AutomationMLComponentStandardRCL/COLLADAKiInematicJoint

reference

Attribute None

Interfaces “COLLADAInterface” Shall be used as described for parent
(inherited) class.

“JointInterface” (RefBaseClassPath="
AutomationMLInterfaceClassLib/Auto

mationMLBaselnterface/Attachmentin
terface”)

The interface shall be used to attach
other interfaces that have a relation to
the ColladaKinematicJoint.

4.1.3.12 RoleClass COLLADAKinematicAttachment
The role class “COLLADAKinematicAttachment” shall be used as specified in Table 37.
Table 38: RoleClass COLLADAKiInematicAttachment

Class name

COLLADAKinematicAttachement

Description

The role class “COLLADAKinematicAttachment” shall be used in order to specify
all attachment information of a COLLADA kinematic model of the AutomationML

Component.

Parent class

AutomationMLComponentStandardRCL/COLLADAKinematicModel

Path for element

AutomationMLComponentStandardRCL/COLLADAKinematicAttachmen

reference

Attribute None

Interfaces “COLLADAInterface” Shall be used as described for parent
(inherited) class.

“Attachmentinterface”
(RefBaseClassPath="
AutomationMLInterfaceClassLib/Auto
mationMLBaselnterface/Attachmentin
terface”)

The interface shall be used to attach
coordinate systems of different
COLLADA models.

<AutomationML/>

Part 6 AutomationML Component

4.1.3.13 RoleClass COLLADAGeometryModel
The role class “COLLADAGeometryModel” shall be used as specified in Table 39.
Table 39: RoleClass COLLADAGeometryModel

Class name

COLLADAGeometryModel

Description

The role class “COLLADAGeometryModel” shall be used in order to specify all
the interface related information of a COLLADA geometry model.

Parent class

AutomationMLComponentBaseRCL/GeometryModel

Path for element

AutomationMLComponentStandardRCL/COLLADAGeometryModel

“AutomationMLInterfaceClassLib/Auto
mationMLBaselnterface/ExternalData
Connector/COLLADAInterface”)

reference

Attribute None

Interfaces “COLLADAInterface” This interface is used to connect the
(RefBaseClassPath= COLLADA geometry model to the

AutomationML Component or
Composite Component.

The “refURI” attribute of the interface
shall reference to the origin of
COLLADA Model.

4.1.3.14 RoleClass COLLADAGeometryAttachment
The role class “COLLADAGeometryAttachment” shall be used as specified in Table 39.
Table 40: RoleClass COLLADAGeometryAttachment

Class name

COLLADAGeometryAttachment

Description

The role class “COLLADAGeometryAttachment” shall be used in order to specify
all attachment information of a COLLADA geometry model of the AutomationML

Component.

Parent class

AutomationMLComponentStandardRCL/COLLADAGeometryModel

Path for element

AutomationMLComponentStandardRCL/COLLADAGeometryAttachment

reference

Attribute None

Interfaces “COLLADAInterface” Shall be used as described for parent
(inherited) class.

“Attachmentinterface”
(RefBaseClassPath="
AutomationMLInterfaceClassLib/Auto
mationMLBaselnterface/Attachmentin
terface”)

The interface shall be used to attach
coordinate systems of different
COLLADA models.

<AutomationML/>

Part 6 AutomationML Component

4.1.3.15 RoleClass JTGeometryModel
The role class “JTGeometryModel” shall be used as specified in Table 41.
Table 41: RoleClass JTGeometryModel

Class name

JTGeometryModel

Description

The role class “JTGeometryModel” shall be used in order to specify all the
interface related information of a JT geometry model.

Parent class

AutomationMLComponentBaseRCL/GeometryModel

Path for element

AutomationMLComponentStandardRCL/JTGeometryModel

(RefBaseClassPath="AutomationML
ComponentBaselCL/JTReference”)

reference
Attribute None
Interfaces “ExternalDataConnector” This interface is used to connect the JT

geometry model to the AutomationML
Component or Composite Component.

The “refURI” attribute of the interface
shall reference to the origin of JT
Model.

4.1.3.16 RoleClass 2DGeometryModel
The role class “2DGeometryModel” shall be used as specified in Table 42.
Table 42: RoleClass 2DGeometryModel

Class name

2DGeometryModel

Description

The role class “2DGeometryModel” shall be used in order to specify all the
interface related information of a 2D geometry model.

Parent class

AutomationMLComponentBaseRCL/GeometryModel

Path for element

AutomationMLComponentStandardRCL/2DGeometryModel

(RefBaseClassPath= "AutomationML
ComponentBaselCL/
2DReference”)

reference
Attribute None
Interfaces “2DReference” This interface is used to connect the

2D model to the component.

The “refURI” attribute of the interface
shall reference to the origin of co-
ordinates within the model if this exists
within the referenced 2D model.

<AutomationML/> Part 6 AutomationML Component

4.1.3.17 RoleClass ComponentPicture
The role class “ComponentPicture” shall be used as specified in Table 43.

Table 43: RoleClass ComponentPicture

Class name ComponentPicture

Description The role class “ComponentPicture” shall be used for referencing a picture of the
Automation component.

Parent class AutomationMLComponentBaseRCL/GraphicRepresentation

PRI 20 2 St AutomationMLComponentStandardRCL/ComponentPicture

reference

Attribute None

Interfaces “GraphicRepresentationReference” Shall be used as described for parent
(inherited) class.

4.1.3.18 RoleClass ElectricSymbol
The role class “ElectricSymbol” shall be used as specified in Table 44
Table 44: RoleClass ElectricSymbol

Class name ElectricSymbol

Description The role class “ElectricSymbol” shall be used for referencing a electric symbol
of the Automation component.

Parent class AutomationMLComponentStandardRCL/Symbol

et ol Elennet AutomationMLComponentStandardRCL/ElectricSymbol

reference

Attribute None

Interfaces “GraphicRepresentationReference” Shall be used as described for parent
(inherited) class.

4.1.3.19 RoleClass HydraulicSymbol
The role class “HydraulicSymbol” shall be used as specified in Table 45

Table 45: RoleClass HydraulicSymbol

Class name HydraulicSymbol

Description The role class “HydraulicicSymbol” shall be used for referencing a hydraulic
symbol of the automation component.

Parent class AutomationMLComponentStandardRCL/Symbol

Pl 20 = Emn! AutomationMLComponentStandardRCL/HydraulicSymbol

reference

Attribute None

Interfaces “GraphicRepresentationReference” Shall be used as described for parent
(inherited) class.

<AutomationML/>

Part 6 AutomationML Component

4.1.3.20 RoleClass PneumaticSymbol

The role class “PneumaticSymbol” shall be used as specified in Table 46

Table 46: RoleClass PneumaticSymbol

Class name

PneumaticSymbol

Description

The role class “PneumaticSymbol” shall be used for referencing a pneumatic
symbol of the automation component.

Parent class

AutomationMLComponentStandardRCL/Symbol

Path for element

AutomationMLComponentStandardRCL/PneumaticSymbol

reference
Attribute None
Interfaces “GraphicRepresentationReference” Shall be used as described for parent

(inherited) class.

4.1.3.21 RoleClass Manufacturelcon

The role class “Manufacturelcon” shall be used as specified in Table 47.

Table 47: RoleClass Manufacturelcon

Class name

Manufacturelcon

Description

The role class “ComponentPicture” shall be used for referencing a picture of the
Automation component.

Parent class

AutomationMLComponentBaseRCL/Icon

Path for element

AutomationMLComponentStandardRCL/Manufacturelcon

reference
Attribute None
Interfaces “GraphicRepresentationReference” Shall be used as described for parent

class.

(inherited)

4.1.3.22 RoleClass Componenticon

The role class “Componenticon” shall be used as specified in Table 48.

Table 48: RoleClass Componenticon

Class name

Componentlicon

Description

The role class “Componenticon” shall be used for referencing a icon of the
automation component.

Parent class

AutomationMLComponentBaseRCL/Icon

Path for element

AutomationMLComponentStandardRCL/Componenticon

reference
Attribute None
Interfaces “GraphicRepresentationReference” Shall be used as described for parent

(inherited) class.

Part 6 AutomationML Component

<AutomationML/>

4.1.3.23 RoleClass SkillModel
The role class “ SkillModel” shall be used as specified in Table 49.
Table 49: RoleClass SkillModel

Class name SkillModel

The role class “SkillModel” shall be used to define or reference skill models of
an automation Component.

Description

Parent class AutomationMLComponentBaseRCL/Model

PRI 20 2 St AutomationMLComponentStandardRCL/SkillModel

reference
Attribute None
Interfaces None

Note: The final definition of AutomationML Component skill models will be part of Version 2 of this document.

4.1.3.24 RoleClass Certificate
The role class “Certificate” shall be used as specified in Table 48.
Table 50: RoleClass Certificate

Class name Certificate

Description The role class “Certificate” shall be used for referencing a certification document

of the automation component.

Parent class AutomationMLComponentBaseRCL/Documentation

Pl 20 2 St AutomationMLComponentStandardRCL/Certificate

reference
Attribute None
Interfaces “ExternalDataReference” Shall be used as described for parent

(inherited) class.

4.1.3.25 RoleClass MechanicConnector
The role class “MechanicConnector” shall be used as specified in Table 51

Table 51: RoleClass MechanicConnector

Class name MechanicConnector

Description The role class “MechanicConnector” shall be used to define the representation
of a mechanical fastening interface of an automation component within its

AutomationML Component representation.

Parent class AutomationMLComponentBaseRCL/Connector

Pl 20 = Emn! AutomationMLComponentStandardRCL/MechanicConnector

reference
Attribute None
Interfaces “Mechaniclnterface” This interface is used to connect the

(RefBaseClassPath= "AutomationML
ComponentBaselCL/Mechanicinterfac
e!l)

mechanic connectors of components.
The use of the interface shall be 1..n.

<AutomationML/>

Part 6 AutomationML Component

4.1.3.26 RoleClass LogicConnector

The role class “LogicConnector” shall be used as specified in Table 52.

Table 52: RoleClass LogicConnector

Class name

LogicConnector

Description

The role class “LogicConnector” shall be used in order to specify all the related
information of an logic connector of an automation component within its
AutomationML Component representation.

Parent class

AutomationMLComponentBaseRCL/Connector

Path for element

AutomationMLComponentStandardRCL/LogicConnector

reference
Attribute None
Interfaces “Signallnterface” This interface is used to connect the

(RefBaseClassPath= “
AutomationMLInterfaceClassLib/Auto
mationMLBaselnterface/Communicati
on/Signallnterface”)

logic connectors of components.
The use of the interface shall be 1..n.

4.1.3.27 RoleClass ElectricConnector

The role class “ElectricConnector” shall be used as specified in Table 53.

Table 53: RoleClass ElectricConnector

Class name

ElectricConnector

Description

The role class “ElectricConnector” shall be used in order to specify all the related
information of an electric connector of an automation component within its
AutomationML Component representation.

Parent class

AutomationMLComponentBaseRCL/Connector

Path for element

AutomationMLComponentStandardRCL/ElectricConnector

reference
Attribute None
Interfaces “Electricinterface” This interface is used to connect the

(RefBaseClassPath=
“AutomationMLComponentBaselCL/El
ectriclnterface”)

electric connectors of components.
The use of the interface shall be 1..n.

4.1.3.28 RoleClass FluidicConnector

The role class “FluidicConnector” shall be used as specified in Table 54.

Table 54: RoleClass FluidicConnector

Class name

FluidicConnector

Description

The role class “FluidicConnector” is an abstract role class and the base class for
standard or user defined role classes referencing fluidic connectors.

Parent class

AutomationMLComponentBaseRCL/Connector

Path for element
reference

AutomationMLComponentStandardRCL/FluidicConnector

Attribute

None

<AutomationML/>

Part 6 AutomationML Component

Interfaces

None

4.1.3.29 RoleClass LiquidicConnector

The role class “LiquidicConnector” shall be used as specified in Table 55.

Table 55: RoleClass LiquidicConnector

Class name

LiguidicConnector

Description

The role class “LiquidicConnector” shall be used in order to specify all the related
information of a liquidic connector of an automation component within its
AutomationML Component representation.

Parent class

AutomationMLComponentBaselCL/Liquidicinterface

Path for element

AutomationMLComponentStandardRCL/LiquidicConnector

reference
Attribute None
Interfaces “LiquidicInterface” This interface is used to connect the

(RefBaseClassPath= ‘
AutomationMLComponentBaselCL/Li
quidiclnterface”)

liquidic connectors of components.
The use of the interface shall be 1..n.

4.1.3.30 RoleClass PneumaticConnector

The role class “PneumaticConnector” shall be used as specified in Table 56.

Table 56: RoleClass PneumaticConnector

Class name

PneumaticConnector

Description

The role class “PneumaticConnector” shall be used in order to specify all the
related information of a pneumatic connector of an automation component within
its AutomationML Component representation.

Parent class

AutomationMLComponentStandardRCL/FluidicConnector

Path for element

AutomationMLComponentStandardRCL/PneumaticConnector

reference

Attribute None

Interfaces “PneumaticConnector” This interface is used to connect the
(RefBaseClassPath= “| pneumatic connectors of components.

AutomationMLComponentBaselCL/Pn | The use of the interface shall be 1..n.

eumaticinterface”)

<AutomationML/> Part 6 AutomationML Component

4.1.3.31 RoleClass HydraulicConnector

The role class “HydraulicConnector” shall be used as specified in Table 57.

Table 57: RoleClass HydraulicConnector

Class name

HydraulicConnector

Description

The role class “HydraulicConnector” shall be used in order to specify all the
related information of a hydraulic connector of an automation component within
its AutomationML Component representation.

Parent class

AutomationMLComponentStandardRCL/FluidicConnector

Path for element

AutomationMLComponentStandardRCL/HydraulicConnector

reference

Attribute None

Interfaces “Hydrauliclnterface” This interface is used to connect the
(RefBaseClassPath= “| hydraulic connectors of components.

AutomationMLComponentBaselCL/Hy | The use of the interface shall be 1..n.
draulicinterface”)

4.1.3.32 RoleClass SensorConnector

The role class “SensorConnector” shall be used as specified in Table 58.

Table 58: RoleClass SensorConnector

Class name

SensorConnector

Description

SensorConnector is the process interface to physically sense the properties of
interest (i.e. a mechanical movement or object presence within a spatial
detection area or mediums states like temperature or pressure). It is used for
both mechanical construction and simulation environments.

Parent class

AutomationMLComponentBaseRCL/Connector

Path for element

AutomationMLComponentStandardRCL/SensorConnector

reference
Attributes Will be defined in the next version of this document.
Interfaces Will be defined in the next version of this document.

<AutomationML/>

Part 6 AutomationML Component

4.1.3.33 RoleClass SkillConnector
The role class “SkillConnector” shall be used as specified in Table 59.
Table 59: RoleClass SkillConnector

Class name

SkillConnector

Description

SkillConnector is used as an engineering interface for skill-based systems
engineering. SkillConnector provides interfaces necessary to connect the
components logically in an automation system and also to connect with products
and process in a manufacturing plant

Parent class

AutomationMLComponentStandardRCL/SkillConnector

Path for element

AutomationMLComponentStandardRCL/SkillConnector

reference
Attribute None
Interfaces None

4.1.3.34 RoleClass MaintenanceDescriptionGroup

The role class “MaintenanceDescriptionGroup” shall be used as specified in Table 56.

Table 60: RoleClass MaintenanceDescriptionGroup

Class name

MaintenanceDescriptionGroup

Description

The role class “MaintenanceDescriptionGroup” shall be used to define a
assembly for different maintenance tasks.

Parent class

AutomationMLComponentBaseRCL/MaintenanceDescription

Path for element

AutomationMLComponentStandardRCL/MaintenanceDescriptionGroup

reference
Attribute “TopicName” Each maintenance measure shall be
Xs:string assigned to a major

assembly/heading.
The attribute shall follow the
provisions of [BPR-MLA:2016] for
multilingual expressions.

Interfaces None

<AutomationML/> Part 6 AutomationML Component

4.1.3.35 RoleClass MaintenanceDescriptionltem
The role class “MaintenanceDescriptionltem” shall be used as specified in Table 56.

Table 61: RoleClass MaintenanceDescriptionltem

Class name MaintenanceDescriptionltem
Description The role class “MaintenanceDescriptionltem” shall be used to define a single
maintenance task.
Parent class AutomationMLComponentBaseRCL/MaintenanceDescription
el for Clement AutomationMLComponentStandardRCL/MaintenanceDescriptionltem
reference
Attribute “Index” Every maintenance item shall be given
Xs:string a procedure numbe.r
“SubTopic” If the maintenance item refers to sub
Xs:string topic within the Topic of the group, this
shall be listed
The attribute shall follow the provisions
of [BPR-MLA:2016] for multilingual
expressions.
“WorkDescription” Description of the activity to be
Xs:string performed.
The attribute shall follow the provisions
of [BPR-MLA:2016] for multilingual
expressions.
“Cycle” Every maintenance item is to be
xs:duration assigned to one of the maintenance
cycles listed Table 62
“PlannedTimePerWorker” Shall be used to define the plan value
xs:duration for execution of the maintenance item.
“ActivityKey” Every maintenance measure is to be
Xs:string assigned to one of the occupation
codes listed in Table 63
“ExecutionKey” Every maintenance measure is to be
Xs:string assigned to one of the occupation
codes listed in Table 64
“FunctionKey” Every maintenance measure is to be
Xs:string assigned to one of the function keys
listed in Table 65
“PersonnelKey” Every maintenance measure is to be
Xs:string assigned to one of the personnel keys
listed in Table 66
“LastExecution” Shall be used to describe the last
XS:string execution of the maintenance item.
Interfaces None
Table 62: Values for Attribute “Cycle”
Value Significance Value Significance

<AutomationML/> Part 6 AutomationML Component

1S Every shift 18M Every 18 months
1D Daily 2Y Every 2 years
3T Every 3 workdays 3Y Every 3 years
5D Every 5 workdays 4Y Every 4 years
1w weekly 5Y Every 5 years
2W Every 2 weeks 6Y Every 6 years
3w Every 3 weeks 7Y Every 7 years
1M Monthly 8Y Every 8 years
2M Every 2 months QY Every 9 years
3M Every 3 months 10Y Every 10 years
4M Every 4 months 12Y Every 12 years
6M Every 6 months 15Y Every 15 years
o9M Every 9 months 20Y Every 20 years
1Y Annually 25Y Every 25 years

Table 63: Values for Attribute “ActivityKey”

Value Significance
Measures for determining or assessing the actual status, such as the
inspection inspection for wear, corrosion, leaks, connections or periodic

measurement and evaluation.

maintenance

Measures for maintaining the required state, such as cleaning,
lubricating, adjusting or calibrating.

overhaul

Measures for restoring the required state, such as the disassembly
and replacement of components and assemblies.

Table 64: Values for Attribute “ExecutionKey”

Values Significance
production PM measures that can be taken during production.
standstill PM measures that can only be performed during a system downtime

(outside production hours).

Table 65: Values for Attribute “FunctionKey”

Values

Significance

availability

Maintenance measures that are mainly required for ensuring the
technical availability of plants, devices and components.

environmental

Maintenance measures that are mainly required for ensuring
environmental protection for environmentally relevant plants, devices
and components.

safety

Maintenance measures that are mainly required for occupational
safety and for preventing accidents.

Table 66: Values for Attribute “PersonnelKey”

Values

Significance

<AutomationML/> Part 6 AutomationML Component

mechanic Assignment of the measures that can primarily be performed by
trained industrial mechanics.

electrician Assignment of the measures which can primarily be performed by
trained industrial electricians.

operator Assignment of the measures which can primarily be performed by
technically skilled and semi-skilled production personnel with
corresponding qualifications.

qualified person Assignment of the measures which can be carried out in the sense of
the operating safety directive by persons who, through their vocational
training, their professional experience and their professional activity,
have the specialist knowledge required to test the operating
equipment.

4.1.4 AutomationMLFMILogicRoleClassLib

Figure 98 present role class library “AutomationMLFMILogicRoleClassLib” as object tree. Within this
role class library abstract and base role classes for the integration of FMU/FMI models are defined.

4 f AutomationMLFMILogicRoleClassLib
FMILogicObject {Class: AutomationMLBaseRole }

Figure 98: Overview AutomationMLFMILogicRoleClassLib as AutomationML tree

Note: The it is planned to migrate the role class library into [WP-Part4:2018] within the next maintenance cycle of
the IEC standard representation of the whitepaper.

4.1.4.1 RoleClass FMILogicObject

The role class “FMILogicObject” shall be used as specified in Table 67.
Table 67: RoleClass FMILogicObject

Class name FMILogicObject

Description The role class “FMILogicObject” shall be used to integrate FMI based objects
into AutomationML. It is a basic abstract role class.

Parent class AutomationMLBaseRoleClassLib/AutomationMLBaseRole

Path for element | AutomationMLFMILogicRoleClassLib/FMILogicObject

reference
Attributes None
Interfaces None

<AutomationML/> Part 6 AutomationML Component

4.2 Interface Class Libraries

4.2.1 Overview

Basement of the interlinking and internal linking AutomationML Components as well as the linking of
external information are the external interfaces that are attached to the specific InternalElements of
them. Therefore, standard interface classes defined in [WP-Part1:2018] are used and a set of new
interfaces classes are defined in this whitepaper.

The interface classes are derived from role classes defined from AutomationML basic interfaces defined
in [WP-Part1:2018].

The following depicts an overview about the AutomationML interface class library
“AutomationMLComponentBaselCL”.

|AutomationMLEPRInterfaceClasslib) |AutomationMLComponentBaseICL)
‘D «InterfaceClass» q «InterfaceClass»
ExtenalDataReference ! 2DReference
«InterfaceClass»
[~ GraphicalRepresentation
Reference
|AutomationMLInterfaceClassLib)
b «InterfaceClasss
JTReference
«InterfaceClass» ﬂ
AutomationML BaseInterface) L “IHFE"FGCEU?S%” «InterfaceClass»
DeviceDescription JointInterface
Reference
-
«InterfaceClass: b «InterfaceClasss ﬂ «InterfaceClasss
ExternalDataReference MechanicInterface SesorInterface
(I «InterfaceClass»
ElectricInterface
. «InterfaceClass»
LiguidicInterface
L «InterfaceClass»
PneumaticInterface
|AutomationMLFMIInterfaceClassLib) 43
«InterfaceClass»
PneumaticConnector
_ «Externallnterfaces
FMIVariableInterface
I «InterfaceClass»
CondensateDrainConnector
«Externallnterfaces h_ «InterfaceClass»
FMIReference HydraulicInterface
L «InterfaceClass»
skillInterface

Figure74: AutomationMLComponentBaselCL

4.2.2 AutomationMLComponentBaselCL

Figure 99 present the normative interface class library “AutomationMLComponentBaselCL” as object
tree. Within this interface class library abstract and base interface role classes are defined. This interface
classes are used to integrate the different model aspects of AutomationML Component or Composite
Components and to interconnect them.

<AutomationML/> Part 6 AutomationML Component

4 AutomationMLComponentBaselCL
[ic] Skillinterface {Class: AutomationMLBaselnterface }
[ic] 2DReference {Class: ExternalDataReference }
[ic] GraphicRepresentationReference {Class: ExternalDataReference }
JTReference {Class: ExternalDataReference }
DeviceDescriptionReference {Class: ExternalDataReference }
[ic] Mechaniclnterface {Class: AutomationMLBaselnterface }
[ic] Electricinterface {Class: AutomationMLBaselnterface }
[ic] LiquidicInterface {Class: AutomationMLBaselnterface }
[i€] Pneumaticlnterface {Class: AutomationMLBaselnterface }
[i€] PneumaticConnector{Class: Pneumaticinterface }
CondensateDrainConnector {Class: AutomationMLBaselnterface }
HydraulicInterface {Class: AutomationMLBaselnterface }
[ic] Sensorlinterface {Class: MechanicInterface }
[ic] Jointinterface {Class: AutomationMLBaselnterface }

Figure 99: Overview AutomationMLComponentBaselCL

4.2.2.1 InterfaceClass GraphicRepresentationReference
The interface class “GraphicRepresentationReference” shall be used as specified in Table 83

Table 68: InterfaceClass GraphicRepresentationReference

Class name GraphicRepresentationReference

Description The interface class “GraphicRepresentationReference” is shall be used to
reference a grapihic representation of the AutomationML Component or
Composite Component.

Parent class AutomationMLBPRInterfaceClassLib/ExternalDataReference

FEl @7 Gl AutomationMLComponentBaselCL/GraphicRepresentationReference

reference

Attribute refURI This URI must point to a referenced
(inherited) graphic representation document.
MIMEType MIMEType of the file according to
(inherited) [RFC2046:1996].

<AutomationML/> Part 6 AutomationML Component

4.2.2.2 InterfaceClass 2DReference
The interface class “2DReference” shall be used as specified in Table 69

Table 69: InterfaceClass 2DReference

Class name 2DReference

Description The interface class “2DReference” is shall be used to reference a 2D
representation of the AutomationML Component or Composite Component.

Parent class AutomationMLBPRInterfaceClassLib/ExternalDataReference

Path for element

reference AutomationMLComponentBaselCL/Reference2D

Attribute refURI This URI must point to a reference to a
(inherited) 2D representation of the AutomationML
Component or Composite Component.

MIMEType MIMEType of the file according to
. . [RFC2046:1996].
(inherited)

4.2.2.3 InterfaceClass JTReference
The interface class “JTReference” shall be used as specified in Table 70.

Table 70: InterfaceClass JTReference

Class name JTReference

Description The interface class “JTReference” is shall be used to reference a JT model
representation of the AutomationML Component or Composite Component.

Parent class AutomationMLBPRInterfaceClassLib/ExternalDataReference

e D7 @lemen! AutomationMLComponentBaselCL/JTReference

reference
Attribute refURI This URI must point to a JT file
(inherited) representing the AutomationML
Component.
MIMEType MIMEType of the file according to
(inherited) [RFC2046:1996].

4.2.2.4 InterfaceClass Skillinterface
The interface class “ Skillinterface” shall be used as specified in Table 71.

Table 71: InterfaceClass Skilllnterface

Class name Skillinterface

Description The interface “Skillinterface” shall be required for linking a component skill
information.

Parent class AutomationMLInterfaceClassLib/AutomationMLBaselnterface

Path for element

AutomationMLComponentBaselCL/Skillnterface
reference

Attribute None

<AutomationML/> Part 6 AutomationML Component

4.2.2.5 InterfaceClass DeviceDescriptionReference
The interface class “DeviceDescriptionReference” shall be used as specified in Table 72.

Table 72: InterfaceClass DeviceDescriptionReference

Class name DeviceDescriptionReference

Description The interface class “DeviceDescriptionReference” is an abstract basic
interface class and the base class for standard or user defined interface
classes referencing a technology based device description file.

Parent class AutomationMLBPRInterfaceClassLib/ExternalDataReference

PR Tl e AutomationMLComponentBaselCL/DeviceDescriptionReference

reference

Attribute Version The version of the actual device
Xs:string description file that is referenced here.
refURI This URI must point to a technology
(inherited) related device description file according

to the respective technology standard.

‘MIMEType” MIMEType of the file according to
(inherited) [RFC2046:1996].

4.2.2.6 InterfaceClass MaintenanceDescriptionLink
The interface class “MaintenanceDescriptionLink” shall be used as specified in Table 73.

Table 73: InterfaceClass MaintenanceDescriptionLink

Class name MaintenanceDescriptionLink

Description The interface “MaintenanceDescriptionLink” shall be used to interlink
MaintenanceDescriptionGroup and MaintenanceDescriptionltem.

Parent class AutomationMLInterfaceClassLib/AutomationMLBaselnterface

Path for element

AutomationMLComponentBaselCL/MaintenanceDescriptionLink
reference

Attribute None

Note: The InterfaceClass is delated in version 1.0.1
4.2.2.7 InterfaceClass Mechaniclnterface

The interface class “Mechaniclnterface” shall be used as specified in Table 74.

Table 74: InterfaceClass Mechaniclnterface

Class name Mechaniclnterface

Description A “Mechaniclnterface” represents a hardware provision to mechanically fasten
or join two or more objects together.

Parent class AutomationMLInterfaceClassLib/AutomationMLBaselnterface

Path for element

AutomationMLComponentBaselCL/Mechanicinterface
reference

Attribute None

<AutomationML/>

Part 6 AutomationML Component

4.2.2.8

InterfaceClass Electriclnterface

The interface class “Electricinterface” shall be used as specified in Table 75.

Table 75: InterfaceClass Electriclnterface

Class name

Electriclnterface

Description

An “Electricinterface” describes an electro-mechanical provision used to join
electrical terminations and to create electrical circuits.

Parent class

AutomationMLInterfaceClassLib/AutomationMLBaselnterface

Path for element
reference

AutomationMLComponentBaselCL/Electricinterface

Attribute

None

Note: A derived InterfaceClassLib shall be provided that defines specific automation interface types, e.g. M12, M8,
M5, RJ45, 7/8inch. Exempels for the use can be found

4.2.2.9

InterfaceClass Liquidiclnterface

The interface class “Liquidicinterface” shall be used as specified in Table 76

Table 76: InterfaceClass Liquidiclnterface

Class name

Liquidicinterface

Description

A “Liquidicinterface” is an interface to describe a liquidic connection between
to automation components.

Parent class

AutomationMLInterfaceClassLib/AutomationMLBaselnterface

Path for element
reference

AutomationMLComponentBaselCL/Liquidiclnterface

Attribute

None

4.2.2.10 InterfaceClass Pneumaticlnterface

The interface class “Pneumaticinterface” shall be used as specified in Table 77.

Table 77: InterfaceClass Pneumaticlnterface

Class name

PneumaticInterface

Description

A “Pneumaticinterface” is an interface to describe a pneumatic connection
point of an automation component in general. It can be used to join pneumatic
components and create pneumatic circuits.

Parent class

AutomationMLInterfaceClassLib/AutomationMLBaselnterface

Path for element
reference

AutomationMLComponentBaselCL/Pneumaticinterface

Attribute

None

<AutomationML/>

Part 6 AutomationML Component

4.2.2.11 InterfaceClass PneumaticConnector

The interface class “PneumaticConnector” shall be used as specified in Table 77.

Table 78: InterfaceClass PneumaticConnector

Class name

PneumaticConnector

Description

A “PneumaticConnector” is a Pneumaticlnterface that represents a pneumatic
connector standardized by [ISO 18582-2].

Parent class

AutomationMLComponentBaselCL/Pneumaticinterface

Path for element
reference

AutomationMLComponentBaselCL/PneumaticConnector

Attribute

pneumaticPort Type and size of the pressure media

Xs:string connection on a pneumatic
automation component. All values
from the property “pneumatic port”
from [1ISO18582-2] are valid

connectorType Type pf the use of the connection,

L following [1SO18582-2], but the
Xs:string

relevant attributes (“pneumatic input
port”, “pneumatic output port”,
“pneumatic exhaust port”, “pneumatic
pilot ort”) are summed up here to one
AutomationML attribute. The following
values are accordingly allowed:
(none)

input

output

exhaust

pilot

4.2.2.12 InterfaceClass CondensateDrainConnector

The interface class “CondensateDrainConnector” shall be used as specified in Table 77.

Table 79: InterfaceClass CondensateDrainConnector

Class name

CondensateDrainConnector

Description

A “CondendateDrainConnector” is an interface to desccribe a connector for the
condensate drain connection of pneumatic automation component. It is
standardized by [ISO18582-2].

Parent class

AutomationMLInterfaceClassLib/AutomationMLBaselnterface

Path for element
reference

AutomationMLComponentBaselCL/CondensateDrainConnector

Attribute

None

<AutomationML/>

Part 6 AutomationML Component

4.2.2.13 InterfaceClass HydraulicInterface

The interface class “HydraulicInterface” shall be used as specified in Table 80.

Table 80: InterfaceClass Hydrauliclnterface

Class name

Hydrauliclnterface

Description

A “Hydraulicinterface” is an interface to describe a hydraulic connection point of
an automation component. It can be used to join hydraulic components and
create hydraulic circuits.

Parent class

AutomationMLInterfaceClassLib/AutomationMLBaselnterface

Path for element
reference

AutomationMLComponentBaselCL/Hydraulicinterface

Attribute

None

4.2.2.14 InterfaceClass Sensorlinterface

The interface class “Sensorinterface” shall be used as specified in Table 80.

Table 81: InterfaceClass Sensorinterface

Class name

Sensorinterface

Description

A “Sensorinterface” is an process interface connect the component to physical
properties of interest. It will be specified in detail in version 2 of the document.

Parent class

AutomationMLComponentBaselCL/Mechanicinterface

Path for element
reference

AutomationMLComponentBaselCL/SensorInterface

Attribute

None

4.2.2.15 InterfaceClass Jointinterface

The interface class “Jointinterface” shall be used as specified in Table 80.

Table 82: InterfaceClass Jointinterface

Class name

JointInterface

Description

A “Jointinterface” is an interface
COLLADAKiInematicJoint with other
dependency or relevance to the joint.

that connects a joint of an
interfaces that have an influence,

Parent class

AutomationMLInterfaceClassLib/AutomationMLBaselnterface

Path for element
reference

AutomationMLComponentBaselCL/JointInterface

Attribute

None

<AutomationML/> Part 6 AutomationML Component

4.2.3 AutomationMLFMIInterfaceClassLib

Figure 100 present role class library “AutomationMLFMIInterfaceClassLib” as object tree. Within this
interface class library base external interface classes for the integration of FMU/FMI models are defined.

4 i AutomationMLFMIInterfaceClassLib
[ic] FMIReference {Class: ExternalDataReference }
[ic] FMIVariableInterface {Class: ExternalDataConnector }

Figure 100: Overview AutomationMLFMIInterfaceClassLib

Note: The it is planned to migrate the interface class library into [WP-Part4:2018] within the next maintenance cycle
of the IEC standard representation of the whitepaper.

4.2.3.1 InterfaceClass FMIReference
The interface class “FMIRefrence” shall be used as specified in Table 83

Table 83: InterfaceClass FMIReference

Class name FMIRefrence

Description The interface class “FMIReference” shall be used to reference an FMI model
representation of the AutomationML Component or Composite Component.

Parent class AutomationMLBPRInterfaceClassLib/ExternalDataReference

Path for element AutomationMLFMIInterfaceClassLib/FMIReference

reference
Attribute refURI This URI must point to a references a
(inherited) Functional Mockup Unit (FMU)
according to the FMI standard.
MIMEType MIMEType of the file according to
(inherited) [RFC2046:1996].

<AutomationML/> Part 6 AutomationML Component

4.2.3.2 InterfaceClass FMIVariablelnterface
The interface class “FMIVariablelnterface” shall be used as specified in Table 84

Table 84: InterfaceClass FMIVariablelnterface

Class name FMIVariableInterface

Description The interface class “FMlIVariablelinterface” references a variable of a co-
simulation Functional Mockup Unit (FMU) according to the FMI standard (see
[FMI:2019]) via its Name attribute. An FMU is a zipped file archive and the root
contains a file called modelDescription.xml, which declares all available
variables.

AutomationMLInterfaceClassLib/AutomationMLBaselnterface/ExternalDataCon

Parent class
nector

Path for element AutomationMLFMIInterfaceClassLib/FMIVariablelnterface

reference
Attribute Name The variable name within the FMU
Xs:string declaration file modelDescription.xml. It
must math a character string defined by
the XPath

/fmiModelDescription/ModelVariables/S
calarVariable@name.

Causality The causality defined for the variable
Xs:string within the FMU declaration file
modelDescription.xml. It must math a
character string defined by the XPath
/fmiModelDescription/ModelVariables/S
calarVariable @causality.

Especially the causality notifiers “input”
and “output” will have value for
AutomationML-based tools for
connecting multilple simulation models.

refURI The inherited attribute shall not be used
inherited) for external interfaces of the interface

(

class FMIVariablelnterface..

<AutomationML/> Part 6 AutomationML Component

5 Exchange of AutomationML Components as AMLX Container

This chapter describes the different types of AMLX Container, how they are internally organised and the
file and folder naming conventions to be used. Additionally, is will be explained for which use cases the
single AMLX Container support.

In general, all provisions of [BPR AMLX] shall be applied.
5.1 Use Cases for AMLX Container

Basically, three use cases are supported in the context of exchanging AutomationML Components and
AutomationML Composite Components. These use cases are:

First, sending of a single AutomationML Component,

In this use case the AMLX Container can be used to transfer a single component, even if it does not
cover all aspects or if the AutomationML Component definition in this paper or is under development.
A sub case of this is the sending of an AutomationML Composite Component. In this case no
additional rules regarding name conventions within the AMLX Container, rules regarding mandatory
or models exist.

Second, sending libraries of AutomationML Components

In this use case a complete SUC library is packed into an AMLX Container. This can contain several
components and their associated files. In this use case no additional rules regarding name
conventions within the AMLX Container or mandatory and attributes exist.

Third, sending of components specified in detail that meet a certain profile.

In this use case the AutomationML Components within the AMLX Containers have to follow additional
rules regarding naming conventions, mandatory attributes, required models or the internal structure,
that are defined in so-called profiles. An example for the usage of this use case are AutomationML
Components that shall be used as device description. Such an AMLX Container can be certified
according to these profiles. A first profile for such a profile will be defined within an extension of this
whitepaper.

All these are useful in combination, e.g. for the application of an electronic product catalogue or future
twin stores.

5.2 AMLX Container types for AutomationML Components

5.2.1 AMLX Container for single AutomationML Component

The AMLX Container for a single component shall contain a single SUC library containing a single SUC
and the associated sub model data according to the following rules:

The AMLX Container for a single component shall contain model type specific information of the
single component type.

The AMLX Container shall contain a SUC library with an AutomationML Component as single
SystemUnitClass (SUC) and, if needed, further files which model the considered component. It may
contain folders and subfolders containing further component related data and to allow structuring the
files if needed.

The SystemUnitClass contains information about the identification of the component, its external
interfaces and further sub models according to this whitepaper

The model files referenced from the SUC can be stored within the AMLX Container or outside of the
AMLX container and e.g. referenced via stable links in the internet. It is however recommended to
use self-contained packages whenever feasible and only reference to externally versioned standard
libraries.

The AMLX Container can contain the used AutomationML libs.

This AMLX Container type supports the first and third use case of this subchapter. Figure 109 shows
such a minimum AMLX Container for a single AutomationML Component.

<AutomationML/> Part 6 AutomationML Component

AML root file

Component
Library

.

AMLX Container
Single AutomationML Component

Figure 101: Minimum AMLX Container for a single component

5.2.2 AMLX Container for AutomationML Component catalogues

An AMLX Container containing multiple AutomationML Components of component types as catalogue
shall be organized in the same manner as described above for the single component catalogue but can
contain multiple components as system unit classes of the same vendor or multiple vendors. The
AutomationML files shall model vendor information of the component types according to IEC62714.

This AMLX Container type supports the second use case of this subchapter. Figure 102 shows such an
AMLX Container for a AutomationML Component catalogue.

<AutomationML/> Part 6 AutomationML Component

1

1
1 1
] 2] Mode ;
| fle(s) ,
1 1
1 1

Single|Component 1

AMLX Container
AutomationML Component Library

Figure 102: Minimum AMLX Container for a AutomationML Component catalogue

5.2.3 AMLX Container for single AutomationML Composite Component

An AMLX Container containing an AutomationML Composite Component type (synonyms: “combined

component”, “unit, “system of components”) requires modelling the subcomponents and their relations.

An AMLX Container for a AutomationML Composite Component type shall be organized in the same
manner as described above for the multiple component type as SUC library.

The AutomationML Composite Component type shall be modelled as a single system unit class that
aggregates multiple AutomationML Components as InternalElements.

The sub AutomationML Component shall be an instance of an AutomationML Component type
definition.

The AutomationML Composite Component shall model its type specific information and the
interrelations to subcomponents.

Each sub AutomationML Component shall be modelled as additional system unit classes. This may
result in multiple component catalogues.

Sub AutomationML Components within the same AMLX Container shall be modeled in the same
system unit class lib or in a system unit class lib that is part of the root file. Nesting is only allowed in
the SUC’s InternalElement hierarchy.

All subcomponent types may reference external files within or outside the AMLX Container.

This AMLX Container type supports the first and third use case of this subchapter. Figure 103 shows
such an AMLX Container for an AutomationML Composite Components.

<AutomationML/> Part 6 AutomationML Component

: ¥
1| 1,
| h
| h
| h
' P e
: 1 ||:
1 : IE ::I
1
' | S Model iy
: 1 file(s) ,::
1 1
: ! Sub-Component 1 I::
1 Lo oo S I|I
1 |J=———===-= B L LI
1 1 (L
1 L1 IE 1y
1 1 (L
] : g Model I
1 1 file(s) |I:
1 1 (L
:] Sub-Component 2 I
| ::
L ¥

AMLX Container

Single AutomationML Composite
Component

Figure 103: Minimum AMLX Container for an AutomationML Composite Component

<AutomationML/> Part 6 AutomationML Component

6 Manufacturer Specific Extensions of Component Description

To use the previously described role Classes for modelling manufacturer specific component
descriptions the following steps are recommended.

In a first step the “AutomationMLComponentBaseRCL” and the
“AutomationMLComponentStandardRCL” shall be checked if the predefined roles can already fulfill the
requirements of manufacturer. Only if the requirements cannot be covered by the standard role classes
the manufacturer will define own roles. To this aim the already predefined role classes of the
“AutomationMLComponentBaseRCL” and the “AutomationMLComponentStandardRCL” role class
libraries shall be used. Hereby must be considered that special models (geometry, simulation,
behaviour) are already defined. Only when no suitable roles can be found in the libraries the
manufacturer will define own, new role classes in a separate manufacturer-specific role class library.

In the same way the interfaces of the components shall be defined. Only when no suitable interfaces
can be found in the “AutomationMLComponentBaselCL” the manufacturer will define own, new interface
classes in a separate manufacturer-specific interface class library.

But all new role or interface classes shall be derived from the role classes of the
“AutomationMLComponentBaseRCL” and the “AutomationMLComponentStandardRCL” role class lib or
the “AutomationMLComponentBaselCL” interface class library.

In a final step the system unit classes for the engineering domain can be identified and modelled as
templates for further use. Here the structure of the components can be modelled especially with respect
to the relevant properties to be considered. Therefore, appropriate internal elements and attributes can
be added.

Finally, the defined structure can be used to model a practical system in the instance hierarchy.

Chapter 9.5 shows an example for the definition of a component using a standard behaviour model
(PLCopen XML) and the definition of a component using a manufacturer specific behaviour model
(SIMIT) as well.

<AutomationML/> Part 6 AutomationML Component

7 Semantics in Automation Components

One critical point within the modelling and description of automation components as AutomationML
Components is the correct interpretation of the component data. One major problem is that the incoming
data point need to be identifiable automatically by the receiving tool.

A methodology to handle this problem is to define the syntax of data objects and to the integration of a
semantic specification, i.e. each object will carry its own semantics definition. The semantic definition
carried within the data object has to be unique. Therefore, appropriate means have to be available.

Within the industry, several catalogue standards are available defining object and property semantics
uniquely. Usually they follow the IEC 61360 standard. Examples are the eCl@ss catalogue standard
and the IEC Common Data Dictionary standard. The following section introduces the concept of how a
semantic system is integrated into the AutomationML Component description.

Note: The usage of semantic system or attribute/property catalogues shall always follow the
licences terms of publishing organisation.

7.1 Concept of Semantic System Integration

The integration of semantic systems based on two aspects. The first aspect is that the used semantic
systems will be announced for each AutomationML Component whether it is a standardized or
proprietary system. The second approach is to reference the semantic definition of the semantic systems
to single attributes.

7.1.1 Definition of used Semantic Systems

To announce the use of a semantic system for an AutomationML Component a role class shall be used.
This role class is defined as “AutomationComponentSemanticSystem” in Table 26. The role class
contains five complex attributes. One is as generic attribute to announce the use of an own semantic
systems and four are predefined systems that are supported from the AutomationML Component
definition. The supported semantic systems are the classification systems [I[EC62683-SC3D:2014], [IEC
61360-4:2005], [IEC 61987:2016] and [CI@ss:2020]. The structure of the role class is depicted in Figure
104.
c JardRoL)

«RoleClass»
AutomationComponentSemanticSystem

<>1

0.1 wAttributes
ClassificationSystem

0-1 whttributes

IEC 61987

0.1 whttributes
IEC 61360-4

wAltributes

0.1
IEC 62683

0.1 whAttribute»
eClass

Figure 104: UML Representation of role class “AutomationComponentSemanticSystem”

Each of the complex attributes has the sub attributes “Version”, “RefSemanticPrefix” and “URL”. These
sub attributes are used to define information about the integrates semantic system. Additional contains
the attribute “ClassificationSystem” the sub-attribute “Name”.

For the use of the role class the following rules shall apply additionally:

<AutomationML/> Part 6 AutomationML Component

If a semantic system or classification system shall be announced for an AutomationML Component
the root of the AutomationML Component shall reference the role class
“AutomationComponentSemanticSystem”.

The attributes shall be used as specified in Table 26, Table 27 and Table 28.

7.1.2 Referencing Attributes Semantic

AutomationML standard allows industrial practitioners to interlink and integrate heterogeneous data
more efficiently and support the transfer technical data for AutomationML Components or Composite
Components from one company to another company without any data loss. In order to transmit error
free data or to thoroughly integrate all complex data of any object, interlinking with correct meaning is
required. Therefor the AutomationML concept of reference semantic is used.

With the help of reference semantic (RefSemantics) a particular semantic standard can be assigned to
an attribute so that data which has to be transmitted is not miss interpretable.

But also, further sources of semantics shall be possible ranging from dictionaries defined by industrial
associations like VDMA or VDA up to company based application recommendations of data objects.

Figure 105 shows the use of RefSemantic in AutomationML.

[Attri butes
RefBaseSystemUnit

Path
RefSemantic
Attribute —[

SupportedRoleClass

InternalElement

= RoleRequirements

1

Figure 105: RefSemantic as AutomationML element

Additional it is necessary to support different semantic systems to specify attributes of AutomationML
Components or Composite Components. Therefore, these systems have to be announced within the
AutomationML Component description. This shall be done by using the role class
“AutomationMLComponentSemanticSystem”, see chapter 7.1.1.

For the definition of attribute semantics following shall apply:

The CAEX schema element “RefSemantic” shall be used for the semantic definition for a single
attribute, see Figure 105.

The value of the XML attribute “CorrespondingAttributePath” of the CAEX schema element
“RefSemantic” element shall be assembled following the URI structure defined in [RFC3986:2005]
exploiting the elements scheme, path, query, and fragment. The scheme shall identify the source of
semantics like an IRDI following eCl@ss or IEC CDD or a dedicated company. Next the path element
is delimited from the source by “//” and indicates the location of the semantics definition depending
on the scheme. After an “?” as delimiter the query can follow giving an additional interpretation to the
named semantics definition. Finally, after a “#” delimiter the object identifier of the semantics
definition in the semantics definition files is named.

Scheme as semantic owner // Path to semantics location ? optional Query to improve semantic
unigueness # Fragment as ID within the semantic system

<AutomationML/> Part 6 AutomationML Component

Note 1: If a standard ID like IRDI exist within the semantic system this shall be used.
Note 2: Examples for the “CorrespondingAttributePath” can be found in Figure 106.

= Scheme shall identify the semantic owner.

= Path and Query shall uniquely identify the semantic system.

= The ID within the semantic system shall be used as defined within the system.

= Each used semantic system that is used within one AutomationML Component or Composite
Component definition shall be announced following the specification of the role class
“AutomationMLComponentSemanticSystem”.

myScheme://myfilepath/myfile.mimetype?myQuery#myobjectiD
IRDI-PATH://0173-1#002-BAA018#004
IRDI-PATH://0112/2//161360_4#ABC484#003

myCompany://SemanticSystem#SemanticElementID

Figure 106: Examples for CAEX attribute “CorrespondingAttributePath”

An example of the use of the semantic system integration can be found in chapter 9.8.

<AutomationML/> Part 6 AutomationML Component

7.2 Example for Usage

Within this sub chapter two example for the usage of the semantic system integration are presented.
The first example shows an AutomationML Component that uses the [IEC61987] as semantic system.
In the second example an AutomationML Component will use an own semantic system to specify the
semantic of attributes.

Example: AutomationMLComponentlEC 62683

Within the example an AutomationML Component with the name
“AutomationMLComponentlEC_62683” is defined as system unit class. This system unit class has two
supported role classes, see, Figure 107:

The role class “AutomationComponent” to indicate that the system unit class represents an
AutomationML Component.

The role class “AutomationMLComponentSemanticSystem” to indicate that the AutomationML
Component supports a semantic system.

- MySystemUnitClassLib
4 AutomationMLComponentlEC_62683 {Role: AutomationComponentSemanticSystem, AutomationComponent}
AutomationMLComponentStandardRCL/AutomationComponentSemanticSystem
AutomationMLComponentStandardRCL/AutomationComponent
P AutomationMLComponentMyCompanySematicsystem {Role: AutomationComponent, AutomationComponentSemanticSystem}

Figure 107: Examples AutomationML Component with standard semantic system

Within the example the definitions of the IEC 62683 [IEC62683-SC3D:2014] are used to define the
semantic of the attributes of the AutomationML Component. The use of the semantic system is defined
with the used of the predefined attribute “IEC 62683”, see Figure 106.

The use of the semantic system is show within the attribute “Manufacturer”. This attribute has the value
“MyCompany” and additional ther value “IRDI:0112/2///62683#ACE102#001” for the RefSemantic. The
IRDI references the IEC 62683 property “manufacturer name”? with all definitions for this property.

Marme Value DataType Semantic
4 |EC 62633 xs:gtring -
Version V2.0014.0016 xsstring -
RefSermanticPrefic IRDI:O112/2///62683% usistring <
URL https://cdd.iec.ch/cdd/iec61987/ usistring <
iecB1987.nsf/ TreeFrameset?
OpenFrameSet&ongletactif=1
4 - |dentificationData Empty - IRDEO112/2///626832ACC0112001

Manufacturer MyCompany wsistring v IRDEO112/2///62683#ACET022001

Figure 108: Examples usage of semantic systems for attribute definition

2 https://cdd.iec.ch/cdd/iec62683/iec62683.nsf/TreeFrameset?OpenFrameSet&ongletactif=1

<AutomationML/> Part 6 AutomationML Component

Example: AutomationMLComponentMyCompanySemanticSystem

Within the example an AutomationML Component with the name
“AutomationMLComponentMyCompanySemanticSystem” is defined as system unit class. This system
unit class has two supported role classes, see, Figure 109:

The role class “AutomationComponent” to indicate that the system unit class represents an
AutomationML Component.

The role class “AutomationMLComponentSemanticSystem” to indicate that the AutomationML
Component supports a semantic system.

- MySystemUnitClassLib
4 AutomationMLComponentMyCompanySematicsystem {Role: AutomationComponent, AutomationComponentSemanticSystem}
AutomationMLComponentStandardRCL/AutomationComponent
AutomationMLComponentStandardRCL/AutomationComponentSemanticSystem

Figure 109: Examples AutomationML Component with own semantic system

Within the example an own semantic system is used to define the semantic of the attributes of the
AutomationML Component. The name and all properties of this system are defined within the sub
attributes of the attribute “ClassificationSystem”, see Figure 112. The name of the semantic system is
“MyCompanySystem”, it is used in version “1.0” and it is referenced with the prefix “myCompany://”
within the RefSeamtic block of the attributes.

The use of this own defined semantic system is show within the attribute “Manufacturer”. This attribute
has the value “MyCompany” and attitional ther value “myCompany://Filetype=ElementID™ for the
RefSemantic.

MName Value DataType Sernantic
4 - ClassificationSystem xsistring -
Mame My CompanySystem xsistring -
Version 1.0 xsistring -
RefSemanticPrefix myCompany:// xsistring -
4 - |dentificationData Empty -
Manufacturer MyCompany xsistring * myCompany://Filetype#ElementD

Figure 110: Examples usage of own semantic systems for attribute definition

<AutomationML/> Part 6 AutomationML Component

8 Automation Components in CAEX 3.0
8.1 General

The component libraries are based on AutomationML version 2.0, which in turn is based on CAEX
version 2.15. The next AutomationML version 2.10, which is based on CAEX version 3.0, is currently in
the standardization process. At the time of writing this whitepaper, AutomationML part 1 version 2.10 is
already standardized. For Part 2, which defines additional RoleClass libraries, the standardization
process has just started.

When migrating the component libraries to the next higher AutomationML version 2.10, two things have
to be distinguished. These are the pure schema transformation from CAEX Version 2.15 to CAEX
Version 3.0 and the semantic transformation to AutomationML Version 2.10.

Within this chapter 8 general transformation rules will form to AutomationML version 2.0 will be
described in section 8.2 and 8.3. In chapter 8.4 these rules will be applied to model electrical interfaces
of automation components as AutomationML Components in AutomationML Version 2.10 with CAEX
3.0.

8.2 CAEX Schema Transformation

The CAEX schema transformation from version 2.15 to version 3.0 is supported by the current version
of the AutomationML editor. No information is lost during an upward transformation. With regard to the
component libraries, this means that only some administrative changes are made, such as the
transformation of the WriterHeader object to the SourceDocumentinformation and the insertion of the
element SuperiorStandardVersion refering to AutomationML 2.10 as well as the use of the namespace
xmlns=*http://www.dke.de/CAEX”.

8.3 AutomationML Version Transformation

The semantic migration from AutomationML 2.0 to AutomationML 2.10 is more complex. So far there is
no tool support for this but it has to be done manually.

The transformation can take place in two steps. The first step involves the exchange of the used libraries
whose objects are used in the component libraries. The second step involves the adaptation of the
component libraries.

8.3.1 Exchange of used libraries

This step requires, that all used libraries are available in AutomationML version 2.10. This means that
the transformation can only take place when all libraries used have been transformed. Currently the part
1 libraries, which are the AutomationMLBaseRoleClassLib and the AutomationMLInterfaceClassLib are
ready to use. An additional AttributeType library has been added in version 2.10, where the attributes
used in part 1 are globally defined. This AttributeType library will be extended with attribute definitions
from part 3 and part 4. Part 2 doesn’t define attribute types.

When adapting the objects used from external libraries, proceed as follows:

1. Check, if the CAEX path of the used object is still valid. For example, the role class ExternalData
and the interface class ExternalDataReference, which were not standardized in AutomationML
version 2.0 but are described in a recommendation, are now included in the basic libraries of
version 2.10. The reference paths to these classes have to be modified.

2. Check, if a referenced element still exists. Some role classes, which exist in version 2.0 have been
removed in version 2.10 like for instance the role class ,Port’ and the role class ,PropertySet'.
These removed role classes have to be substitued by their changed modelling concept.

8.3.2 Adaptation of the component libraries

To make the component libraries compatible with AutomationML 2.10, it is necessary to revise the
defined attributes. It is advisable to store the attribute definitions in an AttributeType library and to enter
references to the corresponding attribute type in all places of use. You should also check whether

<AutomationML/> Part 6 AutomationML Component

attributes are related to already defined attributes in dependent libraries and whether an inheritance
relationship to those attribute types can be defined.

CAEX 3.0, which is the basis for AutomationML 2.10, allows the definition of InterfaceClasses which
contain nested Interfaces. When adapting, it should therefore also be checked whether a defined
interface class or a coordinated modeling concept can be better represented by a nested interface class.

8.4 Modelling of electrical interfaces with CAEX 3.0
8.4.1 Whats new

With CAEX 3.0, the electric connector model is splitted into its logic model and its physical model.
With CAEX 2.15, the electric connector models the physical connector (e.g. M12) with its inner pins.

With CAEX 3.0 (see Figure 111), the electric connector represents the abstract/logic connector (e.g.
M12 Ethernet). This covers its applications, and its current application may be assigned dynamically
dependent on the use case. The logic electric connector (e.g. M12 Ethernet) models its physical
implementation (e.g. M12 A coded 4 Pin) by means of an Externalinterface. The pins of the physical
connector are then modelled as nested Externallnterfaces of the physical connector.

Physical Connector: M12
(Electriclnterface)

Physical Connector: M12
(ElectricInterface)

Physical Pin

Physical Pin
(ElectricInterface)

(Electriclnterface)

Figure 111: Logic connector versus physical connector versus physical interface (pin)
Technically, the modelling based on InterfaceClasses provides a number of benefits:
Interfaces can be nested, hence modelling of complex nested interfaces is possible.

Electric interfaces can be directly interlinked bypassing the need of interconnecting all sub pins. This
is useful when the mechanics implicitly interlinks the pins when the connectors are connected. This
simplifies models and reduces the model size.

The electric connector application and its physical implementation is separated.

Standard interface classes can be used as templates. This increases the value of standardizing
electric connector libraries.

This chapter exemplarily illustrates the modelling of electrical interfaces by means of M12 connectors
according to IEC61076.

The general modelling principles of chapter 3.13.4 shall apply for CAEX 3.0 as well except the provisions
above.

8.4.2 Example: M12 interface class library

The M12 connectors are standardized in IEC61076 and exist in multiple variants with different geometry
(coding), number of pins, use cases and properties. An example M12 connector is A coded with 4 pins.

<AutomationML/> Part 6 AutomationML Component

The coding of M12 means a certain geometry, providing that only M12 connectors with the same coding
fit together.

An M12 contains sub-pins and hence has a nested characteristics. Since CAEX 3.0 supports modelling
of nested interfaces, all M12 interfaces are modelled as interface classes.

Figure 159 shows an interface class library ConnectorLib_IEC61076, a closer description of the classes
is given in. The library demonstrates the general modelling principles. The full model of this library will
be published in a separate white paper.
4 i Connectorlib_IEC61076
4 [ic] IEC61076-2 {Class: AutomationMLBaselnterface }
[ic] M12{Class: ElectricInterface }
[ic] PinType{Class: ElectricInterface }
4 [ic] IEC61076-2-101{Class: IEC61076-2 }
> [ic] M12A{Class: M12}
> [ic] M12B{Class: M12}
> [ic] M12C{Class: M12}
> [ic] M12D {Class: M12}
> [ic] M12P{Class: M12}
4 [ic] [EC61076-2-109 {Class: |IEC61076-2 }
> [ic] M12X{Class: M12}
> [ic] M12H {Class: M12}
4 [ic] [EC61076-2-111{Class: IEC61076-2 }
P [ic] M12S{Class: M12}
b [ic] M12T {Class: M12}
> [ic] M12L{Class: M12}
P [ic] M12K{Class: M12}
b [ic] M12E{Class: M12}
P [ic] M12F{Class: M12}
> [ic] M12M {Class: M12}
[ic] IEC61076-2-104
[ic] IEC61076-2-105

Figure 112: AML interface class library modelling a subset of possible M12 interfaces according to
IEC61076-2

Class (of type) Description

IEC61076ConnectorLib AML Interface ClassLibrary modelling M12 connectors according to
(library) IEC61076

IEC61076-2 Abstract InterfaceClass for the norm part 2 of IEC61076-2

base class for the M12 connector, derived by Electricinterface

M12 (Electricinterface) according to the Automation Component model

PinType (Electriclnterface) InterfaceClass modelling an electric pin
IEC61076-2-101 Abstract InterfaceClass for IEC61076-2-101
M12A (M12) Generic A coded M12 connector
M12B (M12) Generic B coded M12 connector
M12D (M12) Generic D coded M12 connector

<AutomationML/>

Part 6 AutomationML Component

M12P (M12) Generic P coded M12 connector

M12X (M12) Generic X coded M12 connector
IEC61076-2-109 Abstract InterfaceClass for IEC61076-2-101

M12X (M12) Generic X coded M12 connector

M12H (M12) Generic H coded M12 connector
IEC61076-2-111 Abstract InterfaceClass for IEC61076-2-101

M12S (M12) Generic S coded M12 connector

M12T (M12) Generic T coded M12 connector

M12L (M12) Generic L coded M12 connector

M12K (M12) Generic K coded M12 connector

M12E (M12) Generic E coded M12 connector

M12F (M12) Generic F coded M12 connector

M12M (M12) Generic M coded M12 connector
IEC61076-2-104 Abstract InterfaceClass for IEC61076-2-104
IEC61076-2-115 Abstract InterfaceClass for IEC61076-2-105

A variety of M12 class attributes

are explicitly modelled (see Figure 113) covering a wide range of

engineering information which are generic for all variants of M12 connectors.

4 ConnectorLib_IEC61076
4 [ic] |IEC61076-2 {Class: AutomationMLBaseIn;eM
[ic] M12{Class: Electricinterface }
[ic] PinType {Class: Electricinterface
4 [ic] IEC61076-2-101 {Class: IEC61076-2 }
b [i€] M12A {Class: M12}
b [ic] M12B{Class: M12}
b [ic] M12C{Class: M12}
P [ic] M12D{Class: M12}
b [ic] M12P {Class: M12}
b [ic] IEC61076-2-109 {Class: IEC61076-2 }
b [ic] IEC61076-2-111{Class: IEC61076-2}
[ic] IEC61076-2-104
[ic] IEC61076-2-105

]

Attributes of class M12

<> TemperatureCategoryLower{Type: TemperatureCategoryLower }
> TemperatureCategoryUpper{Type: TemperatureCategoryUpper }
<> RatedimpulseVoltage {Type: RatedimpulseVoltage }

<> RatedOperatingVoltage {Type: RatedOperatingVoltage }

<> PollutionDegree {Type: PollutionDegree }

<> RatedCurrent{Type: RatedCurrent }

«> ContactResistance{Type: ContactResistance }

<> InsulationResistance {Type: InsulationResistance }

<> MechanicalOperations {Type: MechanicalOperations }

<> InsertionForce {Type: InsertionForce }

<> WithdrawalForce {Type: WithdrawalForce }

«> |[PCode{Type: IPCode }

Figure 113: General attributes of the abstract M12 class, inherited to every M12 variant

The generic Pin type is modelled as InterfaceClass together with a set of attributes (see Figure 114).

<AutomationML/>

Part 6 AutomationML Component

4 Connectorlib_IEC61076
4 [ic] |IEC61076-2 {Class: AutomationMLBaselnterface
[ic] M12{Class: ElectricInterface }
[ic] PinType{Class: ElectricInterface }
4 [ic] IEC61076-2-101{Class: IEC61076-2}
P ic] M12A{Class: M12}
b [ic] M12B{Class: M12}
b [ic] M12C{Class: M12}
b [ic] M12D{Class: M12}
P [ic] M12P {Class: M12}
b [ic] IEC61076-2-109 {Class: IEC61076-2 }
b [ic] IEC61076-2-111{Class: IEC61076-2 }
[ic] IEC61076-2-104

[ic] [EC61076-2-105

Attributes of class PinType

<«A> ContactMaterial {Type: ContactMaterial }

<> ContactFinish {Type: ContactFinish }

<> ContactCurrentMax {Type: ContactCurrentMax }
<> FunctionType{Type: FunctionType }

Figure 114: AML interface class library modelling a generic pin type

The AML model of a concrete M12 A coded interface with 4 pins is illustrated in Figure 115. The
modeling starts with a 2 PIN Type A M12 interface. Then, the 3-Pin variant is derived from the 2-pin
variant and the pin 3 is added. This is repeated until 5 pins and depicts that all A coded 2-5 Pin M12
connectors are physically identical and compatible among each other.

<AutomationML/> Part 6 AutomationML Component

4 [Connectorlib_IEC61076
4 [ic] IEC61076-2 {Class: AutomationMLBaselnterface }
[ic] M12{Class: Electricinterface }
[ic] PinType {Class: ElectricInterface }
4 [ic] |EC61076-2-101{Class: IEC61076-2 }
4 [ic] M12A{Class: M12}
4 [ic] M12A2Pin {Class: M12A}
0 1{Class: PinType }
0 2 {Class: PinType }
[ic] M12A2PinFemale {Class: M12A2Pin }
[ic] M12A2PinMale {Class: M12A2Pin }
4 [ic] M12A3Pin{Class: M12A2Pin }
0 3{Class: PinType }
[ic] M12A3PinFemale {Class: M12A3Pin}
[ic] M12A3PinMale {Class: M12A3Pin }
4 [ic] M12A4Pin {Class: M12A3Pin }
|:> 0 4{Class: PinType}
[ic] M12A4PinFemale {Class: M12A4Pin }
[ic] M12A4PinMale {Class: M12A4Pin }
P [ic] M12A5Pin {Class: M12A4Pin }
b [ic] M12A6Pin {Class: M12A}
P [ic] M12A7Pin {Class: M12A6Pin }
P [ic] M12B{Class: M12}
P [ic] M12C{Class: M12}
P [ic] M12D{Class: M12}
P [ic] M12P {Class: M12}
P [ic] IEC61076-2-109 {Class: |EC61076-2 }
P [ic] IEC61076-2-111{Class: IEC61076-2 }
[ic] IEC61076-2-104
[ic] IEC61076-2-105

Figure 115: AML role class model of the M12 A coded with 4 pins and its male and female derivate

<AutomationML/> Part 6 AutomationML Component

8.4.3 Example: Mini 7/8 interface class library

Figure 116 illustrates the modelling of Mini 7/8 inch electric connector types, which are based on ANSI
B93.55M (NFPA T3.5.29M) plus reaffirmation notice 1988.

4 fi Connectorlib_ANSIB93.55M
4 [ic] 78_3Pin{Class: Electricinterface }
+0 1{Class: ElectricInterface }
0 2{Class: ElectricInterface }
0 3{Class: ElectricInterface}
[ic] 78 3PinFemale {Class: 78_3Pin}
[ic] 78 3PinMale {Class: 78 _3Pin}
4 [ic] 78 4Pin{Class: ElectricInterface}
0 1{Class: ElectricInterface }
~0 2{Class: Electricinterface }
~0 3 {Class: ElectricInterface }
0 4{Class: Electricnterface }
[ic] 78_4PinFemale {Class: 78_4Pin }
[ic] 78_4PinMale {Class: 78_4Pin }
4 [ic] 78 5Pin{Class: ElectricInterface}
~0 1{Class: Electriclnterface }
+0 2{Class: ElectricInterface }
+0 3{Class: ElectricInterface}
~0 4{Class: Electricinterface }
~0 5{Class: ElectricInterface }
[ic] 78_5PinFemale {Class: 78_5Pin }
[ic] 78_5PinMale {Class: 78_5Pin}

Figure 116: AML InterfaceClass library for Mini 7-8 interfaces

8.4.4 Example: RJ45 interface class library
RJ45 is standardized in IEC60603-7.

4 Connectorlib_[EC60603
4 [ic] |EC60603-7 {Class: Electriclnterface }
4 [ie] RJ458Pin{Class: |IECA0603-7 }
~0 1{Class: Electricinterface
Class: Electricinterface
Class: Electricinterface

Class: Electricinterface
Class: Electricinterface
=0 8{Class: Electricinterface
[ie] RJ458PinFemale {Class: RJ458Pin }
[ie] RJ458PinFemalel {Class: FJ458Pin}

}
{ }
{ }
{Class: Electriclnterface }
[Class: Electricinterface }
{ }
{ }
{ }

Figure 117: AML InterfaceClass library for an RJ45 interface

<AutomationML/> Part 6 AutomationML Component

8.4.5 Application role class library

The first step is the modelling of generic connector functions as role library. This is shown in Figure 120.

4 ConnectorFunctionRCL
Ethernet {Class: AutomationMLBaseRole }
Profinet {Class: AutomationMLBaseRole }
|OLink {Class: AutomationMLBaseRole }
|OLinkDevice {Class: AutomationMLBaseRole }
|OLinkMaster {Class: AutomationMLBaseRole }
Digitalln {Class: AutomationMLBaseRole }
DigitalOut {Class: AutomationMLBaseRole }
DigitallnOut {Class: AutomationMLBaseRole }
EnergySupply {Class: AutomationMLBaseRole }
NAMUR {Class: AutomationMLBaseRole }

Figure 118: AML role class library modelling generic connector functions

8.4.6 Application Example: Automation component with multiple electric connectors

Figure 119 shows an example product catalogue modelled as SystemUnitClasslibrary. Utilizing the M12
role class library models an automation component “IOLinkMasterTypel23” with two M12 Ethernet
connectors (A coded 5 Pins).

<AutomationML/> Part 6 AutomationML Component

4 ¢ Productlibrary_BALLUFF
4 [5u] FieldbusDevices
4 [ig BNI PNT-507-005-Z040 {Role: AutomationComponent, I0LinkMaster}
4 [ie] ExternalDescription {Role: ProfinetGSD}
+0 GSDReference {Class: ProfinetGSDReference }
4 [ig] ElectricConnectors {Rele: Structure}
4 [ie] VoltageSupply {Role: ElectricConnector}
P 0 M12A5PinFemale {Class: 78 _5Pin}
4 [iIE] M12Ethernet1 {Role: ElectricConnector, Ethernet}
4 -0 M12Ethernet {Class: M12D4PinFemale }
=0 1{Class: PinType }
=0 2 {Class: PinType}
=0 3{Class: PinType}
0 4{Class: PinType}
4 [ie] M12Ethernet2 {Role: ElectricConnector, Ethernet}
4 o M12Ethernet {Class: M12D4PinFemale }
0 1{Class: PinType}
0 3{Class: PinType}
0 4{Class: PinType}
4 [iE] |OL Port1 {Role: ElectricConnector, IOLink}
4 0 M12A5PinFemale {Class: M12I0LinkMasterPort }
=0 1{Class: PinType}
+0 2{Class: PinType}
0 3(Class: PinType}
0 4{Class: PinType}
=0 5{Class: PinType}
b [E] 10L Port2 {Role: ElectricConnector, 10Link}
I [E] 10L Port3 {Role: ElectricConnector, I0OLink}
P [1i€] |OL Port4 {Role: ElectricConnector, IOLink}
I [iE] Pictures {Role: Structure}
I [iE] Documentation {Role: Model}
I [iE] Models {Role: ResourceStructure, Structure}
b BNI EIP-508-105-Z015 {Role: AutomationComponent, IOLinkMaster}
P [ug BNI CIE-508-105-Z015 {Role: AutomationComponent, |OLinkMaster}

Figure 119: AML SystemUnitClass of an AutomationComponent with two M12 Ethernet connectors

8.4.7 Application Example: M12 to M12 cable

In this example, a cable with one M12 female and another M12 male connector is modelled and a
modulare modelling approach has been pursued. The modular modelling results in a CAEX System-
UnitClass for a single wire, another SystemUnitClass for a cable with 4 wires, and a third System-
UnitClass for the M12 to M12 cable which assembles all above classes.

Figure 120 assembles four of these single wires together in order to model a 4-wire-cable. Each single
wire has own properties and inherits the interfaces.

4 ExampleCabIeLibrary-

4 SingleWire {Role: Wire}
0 P1{Class: ElectricInterface}
0 P2 {Class: Electricinterface}

<AutomationML/> Part 6 AutomationML Component

Figure 120: AML SystemUnitClass model of a single wire with two ends

Figure 121 assembles four of these single wires together in order to model a 4-wire-cable. Each single
wire has own properties and inherits the interfaces.

4 o7 ExampleCabIeLibraryP
4 [ud SingleWire {Role: Wire}

~0 P1{Class: Electricinterface }
0 P2 {Class: Electricinterface}
4 4Wires {Role: Wire}

b €] C1 {Class: SingleWire Role: Cable}
b 1] C2 {Class: SingleWire Role: Cable}
I [TE] C3 {Class: SingleWire Role: Cable}

I €] C4 {Class: SingleWire Role: Cable}

Figure 121: AML SystemUnitClass model of a cable with 4 wires

Figure 122 assembles the M12 to M12 cable (A-coded, 4 Pins). It consists of one 4-wire-cable, one M12
female interface and one M12 male interface. Furthermore, it models the wiring via CAEX InternalLinks.

What is interesting is that the modelling of the internal connections allows the modelling of any wiring:
straight wiring, cross wiring and even wiring errors or cable factures.

4 [BCC M313-M313-30-300-EX43T2-050
4 -0 M12A3PinFemale{Class: M12A3PinFemale)}
0 1{Class: PinType } 4
=0 2 {Class: PinType } 4
=0 3 {Class: PinType } 4
4 0 M12A3PinMale {Class: M12A3PinMale }
=0 1{Class: PinType } 4
0 2 {Class: PinType } 4
=0 3{Class: PinType } 4
4 [iE] C1 {Role: Cable, Wire}
0 P1{Class: Electricinterface } 4
0 P2{Class: Electriclnterface } 4
4 [iE] C2 {Role: Cable, Wire}
~© P1{Class: Electriclnterface } 4
0 P2 {Class: Electricinterface } 4
4 [iE] C3 {Role: Cable, Wire}
0 P1{Class: Electricinterface } 4
0 P2 (Class: Electricinterface } 4
> [1IE] ComponentPicture {Role: ComponentPicture}

Figure 122: AML SystemUnitClass of an M12 to M12 cable with 3 wires

<AutomationML/> Part 6 AutomationML Component

9 Practical examples for Automation Components

9.1 Example of atypical Automation Component: Pneumatic Cylinder

Within the following example an automation component in the shape of a pneumatic cylinder, as shown
in Figure 123, is modelled as AutomationML Component.

Figure 123: Picture of the real pneumatic cylinder ADN-25-50-A-P-A that is modelled here as an
AutomationML Component

This example is not intended to be complete but should give a clear overview how to model an
AutomationML Component in several aspects.

Following contents of the cylinder are included within the AutomationML Component;
Several typical datasheet attributes for identification, technical description and commercial use
Picture, icon and pneumatic symbol of the component and a manufacturer icon
Documentation of the component
Geometry and kinematic models with linking to the appropriate COLLADA document
Simplified logical behaviour model with linking to the appropriate AMLLogic document
Mechanic connectors for rod, base and sensor slots of the component
Pneumatic connectors of the component

Several relations (internal links) between kinematic model, behaviour model and connectors

9.1.1 Container Package

The whole AutomationML Component description of this component is packed into one AutomationML
Component Container (AMLX). Figure 124 gives an overview of the documents contained in the AMLX
file. The root document the AML document (visualized closer in Figure 125) is the entry point and holds
relations as references to all the other documents in the container.

[Festo_Compact-Cylinder 536258 ADN-25-50-A-P-A.amlx
+- [Festo_Compact-Cylinder_536258_ADN-25-50-A-P-A.am|
- [5AAC1504024E495EAE90B7051E953D26.jpg

- [5AAC1504024E495EAE90B7051E953D26_32x32.ico

+- [320px-Festo_logo.svg.png

+- [536258_ADN-25-50-A-P-A.dae

- [00991217.png

-- [ADN_EN.PDF

‘- [Behaviour_PneuDrive_DblAct.xml

Figure 124: An unpacked tree view of the contained file of the AutomationML Component

<AutomationML/> Part 6 AutomationML Component

9.1.2 Model Overview as Object Tree

Figure 125 shows the object tree of the component. All child elements of the object with the role class
“AutomationComponent” form the component. The contents of the component are modelled as
“InternalElements” and “InterfaceClasses” with the role classes and attributes as defined in this
document and the related “AutomationComponentLibrary”. All rules are applied, and all references are
set. “InternalLinks” model the inner relations between models to model and model to connectors and
are visualized by blue lines here.

4 FestoComponents
4 FestoComponent {Rele: AutomationComponent}
4[] ADN-25-50-A-P-A {Class: FestoComponent}
4 [iE] ComponentPicture {Role: ComponentPicture}
@ GraphicRepresentationReference {Class: GraphicRepresentationReference }
4 [iE] Componenticon {Role: Componentlcon}
=@ GraphicRepresentationReference (Class: GraphicRepresentationReference }
4 [iE] PneumaticSymbol {Rele: PneumaticSymbol}
@ GraphicRepresentationReference {Class: GraphicRepresentationReference }
4 [i€] Manufacturericon {Role: Manufacturericon}
= GraphicRepresentationReference (Class: GraphicRepresentationReference }
4 [iE] Documentation {Role: Documentation}
@ ExternalDataReference {Class: ExternalDataReference }
4 [iE] Geometry {Role: COLLADAGeometryModel}
+@ COLLADAInterface {Class: COLLADAInterface }
4 [iE] Kinematics {Role: COLLADAKinematicModel}
@ COLLADAInterface {Class: COLLADAInterface }
4 [iE] Rod {Role: COLLADAGeometryAttachment, COLLADAKinematicModel}
@ COLLADAInterface {Class: COLLADAInterface }
0 Attachmentinterface {Class: Attachmentinterface }
4 [iE] Base {Role: COLLADAKinematicAttachment}
@ COLLADAInterface {Class: COLLADAInterface }
0 Attachmentinterface {Class: Attachmentinterface }
4 [ig] SensorSlot1
@ COLLADAInterface {Class: COLLADAInterface }
0 Attachmentinterface {Class: Attachmentinterface }
4 [ig] SensorSlot2
@ COLLADAInterface {Class: COLLADAInterface }
0 Attachmentinterface {Class: Attachmentinterface }
4 [iE] SensorSlot3
+@ COLLADAInterface {Class: COLLADAInterface }
+0 Attachmentinterface {Class: Attachmentinterface }
4 [iE] Joint_Rod-Base {Role: COLLADA_Kinematicloint}
@ COLLADAInterface {Class: COLLADAInterface }
0 JointInterface {Class: JointInterface }
4 [iE] BehaviourModel {Role: BehaviourModel, LogicModelObject}
0 ReferenceBehaviour{Class: BehaviourLogicModellnterface }
0 PneumaticPort1 {Class: Variablelnterface}
0 PneumaticPort2 {Class: Variablelnterface }
+0 PositionRod {Class: Variablelnterface }
4 [iE] Connectors
4 [iE] Rod {Role: MechanicConnector}
0 Mechaniclnterface {Class: Mechaniclnterface }
4 [iE] Base {Role: MechanicConnector}
@ MechanicInterface {Class: Mechaniclnterface }
4 [iE] SensorSlot {Role: MechanicConnector}
0 SensorSlot1{Class: MechanicInterface }

0 SensorSlot2 {Class: MechanicInterface }

@ SensorSlot3 {Class: MechanicInterface }
4 [ie] PneumaticConnector {Role: PneumaticConnector}

~© P1{Class: Pneumaticlnterface }

0 P2{Class: Pneumaticinterface }

Figure 125: Object tree of the pneumatic cylinder with relations between models and connectors

<AutomationML/> Part 6 AutomationML Component

9.1.3 Connectors

As shown in Figure 126, the AutomationML Component has quite similar connectors as the automation
component, the real pneumatic cylinder. There are two pneumatic connectors (InternalElements with
role class “PneumaticConnector”) and there is a mechanic connector at the top of the rod and one on
the base of the cylinder. There are three mechanic connectors at the sensor slots. Each of these
mechanic connectors is represented by an InternalElement with the role class “MechanicConnector”
(cp. Figure 125).

P2

PneumaticConnector [RC
Base

[RC]MechanicConnector/SensorConnector

(‘) -

P1
PneumaticConnector [RC|
SensorSlot1

[RS]MechanicConnector - > SensorSlot3
MechanicConnector/SensorConnector
Rod

[RC]MechanicConnector SensorSlot2

MechanicConnector/SensorConnector
Figure 126: Overview of the modelled connectors of the AutomationML Component

9.1.4 Behaviour

Moreover, this component has a certain behaviour, if compressed air is conducted to only one of the
pneumatic connectors the rod moves to a defined end position. This behaviour is modelled here to:
Following the InternalLinks from the pneumatic connector to the InternalElement with the role class
“BehaviourModel” in Figure 125, you can get a reference (attribute “refUri” from “ReferenceBehaviour”
interface) to the AMLLogic document where this behaviour is described in the behaviour specific
language AMLLogic. Figure 127 shows a visualization of this behaviour. Depending on the pressure
state on the two inputs “PneumaticPort1” and PneumaticPort2” the behaviour model returns a position
value on the output “PositionRod”.

FUNCTION_BLOCK ADN25_LogicBehaviour
VAR_INPUT
L

14
2§
W

Figure 127: Contents of the AMLLogic behaviour model of the component

9.1.5 Kinematics and Geometry

In this example the behaviour model is also connected to the kinematic model of the component. The
InternalLink on the behaviour models’ output “PositionRod” is connected to the interface “Jointinterface”
of an internalLink with the role class “COLLADAJointInterface”. It's COLLADAInterface points to the joint
definition into the COLLADA document that specifies the whole geometry and kinematics of the
component. Inside the COLLADA document this joint is described as a prismatic joint between base and
rod of the cylinder. By this relation between behaviour model and kinematic model it is clearly stated
which part of the cylinder moves in which direction and position. Moreover, the COLLADA document
describes attachment points published by InternalElements with the role class
“COLLADAKiInematicAttachment”. Figure 128 visualizes the kinematic model in the COLLADA
document and the references used in the CAEX part.

<AutomationML/> Part 6 AutomationML Component

Base Rod
COLLADAKinematicAttachment Wy COLLADAKinematicAttachment
j\ Joint_Rod-Base
—_— COLLADAKinematicJoint

Figure 128: Visualization of the kinematic model of the component

In this example the kinematic attachments are connected by InternalLinks with the related mechanic
connectors (see also Figure 126). Other AutomationML Components that are interconnected with their
mechanic connectors, are to be seen as a fixed kinematic connection. E.g. a Gripper connected with its
mechanic connector to the mechanic connector of the rod is meant to be moved with any movement of
the rod.

9.1.6 Attributes

Attributes are attached to any object the AutomationML Component definition defines. Typical datasheet
attributes for identification, technical description or commercial use is concentrated on the top-level
InternalElement with the role class “AutomationComponent”. Figure 129Figure 129 shows an excerpt of
the attributes of this component.

Mame Value]

i~ Manufacturer Festo SE & Co. KG

i ManufacturerUR| www.festo.com

|- DeviceClass preumatic drive
i~ Model ADN-25
= ProductCode ADN-25-50-A-P-A

i~ OrderCode ADN-25-50-A-P-A

Mt

Figure 129: Excerpt of attributes attached to the top-level element

9.1.7 Graphical Representation

Several graphical representations are part of this AutomationML Component, as shown in Figure
130Figure 130. The InternalElement with the role class “ComponentPicture” shows a photographical
view on this component. “Componentlcon” shows a size reduced picture for the integration into tools.
“PneumaticSymbol” is a typical pneumatic circuit element from engineering that shows the pneumatic
function of the component in a human readable symbol. “Manufacturerlcon” is a logo from the
manufacturer of this component and might also be used for a tool.

wy, > [[J:F FESTO

Figure 130: Content of “ComponentPicture”, “Componentlcon”, “PneumaticSymbol”, “Manufacturericon
(from left to right)

”

9.1.8 Documentation

The InternalElement with the role class “Documentation” points here to a user manual for this
component. For the sake of simplicity only one document is attached here.

<AutomationML/> Part 6 AutomationML Component

9.1.9 Summary

As a sum of all models, connectors, attributes, relations a comprehensive overall digital representation
of the component is achieved. Not only useful datasheet attributes can be found but also picture and
icons for the integration in a tool, that makes use of this AutomationML Component. Tools for virtual
commissioning find interconnected models for geometry, kinematics and behaviour alongside with their
relation to the connectors. Nevertheless even worthy information for classical engineering can be found.

9.2 Skill Example based on VDMA SOArc and VDI 2860 standards
9.2.1 Generic model of a skill based on VDMA SOArc and VDI standards

Different organizations have started standardizing different aspects of skills of automation
components/systems. This example illustrates modelling the skill provided by a component/ system
based on the standardization initiative by VDMA SOArc® and VDI-2856*. VDMA SOArc defines a
standard interface behaviour model, which abstract the logic behaviour of a skill, and offers an
executable service interface to a component. By employing this standard on the components, the
external consumers of the skills can execute skills in a unified manner. VDI-2856 defines a granularity
(e.g. grip and move are lowest granularity skills) and naming conventions for skills. A generic model of
skill of an automation component based on the standardized aspects of VDMA SOArc and VDI-2860 is
depicted in.

Component/System
SkillModel
: Consumer 1. SkillConnector 11
| + RefNamingConv: VDI-2860
+ ReflnterfaceBehaviourStd:
i VDMA SoArc Specification skillconnector <<AMLLogicXMLLogicObject>>
! SkillLogicModel
1.* + RefNamingConv: VDI-2860
) + Param’ type
+ RefinterfaceBehaviourStd: 1.7
VDMA SoArc Specification + Param: type

Consumer 2. SkillConnector]
A + methoditype): type

+ RefMamingConv: VDI-2880 +-----

+ RefinterfaceBehaviourStd:
VDMA SoArc Specification

<<COLLADAKinematicModel>>
Kinematic Model

<<LogicObject>>
SkillInterface
BehaviorModel

Consumer n. SkillConnector + Parameter- type + Param: type

+ Param: type

+ RefNamingConv: VDI-2280

+ ReflnterfaceBehaviourstd:
VDMA SoArc Specification

----- + method(type): type

Other Models

0= + Param : type

+ Param: type

Figure 131: Class diagram showing different aspects of skill of an automation component

The figure illustrates the following attributes of skill of an automation component/system:

3 https://ias.vdma.org/viewer/-/v2article/render/45533387

4 https://www.vdi.de/richtlinien/details/vdi-2860-handhabungsfunktionen-handhabungseinrichtungen-begriffe-definitionen-symbol

https://ias.vdma.org/viewer/-/v2article/render/45533387
https://www.vdi.de/richtlinien/details/vdi-2860-handhabungsfunktionen-handhabungseinrichtungen-begriffe-definitionen-symbol

<AutomationML/> Part 6 AutomationML Component

1) The skill model has the potential to represent the functionality provided by an automation
component/system (different domain specific models such as SkillLogicModel, KinematicModel,
etc., implement the functional behaviour of a skill).

2) The model of a skill can be used as the connection point between different functional units that
constitute an automated production system (the ComponentSkillConnector can be associated
with different domain specific models implementing the functional behaviour of a skill).

3) Skill model is executable via a service interface (ComponentSkillConnector implemented based
VDMA SOArc + VDI 2860 provides a standardized and executable service interface of the skill).

4) The skill provided by a component can be consumed by multiple consumers that require the
skill (SkillConnectors of the consumers are associated to the SkillConnector of the
component/system).

The detailed aspects of the SkillConnectors of consumers are out of scope of this document. The
following section elaborates the details on modelling the skill provided by an automation
component/system based on the standards VDMA SOArc and VDI 2860.

9.2.2 Modelling the provided skill of acomponent/system based on VDMA SOArc and VDI 2860
standards

This section assumes an automation component that provides a skill for external consumption.
Examples are a Gripper that provide “Grip” and a linear drive that provide “Move”. The standardization
aspects of VDMA SOArc and VDI-2860 modelled as a RoleClass is shown in Figure 132. The “VDMA
SOArc+ VDI 2860” RoleClass extends the “SkillConnector” RoleClass provided in the
AutomationMLComponentStdRCL. Additionally it uses the “Skillinterface” provided in the
AutomationMLComponentBaselCL

A VDMA SOArc+VDI 2860 { Class SkillConnector }
N VDMA SOArc+VDI 2860-Interfaces
«o Skill_Start { Class Skillinterface }
«0 Skill_Stop { Class Skillinterface }
=0 Skill_CurrenState { Class Skilllnterface }

«o Skill_InputParameter { Class Skilllnterface }

Figure 132: VDMA SOArc and VDI 2860 based SkillConnector RoleClass

For referring standards, the “VDMA SOArc+ VDI 2860” provides the attribute fields namely:
“ReflnterfaceBehaviourStd” and “RefNamingConvention”. Both these attributes provide the sub
attributes described in

Table 85: Sub attributes for specifying the VDMA SOArc and VDI 2860 standards

Attribute AttributeDataType Description

Name Xs:string The attribute “Name” shall be used to specify the
used standard. The attribute is mandatory.

Version Xs:string The attribute “Version” shall be used to specify a
particular version of the standard. The attribute is
mandatory.

URL xs:string The attribute “URL” shall be used to specify the
URL where standard is defined. The attribute is
optional.

Further, the RoleClass provides some of the interfaces specified in the VDMA SoArc. The “Skill_Start”
is used to trigger a skill. The interface “Skill_Stop” stops the execution of a skill. The “Skill_CurrentState”
provides the current state information of a skill such as “Executing” or “Idle”. “Skill_InputParameter” is
used to specify the input parameter of a skill. When necessary the rest of the interfaces can be modelled

in a similar manner.

<AutomationML/> Part 6 AutomationML Component

The application of this RoleClass for modelling the skill provided by an automation component/system
is depicted in Figure 133. The figure depicts the internal association of the SkillConnector and the
SkillLogic Model. For example the “Skill_Start” and “Skill_Stop” is internally connected to the
“Start/StopSignal” of a SkillLogicModel. The “OutputVariable” from the SkillLogicModel is connected to
the “Skill_CurrentState”. The “Skill_InputParameter” is connected to the “InputParameter” of the
SkillLogicModel. Further “Skill_Start” is connected to “Joint1”, which triggers the kinematic movement
corresponding to the functionality provided by the skill.

~ °B SkillExample
« [IE] Component { Class Role AutomationComponent }
» [1E] ProvidedSkill { Class Role SkillModel }
» [IE] SkillLogicModel { Class Role SkillLogicModel }
a =9, SkillLogicModel-Interfaces

«o SkillFunctionalBehaviour { Class LogicModelinterface }
+o StartStopSignal { Class VariableInterface } ..cecessssssssssssss
=0 QutputVarible { Class Variablelnterface } .

«0 InputParameter { Class Variablelnterface }
4 [If] SkillConnector { Class Role VDMA SOArc+VDI 2860 }
a =9, SkillConnector-Interfaces

~o Skill_Start { Class Skilllnterface }

~o Skill_Stop { Class Skilllnterface }

«o Skill_CurrenState { Class Skilllnterface } =™

«o Skill_InputParameter { Class Skillinterface } ="~ i

N KinematicModel { Class Role COLLADAKinematicAttachment } '

a =% KinematicModel-Interfaces

*9 COLLADAInterface { Class COLLADAInterface }

«0 Joint1 { Class Attachmentinterface }

Figure 133: Automation component providing a skill

9.3 Connection of components

To demonstrate the connection of different AutomationML Components and the different model aspects
of an AutomationML Component according to the specification of chapter 3.14 no own example is
defined in this version of the document.

Aspects of the definitions can be found within the geometry and simulation practical examples in chapter
0 and 9.5.

<AutomationML/> Part 6 AutomationML Component

9.4 Motor and Frequency Converter

This example shall show how a motor and a frequency converter can be modelled regarding virtual
commissioning. Hereby also the modelling of behaviour and simulation based on standards (PLCopen
XML) and user defined modules (FMU/FMI) shall be considered. Finally, the integration of these
components with the PLC must be considered as well.

The model for simulation of a component needs:
Inputs
Outputs
Parameters
Constants
Logic Behaviour (Link to PLCopen XML-Model)

Inputs list all the entries to the logic behavior element. The entry gates are used for attaching signals
entering the logic behavior with links to PLC relevant data.

Outputs list all the outputs from the logic behavior element. The output gates are used for attaching
signals exiting the logic behavior with links to PLC relevant data.

In case of compound components i.e. if a component is a sub-component we also have to define
“Internallnputs” res. “External Inputs” to interact with the overlay components. These internal
inputs/outputs shall not be visible in the overlay component.

Parameters list all the parameters in the logic behavior element. These are evaluated expressions used
in other parameters and outputs. They can be seen as inputs in AutomationML.

Constants list all the constants in the logic behavior element. These are values used in parameters and
outputs. They can be seen as inputs in AutomationML.

Logic Behaviour lists assignments to behaviour models. Itis a link to a PLCopen XML-File and considers
the use of Inputs and Outputs. It can also be a link to a user defined model.

9.4.1 Example Motor

The following example shall show this for a motor:

Input Connectors
Output Connectors
Model (PLCOpen-XML)

J PROFdrjve

hsTwi Zswi

Sfinsol_a NI‘ST_AE Falsa [} Run Run
Falsz [» Dir Dir

300gg§;\p @ n Truz [Spead Speed

3 f_
3.0[¢ 'oown 500 Low speed
5 Tous I

0.5[¢ Ioe
5,0?>Ref' al Y [F Y

Sinamicp

Figure 134: Example motor logic model

The Inputs are STW1, NSOLL_A. Parameters and Constants could be nn, Tup, Tdown, Tdelay and RefVal
dienen. The Outputs are in this example ZSW1, Nist_A, n and Y. The assigned logic for modelling the
behaviour of a motor can be modelled as PLCopen XML or user defined model.

<AutomationML/> Part 6 AutomationML Component

4 [iE] Motor 1LM1222-4BC13-3AA0 {Class: Drive Role: Drive}
I [1€] ElectricalConnectors {Class: ElectricConnectorRole: ElectricConnector}
P [iE] Simulation Models {Class: Model Role: Model}
AutomationProjectConfigurationDriveExtensionRoleClassLib/Drive

Figure 135: Example motor as internal element

The electrical connectors can be modelled as follows:

4 [iE] Motor 1LM1222-4BC13-3AA0 {Class: Drive Role: Drive}
4 [ig] ElectricalConnectors {Class: ElectricConnectorRole: ElectricConnector}
4 "% ElectricalConnectors-Interfaces
+0 U1{Class: Electriclnterface} P
+0 V1 {Class: ElectricInterface} I’
0 W1 {Class: ElectricInterface} I’
+0 PE{Class: Electricinterface}
AutomationMLComponentStandardRCL/ElectricConnector
P [E] Simulation Models {Class: Model Role: Model}
AutomationProjectConfigurationDriveExtensionRoleClassLib/Drive

Figure 136: Example motor definition of electrical connectors

The behavior can be modelled using the standard PLCopen XML or a user defined model as well:

<AutomationML/> Part 6 AutomationML Component

4 [iE] Motor 1LM1222-4BC13-3AA0 {Class: Drive Role: Drive}
> [iE] ElectricalConnectors {Class: ElectricConnector Role: ElectricConnector}
4 [iE] Simulation Models {Class: Model Role: Model}
4 [iE] StandardPLCOpenMotorModel {Class: PLCopenXMLLogic Role: PLCopenXMLLogic}
4 % StandardPLCOpenMotorModel-Interfaces
-0 Motor Behaviour{Class: BehaviourLogicModellnterface }
Run In{Class: Variablelnterface}
Dir In{Class: Variablelnterface} P
Speed In{Class: VariableInterface } P
Low Speed In{Class: Variablelnterface} >
Up In{Class: Variablelnterface }
Down In{Class: Variablelnterface }
Run Qut{Class: Variablelnterface }
Dir Out{Class: Variablelnterface }
Speed Out {Class: Variablelnterface }
Q@ Y Out{Class: Variablelnterface }
AutomationMLComponentBaseRCL/LogicModel/PLCopenXMLLogic
4 [ig] UserDefinedMotorModel {Class: SimulationModel Role: SimulationModel}
4 % UserDefinedMotorModel-Interfaces
0 UserDefinedMotorBehaviour {Class: ExternalDataConnector }

EEEEEEERE

UserDefined Run In{Class: Signalinterface }
UserDefined Dir In{Class: Signalinterface} P
UserDefined Speed In{Class: Signalinterface}
UserDefined Low Speed In{Class: Signalinterface }
UserDefined Up In{Class: Signallnterface }
UserDefined Down In{Class: Signallnterface }
UserDefined Run Out {Class: Signallnterface }
UserDefined Dir Out {Class: Signallnterface }
UserDefined Speed Out{Class: Signallnterface }
UserDefined Y Out {Class: Signallnterface }
0 ExternalDataConnector{Class: ExternalDataConnector}
AutomationMLComponentStandardRCL/SimulationModel
AutomationMLComponentBaseRCL/Model

AutomationProjectConfigurationDriveExtensionRoleClassLib/Drive

§ 66688686688

Figure 137: Example motor integration of simulation model

<AutomationML/> Part 6 AutomationML Component

9.4.2 Example Frequency Converter

A frequency converter can be modelled in the same way as a motor.

U1 v1jwi|
P L1 L2
Power Module —§
Netzfilte

PM240P-2 e |d

DIP-Schalter STO 3~ é

1 EIN d

STO(A) & [
STO(B) 7o AUS

Contoll piF Senitstell b
Control Unit

CU230P-2 DP :> =

P =1

‘ PE[U2]V2
Tow . ;‘..I:iw« Rum

5201 Low soses

.

N
[
H

g @%T%%j

Input Connectors
Output Connectors
Model (PLCOpen-XML)

/

Temparatre veracr A2/
1900 or A2+ oot

Temperanre venacx
1000 or Al3e 120’

Figure 138: Overview example frequency converter

The control module of the frequency converter in this example has digital logical inputs for
parametrization and is connected via Profibus to the PLC. The power module of the frequency converter
is connected to the motor (U, V, W, PE). The control module is modelled in AutomationML via
“Signalinterfaces”. The power module is modelled via “Electricinterfaces”.

4 [ie] SINAMICS G 120 {Class: Drive Role: Drive}
b [1E] PROFINET interface {Class: Node Role: Node}
4 [iE] Automation Input Interfaces SINAMICS {Class: LogicConnector Role: LogicConnector}
4 % Automation Input Interfaces SINAMICS-Interfaces
0 Signallnterface DI 0{Class: Signallnterface } »
0 Signallnterface DI 1{Class: Signallnterface}
0 Signallnterface DI 2 {Class: Signallnterface}
0 Signallnterface DI 3 {Class: Signallnterface} I
AutomationMLComponentStandardRCL/LogicConnector
4 [iE] Electric Output Interfaces SINAMICS {Class: ElectricConnector Role: ElectricConnector}
4 % Electric Output Interfaces SINAMICS-Interfaces
0 U2({Class: Electricinterface} P
0 V2 {Class: Electricinterface} I
0 W2 {Class: Electricinterface} P
0 PE{Class: Electricinterface} P
AutomationMLComponentStandardRCL/ElectricConnector

AutomationProjectConfigurationDriveExtensionRoleClassLib/Drive

Figure 139: Example frequency converter In-/Out interfaces

The connections between the frequency controller and the motor are modelled in Automation via Internal
Links. Here the links for the power module:

<AutomationML/> Part 6 AutomationML Component

4 [iE] SINAMICS G 120 {Class: Drive Role: Drive}
P [IE] PROFINET interface {Class: Node Role: Node}
P [1E] Automation Input Interfaces SINAMICS {Class: LogicConnector Role: LogicConnector}

4 [ig] Electric Output Interfaces SINAMICS {Class: ElectricConnector Role: ElectricConnector}
4 % Electric Output Interfaces SINAMICS-Interfaces

0 U2 {Class: ElectricInterface } 4
0 V2 {Class: ElectricInterface } 4
0 W2 {Class: Electricinterface } 4
0 PE {Class: Electricinterface} 4
AutomationMLComponentStandardRCL/ElectricConnector |
AutomationProjectConfigurationDriveExtensionRoleClassLib/Drive
4 [ie] Motor 1LM1222-4BC13-3AA0 {Class: Drive Role: Drive}
4 [ig] ElectricalConnectors {Class: ElectricConnector Role: ElectricConnector}
4 % ElectricalConnectors-Interfaces
0 U1 {Class: ElectricInterface } 4
0 \/1{Class: Electricinterface} 4
0 W1 {Class: Electriclnterface } 4
0 PE{Class: Electricinterface} 4
AutomationMLComponentStandardRCL/ElectricConnector
> [iE] Simulation Models {Class: Model Role: Model}
AutomationProjectConfigurationDriveExtensionRoleClassLib/Drive

AutomationProjectConfigurationRoleClassLib/AutomationProject

Figure 140: Example frequency converter connection to motor

<AutomationML/> Part 6 AutomationML Component

9.4.3 Motor /Drive/PLC

Like the connections between frequency controller and motor the connections between the PLC and the
frequency controller are modelled in Automation via Internal Links. In this example the PLC has digital
outputs which shall be connected to the digital inputs of the frequency controller. Hereby the PLC is
configured according AR APC:

Components

CH1
CH2

ll CHO

Frequency Converter Motor

voltage
current
speed

Pos.
1 |Power Module

2 | Sinusfiter oder duidt-Fiter (optional)

 ARARC
eee——

PLC World: Logical connection

—)

I
|
|
I
|
|
I Abb. 13: Anschiuss G120F IP55
|
I
|
|
: Electrical World: Electrical connection
Figure 141: Example integration AR APC
So the complete example consists of a PLC station, a motor, a frequency controller and the Profibus:
4 [iE] Project1 {Class: AutomationProject Role: AutomationProject}
P [E] PN/IE_1 {Class: SubnetRole: Subnet}
b [1E] S71500/ET200MP station_1 {Class: Device Role: Device}
P [1E] SINAMICS G 120 {Class: Drive Role: Drive}
P [E] Motor 1LM1222-4BC13-3AA0 {Class: Drive Role: Drive}
AutomationProjectConfigurationRoleClassLib/AutomationProject

Figure 142: Example integration AR APC project structure

Here the connection between the PLC and the frequency converter:

<AutomationML/> Part 6 AutomationML Component

4 [iE] Project1 {Class: AutomationProject Role: AutomationProject}
b [1E] PN/IE_1 {Class: SubnetRole: Subnet}
4 [iE] S71500/ET200MP station_1 {Class: Device Role: Device}
4 [iE] Rail_1500 {Class: Deviceltem Role: Deviceltem}
I [tE] PS 60W 120/230VAC/DC_1 {Class: Deviceltem Role: Deviceltem}
4 [ie] PLC {Class: Deviceltem Role: Deviceltem}
> [IE] PROFINET interface_1 {Class: Communicationinterface Role: Communicationinterface}
4 [ie] Default tag table {Class: TagTable Role: TagTable}
4 % Default tag table-Interfaces
0 Run{Class: Tag} I __
0 Dir{Class: Tag} I
0 Speed{Class: Tag} I
o
-0

Low Speed {Class: Tag} P
Up{Class: Tag}
-0 Down {Class: Tag}
AutomationProjectConfigurationRoleClassLib/TagTable
AutomationProjectConfigurationRoleClassLib/Deviceltem
4 [1E] DQ 32x24VDC/0.5A ST_1 {Class: Deviceltem Role: Deviceltem}
4 [ie] DQ 32x24VDC/0.5A ST_1 {Class: Deviceltem Role: Deviceltem}
4 % DQ 32x24VDC/0.5A ST_1-Interfaces
0 Channel_DO_0{Class: Channel } 4
+0 Channel_DO_1 {Class: Channel } 4
0 Channel_DO_2 {Class: Channel } 4
+0 Channel_DO_3{Class: Channel } 4
AutomationProjectConfigurationRoleClassLib/Deviceltem
AutomationProjectConfigurationRoleClassLib/Deviceltem
AutomationProjectConfigurationRoleClassLib/Deviceltem
AutomationProjectConfigurationRoleClassLib/Device
4 [iE] SINAMICS G 120 {Class: Drive Role: Drive}
I> [1E] PROFINET interface {Class: Node Role: Node}
4 [iE] Automation Input Interfaces SINAMICS {Class: LogicConnectorRole: LogicConnector}
4 "% Automation Input Interfaces SINAMICS-Interfaces
~0 Signallnterface DI 0{Class: Signallnterface } 4
=0 Signallnterface DI 1{Class: Signallnterface } 4
~0 Signallnterface DI 2 {Class: Signallnterface } 4
-0 Signalinterface DI 3 {Class: Signallnterface } 4
AutomationMLComponentStandardRCL/LogicConnector
4 [ig] Electric Output Interfaces SINAMICS {Class: ElectricConnector Role: ElectricConnector}
4 % Electric Output Interfaces SINAMICS-Interfaces
0 U2 {Class: Electricinterface}
~0 V2 {Class: Electriclnterface} I
0 W2 {Class: ElectricInterface} I
~0 PE{Class: ElectricInterface} I’
AutomationMLComponentStandardRCL/ElectricConnector
AutomationProjectConfigurationDriveExtensionRoleClassLib/Drive
b €] Motor 1LM1222-4BC13-3AA0 {Class: Drive Role: Drive}
AutomationProjectConfigurationRoleClassLib/AutomationProject

Figure 143: Example integration AR APC internal linking

<AutomationML/> Part 6 AutomationML Component

9.5 User Defined Simulation Models

9.5.1 Referencing Functional Mockup Units According to the FMI Standard

The following section deals with the topic how to reference a Functional Mockup Unit (FMU) according
to the FMI Standard. FMU’s are often used for simulation and especially for the use case of virtual
commissioning. The advantage of CoSimulation compiled FMU’s is that for itself runable simulation
models - independent of the manufacturer - can handover and build together to a greater simulation
system. This allows to simulate each kind of behavior independent of the complexity and enables an
interdisciplinary engineering.

Many simulation tools bases on a signal flow structure. Defined inputs, parameters, outputs and
executable code are characteristic for simulation models. If the system borders to other domains are
declared it is lately just the question how to reference and instantiate FMU’s into AutomationML.

InstanceHierarchy -

H [

4 "= InstanceHierarchy
4 [i§] PneumaticSystem
] ADVU-50-200-A-P-A [Class: ADVU-50-200-A-P-ARole: AutomationComponent}

W] CPE14 [Class: CPE14Role: AutomationComponent)
] GRLA [Class: GRLARole: AutomationComponent)
W] GRLA1 [(lass: GRLARole: AutomationComponent]
PN SimulationM: {Role: FMILogic, SimulationModel }
4 % Simulatio aces
e -0 FMIReference (Class: FMIReference |
H *o moveOut{Class: FMIVariablelnterface }
~0 moveln(Class: FMIVariablelnterface |
~0 F_ext(Class: FMVariablelnterface

i.

~o p_supply(Class: FMIVariablelnterface } pneumaticdrive.fmu
*o throttle_extend {Class: FMIVariablelnterface } T
*o throttle retract (Class: FMIVariablelnterface) i :
-0 F_pneu(Class: FMIVariablelnterface) - 1 :
+0 position (Class: FMIVariablelnterface) - | - H
~o velocity (Class: FMIVariablelnterface } -
0 (Class: F) e e ; [Jinput | ¢
-0 airflow (Class: FMIVariablelnterface) - H H
*0 retract_signal [Class: FMIVariablelnterface | - | E parameter E
-0 extend signal (Class: FMiVariablelnterface) -~ ; I output :
80 AutomationMLComponentStandardRCL/SimulationModel i 1 !

& AutomationMLComponentBaseRCL/LogicModel/FMiLogic)

...

Figure 144: AutomationML Editor SimulationModel references an external FMU (left) — pneumatic
drive.fmu (right)

Figure 144 shows the way how to reference between AutomationML and FMU’s according the FMI
standard. In principle the example of a PneumaticSystem could also be e.g. a robot or a electric drive.
The scheme is always the same:

A InternalElement (SimulationModel) with the RoleClasses FMILogic and SimulationModel includes the
path to the external FMU (pneumaticdrive.fmu) and variables. The InterfaceClasses FMIReference and
the FMIVariablelnterface are the preferred Interfaces to connect the path of the external FMU and further
information inside the modelDescription.xml which is part of every FMU.

The AutomationML variable attributes of the FMIVariableinterface refURI, Name and Causality
described the FMU path, name and the property as input, parameter or output. With these
AutomationML SimulationModel informations it is e.g. possible to connect kinematic joints of COLLADA
files or PLCopenXML PLC programs to build up a interdisciplinary engineering file for different use
cases.

9.5.2 SIMIT Simulation Models

This example shall show how a motor and a frequency converter can be modelled using vendor specific
simulation models. The inputs and outputs are the same as in the PLCopen XML — example. But in
difference to the connection to PLCopen XML the simulation code is provided and modelled within
SIMIT. SIMIT can be used for a complete plant simulation including the simulation of signals, devices
and plant responses. SIMIT provides an input and output simulator of test signals for an automation
controller and allows testing and commissioning of automation software.

SIMIT also provides a lot of components for logical and arithmetic functions and for drives, sensors,
connections and communication. Each component consists of an open XML based component interface
(PORT) containing the various input and output connectors of the component and an encapsuled

<AutomationML/> Part 6 AutomationML Component

content file (COMP) containing the simulation model for the behaviour of the component. This content
is referenced by a SIMIT-UID.

Therefor it is sufficient to define a SIMIT shell containing an InterfaceClass derived from the

LogicalEndpoint for the port and a RoleClass derived from the UserDefinedSimulationModel for
embedding the encapsulated component:

4 [SIMIT InterfaceClassLib
ic] SIMIT SIGNAL {Class: LogicalEndPoint }
Figure 145: SIMIT InterfaceClassLibrary

4 SIMIT_AML_RoleClassLib
4 SIMIT COMP {Class: LogicModel }
4 % SIMIT COMP-Interfaces

»0 Behaviour Model {Class: ExternalDataConnector }
4 SIMIT PORT {Class: LogicalDevice }
4 % SIMIT PORT-Interfaces
=0 SIMIT SIGNAL{Class: SIMIT SIGNAL }
Figure 146: SIMIT RoleClassLibrary

Based on these two objects all SIMIT compnents can be mapped. The only difference in the motor
frequency controller is the linkage to the SIMIT model instead of the PLCopen XML-model.

4 [iE] SINAMICS G 120 {Class: Drive Role: Drive}

b [1IE] Automation Input Interfaces SINAMICS {Class: LogicConnector Role: LogicConnector}
b [1€] Electric Output Interfaces SINAMICS {Class: ElectricConnector Role: ElectricConnector}
I> 1E] PROFINET interface {Class: Node Role: Node}
4 [ig] SIMIT SINAMICS Simulation Model {Class: SIMIT COMP Role: SIMIT COMP}
4 % SIMIT SINAMICS Simulation Model-Interfaces
@ Behaviour Model {Class: ExternalDataConnector }
4 [1e] PROFIdrive PORT {Class: SIMIT PORTRole: SIMIT PORT}
4 % PROFIdrive PORT-Interfaces
=0 SIMIT NIST SIGNAL {Class: SIMIT SIGNAL} >
=0 SIMIT NominalSpeed SIGNAL {Class: SIMIT SIGNAL} P
=0 SIMIT State SIGNAL {Class: SIMIT SIGNAL} P
SIMIT_AML_RoleClassLib/SIMIT PORT
SIMIT_AML_RoleClassLib/SIMIT COMP

AutomationProjectConfigurationDriveExtensionRoleClassLib/Drive

Figure 147: SIMIT Component Reference SINAMICS

<AutomationML/> Part 6 AutomationML Component

4 [iE] Motor 1LM1222-4BC13-3AA0 {Class: Drive Role: Deviceltem}
b [E] ElectricalConnectors {Class: ElectricConnectorRole: ElectricConnector}
4 [ie] SIMIT Motor Simulation Model {Class: SIMIT COMP Role: SIMIT COMP}
4 % SIMIT Motor Simulation Model-Interfaces
~Q Behaviour Model {Class: ExternalDataConnector }
4 [ig] Start PORT {Class: SIMIT PORT Role: SIMIT PORT}
4 % Start PORT-Interfaces
0 SIMIT SIGNAL {Class: SIMIT SIGNAL }
SIMIT_AML_RoleClassLib/SIMIT PORT
4 [iE] T_Up PORT {Class: SIMIT PORT Role: SIMIT PORT}
4 % T_Up PORT-Interfaces
0 SIMIT SIGNAL {Class: SIMIT SIGNAL }
SIMIT_AML_RoleClassLib/SIMIT PORT
4 [iE] T_Down PORT {Class: SIMIT PORT Role: SIMIT PORT}
4 % T Down PORT-Interfaces
0 SIMIT SIGNAL {Class: SIMIT SIGNAL }
SIMIT_AML_RoleClassLib/SIMIT PORT
SIMIT_AML_RoleClassLib/SIMIT COMP
AutomationProjectConfigurationRoleClassLib/Deviceltem

Figure 148: SIMIT Component Motor Reference

The link to the SIMIT behaviour component is modelled according AutomationML as External Reference
using the SIMIT UID as identifier within the refURI. The following figure shows an example for the
SINAMICS frequency converter:

4 [iE] SIMIT SINAMICS Simulation Model {Class: SIMIT COMP Role: SIMIT COMP} Mame Value DataType
4 % SIMIT SINAMICS Simulation Model-Interfaces L PortUID ADRIVES/PROFIdrive/Sinamics xs:anylURI
@ Behaviour Model {Class: ExternalDataConnector } interfacexmlgd_000hsn_lyn7vord
4 [1e] PROFIdrive PORT {Class: SIMIT PORT Role: SIMIT PORT} 1 PortName PROFIdrive xsistring
4 % PROFldrive PORT-Interfaces ‘. PortDirection IN usistring

=0 SIMIT NIST SIGNAL {Class: SIMIT SIGNAL} P
= SIMIT NominalSpeed SIGNAL {Class: SIMIT SIGNAL} >
=0 SIMIT State SIGNAL {Class: SIMIT SIGNAL} P
SIMIT_AML_RoleClassLib/SIMIT PORT
SIMIT_AML_RoleClassLib/SIMIT COMP

Figure 149: SIMIT Component SINAMICS Reference

The input and output ports are modelled as SIMIT Signals derived from the SIMIT SIGNAL interface and
linked with the tags of the PLC:

<AutomationML/> Part 6 AutomationML Component

4 [ig] PLC {Class: Deviceltern Role: Deviceltern }
4 [ig] Default tag table {Class: TagTable Role: TagTable}
4 % Default tag table-Interfaces
=0 Start{Class: Tag } ~
@ T Up{Class: Tag } ©
=0 T Down{Class: Tag }
0 Speed{Class: Tag } 4
=0 State{Class: Tag } 4
=@ MIST{Class: Tag } 4
fid AutomationProjectConfigurationRoleClassLib/TagTable
[* [iE] PROFIMET interface_1 {Class: Communicationinterface Role: Communicationinterface}
Bl AutomationProjectConfigurationRoleClassLib/Deviceltemn
[+ [1E] D 32%24VDIC/0.54 ST_1 {Class: Deviceltern Role: Deviceltern}
il AutomationProjectConfigurationRoleClassLib/Deviceltem
B AutomationProjectConfigurationRoleClassLib/Device
d [ig] SINAMICS G 120 {Class: Drive Role: Drive}
I [ie] Autornation Input Interfaces SINAMICS {Class: LogicConnector Role: LogicConnector}
[[1E] Electric Qutput Interfaces SINAMICS {Class: ElectricConnector Role: ElectricConnector}
[* iE] PROFIMET interface {Class: Mode Role: Mode!l
A [ig] SIMIT SINAMICS Simulation Model {Class: SIMIT COMP Role: SIMIT COMP}
4 A SIMIT SINAMICS Simulation Meodel-Interfaces
=@ Behaviour Model {Class: ExternalDataConnector }
4 [ie] PROFIdrive PORT {Class: SIMIT PORT Role: SIMIT PORT}
4 % PROFIdrive PORT-Interfaces
=@ SIMIT MIST SIGMAL {Class: SIMIT SIGMAL | 4
=@ SIMIT Mominalspeed SIGMAL {Class: SIMIT SIGMAL } 4
=0 SIMIT State SIGMAL {Class: SIMIT SIGNAL } 4
il SIMIT_AML_RoleClassLib/SIMIT PORT

Figure 150: SIMIT Component SINAMICS Reference with PLC Signals

<AutomationML/> Part 6 AutomationML Component

In the same way the motor component and the motor signals can be modelled:

4 [ig] SIMIT Motor Simulation Model {Class: SIMIT COMP Role: SIMIT COMP} Name Value DataType
4 % SIMIT Motor Simulation Model-Interfaces o refURI ADRIVES/Motor/Motor xs:anyURI
@ Behaviour Model {Class: ExternalDataConnector } interface.xmi#f_000hsn_4d9%gq3u

4 [iE] Start PORT {Class: SIMIT PORT Role: SIMIT PORT}
4 % Start PORT-Interfaces
=0 SIMIT SIGNAL {Class: SIMIT SIGNAL} P
SIMIT_AML_RoleClassLib/SIMIT PORT

Figure 151: SIMIT Component Motor Reference

4 [ig] PLC {Class: Deviceltern Role: Deviceltern }
4 [ig] Default tag table {Class: TagTable Role: TagTable}
4 % Default tag table-Interfaces
=0 Start{Class: Tag } ©
=0 T_Up{Class: Tag } ©
=0 T_Down{Class: Tag} ~
@ Speed{Class: Tag} ©
=0 State{Class: Tag } »
=0 MIST{Class: Tag } »
B AutomationProjectConfigurationRoleClassLib/TagTable
[[iE] PROFIMET interface_1 {Class: Communicationinterface Role: Communicationinterface}
il AutomationProjectConfigurationRoleClassLib/Deviceltemn
[+ [E] D 32x24VDC/0.54 5T_1 {Class: Deviceltern Role: Deviceltern }
i AutomationProjectConfigurationRoleClassLib/Deviceltem
Fid AutomationProjectConfigurationRoleClassLib/Device
d [ie] Motor 1LM1222-4BC13-3440 {Class: Drive Role: Deviceltern}
4 [ie] ElectricalConnectors {Class: ElectricConnector Role: ElectricConnector}
4 % ElectricalConnectors-Interfaces
=2 U WV W _PE{Class: ElectricInterface} ~
il AutomationMLComponentStandardRCL/ElectricConnector
4 [ig] SIMIT Motor Simulation Model { Class: SIMIT COMP Role: SIMIT COMP}
4 A SIMIT Motor Simulation Model-Interfaces
=@ Behaviour Model {Class: ExternalDataConnector }
4 [ig] Start PORT {Class: SIMITPORT Role: SIMITPORT}
4 % Start PORT-Interfaces
=2 SIMIT SIGMAL {Class: SIMIT SIGMAL } 4
fid SIMIT_AML_RoleClassLib/SIMIT PORT
4 [ig] T_Up PORT {Class: SIMIT PORTRole: SIMIT PORT}
4 % T_Up PORT-Interfaces
=2 SIMIT SIGMAL {Class: SIMIT SIGMAL } 4
fid SIMIT_AML_RoleClassLib/SIMIT PORT
4 [ig] T_Down PORT {Class: SIMIT PORT Role: SIMIT PORT}
4 % T Down PORT-Interfaces
=2 SIMIT SIGMAL {Class: SIMIT SIGMAL } 4
fid SIMIT_AML_RoleClassLib/SIMIT PORT
i SIMIT_AML_RoleClassLib/SIMIT COMP

Figure 152: SIMIT Component Motor Reference with PLC Signals

The complete further configuration according AR APC remains unchanged. The connection to the SIMIT
model is an extension to the already defined PLC configuration:

<AutomationML/> Part 6 AutomationML Component

4 [ig] Projectl {Class: AutomationProject Role: AutomationProject}
> [E] PN/IE_1 {Class: SubnetRole: Subnet}
> [1E] S71500/ET200MP station_1 {Class: Device Role: Device}
4 [ie] SINAMICS G 120 {Class: Drive Role: Drive}
P [1E] Automation Input Interfaces SINAMICS {Class: LogicConnector Role: LogicConnector}
> [1€] Electric Output Interfaces SINAMICS {Class: ElectricConnector Role: ElectricConnector}
> [1E] PROFINET interface {Class: Node Role: Node}

<D [iE] SIMIT SINAMICS Simulation Model {Class: SIMIT COMP Role: SIMIT COMP

[’ AutomationProjectConfigurationDriveExtensionRoleClassLib/Drive
4 [ie] Motor 1LM1222-4BC13-3AA0 {Class: Drive Role: Deviceltem}

b [1€] ElectricalConnectors {Class: FlectricConnector Role: ElectricConnector}

[1e] SIMIT Motor Simulation Model {Class: SIMIT COMP Role: SIMIT COMP}

AutomationProjectConfigurationRoleClassLib/Deviceltem

AutomationProjectConfigurationRoleClassLib/AutomationProject

Figure 153: Complete PLC Configuration with SIMIT as extension

9.6 Additional Device Description
An example for the reference of additional device description can be found in [BPR-CLPAAML:2020].

<AutomationML/> Part 6 AutomationML Component

9.7 Geometry and Kinematic Example

The following example shows the geometry and kinematic model of three different components, namely
a motor, an adapter and a linear positioning axis. The components are from different vendors in order
to show the interoperability of the here defined models. The examples shows models for each of the
components separately including the geometry, kinematic models and their relations to the mechanical
connectors as well as the models for the composite component making use of the three single
components.

Figure 154: CAD Drawing of a motor (red), adapter (blue) and linear positioning axis (grey)

The single components are defined as SystemUnitClasses modelling them as types to be further used
in the engineering process.

9.7.1 Motor

The system unit class shown in Figure 155 describing the motor HK-KT053W contains an
InternalElement, which implements the role class “COLLADAGeometryModel’. It has an
Externalinterface of the class “COLLADAInterface” that references to the visual_scene in the COLLADA
file. The value of its “refType” Attribute is “explicit”. The shaft of the motor has a relevance for other
models and their interconnection. Therefore, a child InternalElement that implements the role class
“COLLADAGeometryAttachment” is modelled. It has two Externalinterfaces. One of the class
“COLLADAInterface” which points to the visual_scene node and one of the class “Attachmentinterface”
which can be used to define a geometrical coupling.

<AutomationML/> Part 6 AutomationML Component

A ful HE-KT053W {Class: ServoMotors)
4 [ig] Shaft { Role: MechanicConnector}
=2 Mechanicinterface {Class: Mechanicinterface } 4
[E] Flange {Role: MechanicConnector}
=0 Flange{Class: Mechaniclnterface } 4
4 [ie] GeometryBKinematic {Role: Structure}
4 [iE] CompleteMotor {Role: COLLADAGeometryModel}
=0 COLLADAInterface {Class: COLLADAInterface }
MotorShaft { Role: COLLADAGeometryAttachment)
4 [ie] KinematicModel { Role: COLLADAKInematicModel}
=0 COLLADAInteface {Class: COLLADAInterface }
4 [ig] COLLADAKIinematicloint { Role: COLLADAKInematicloint}
=0 COLLADAINterface {Class: COLLADAInterface }
=& lointinterface{Class: Jointlnterface }
4 [iE] Flange {Role: COLLADAKinematicAttachment}
=0 COLLADAINterface {Class: COLLADAInterface }
=0 Attachmentinterface{Class: Attachmentinterface }
4 [ig] Shaft { Role: COLLADAKinematicAttachment}
=0 COLLADAINterface {Class: COLLADAInterface }
& Attachmentinterface{Class: Attachmentinterface } 4 =

™
=

&

Figure 155: SystemUnitClass describing a motor with its geometry and kinematic model

For describing the kinematic model, the SUC contains an InternalElement, which implements the role
class “COLLADAKiInematicModel”. It has an Externallnterface of the class “COLLADAInterface” which
points to the kinematics_scene. The value of its refType Attribute is “explicit”.

A motor has usually one kinematic joint, which is a rotary joint rotates the shaft. It can be of interest for
e.g. simulation where the angle value of this joint shall be connected to the variable of a simulation
model. Therefore, an InternalElement, which implements the RoleClass “COLLADAKinematicJoint”, is
created. It has an Externalinterface of the class “COLLADAInterface” which references the
kinematics_scene node. Additionally it has an Externallnterface of the class “Jointinterface”. This
Externallnterface can be used to link the joint to e.g. a simulation model.

A motor has two parts where kinematic coupling comes into play. One is the flange; the second one is
the shaft. For both of them an own InternalElement, which implements the role class
“COLLADAKiInematicAttachment” is created. It defines is an Externalinterface of the class
“COLLADAInterface” which points to the kinematics_scene node. Additionally there is an
“Attachmentinterface”. In order to define a kinematic coupling the “Attachmentinterface” is linked to the
“Mechanicinterface” of the corresponding “MechanicConnector”. An “InternalElement”, which
implements the role class “MechanicConnector” and has an Externalinterface of the class
“Mechanicinterface” exists for the shaft as well as for the flange. In later engineering steps, the
“Mechaniclnterface” of one component will be linked to the one of another component. This will define
the kinematic coupling between the “Attachmentinterfaces” of those components using the
“MechanicConnector” as a proxy.

9.7.2 Adapter

Figure 154 shows that the motor and drive are connected with an adapter in between. Figure 156 shows
how the aspects of geometry, kinematics and connectors of this adapter are modelled.

<AutomationML/> Part 6 AutomationML Component

4 FestoComponents
4 [0 FestoComponent {Role: AutomationComponent}
b Bl ELGC-BS-KF-45-100-10P {Class: FestoComponent}
4 [0 EAMM-A-V32-40P {Class: FestoComponent}
4 [ie] Geometry {Role: COLLADAGeometryModel}
=0 COLLADAInterface {Class: COLLADAInterface }
4 [ig] Kinematics {Role: COLLADAKinematicModel}
+0 COLLADAInterface{Class: COLLADAInterface }
4 [iE] Flange MotorSide {Role: COLLADAKinematicAttachment}
0 COLLADAInterface {Class: COLLADAInterface }
+0 Attachmentinterface {Class: Attachmentinterface } 4
4 [iE] Flange DriveSide {Role: COLLADAKinematicAttachment}
=0 COLLADAInterface {Class: COLLADAInterface }
0 Attachmentinterface {Class: Attachmentinterface } 4
4 [iE] Base {Role: COLLADAKinematicAttachment}
+0 COLLADAInterface {Class: COLLADAInterface }
0 Attachmentinterface {Class: Attachmentinterface } 4
4 (1] CouplingSide1 {Role: COLLADAKinematicAttachment}
+0 COLLADAInterface {Class: COLLADAInterface }
=0 Attachmentinterface {Class: Attachmentinterface } 4
4 [ie] CouplingSide2 {Role: COLLADAKinematicAttachment)
+0 COLLADAInterface {Class: COLLADAInterface }
0 Attachmentinterface {Class: Attachmentinterface } 4
4 [iE] Connectors
4 [ig] Flange {Role: MechanicConnector)
+0 MotorSide {Class: Mechanicinterface } 4
0 DriveSide {Class: Mechanicinterface } 4

4 [ie] BaseAnchor {Role: MechanicConnector)

+0 MechanicInterface {Class: MechanicInterface } 4
4 [iE] Coupling {Role: MechanicConnector}
+0 Side1{Class: Mechanicinterface } 4

0 Side2 {Class: MechanicInterface } 4

Figure 156: System unit class describing the motor-to-drive adapter with its geometry and kinematic
mode

As the adapter EAMM-A-V32-40P (EAMM) comes from another vendor than the motor the structure and
contents differs a bit to the motor. Nevertheless with the use of the standardized role classes
“COLLADAGeometryModel” and “COLLADAKiInematicModel” the sections for geometry and kinematics
can be found easily.

The adapter mounts not only the housings of motor and drive with each other, but also the shafts of both
with a coupling, Therefore a kinematic attachment is modelled for each of these four mounting points
called Flange_MotorSide and Flange_Drive side for the mounting of the housings and CouplingSidel
and CouplingSide2 for the shafts. Each “COLLADAInterface” points to a frame node element inside the
respective COLLADA file, with the refUri Attribute of the “COLLADAInterface”. Additionally the adapter
might be fixed to a ground plate or be mounted on another drive. For this purpose the
“COLLADAKiInematicAttachment” called “Base” is modelled which virtually covers the whole adapter.

Finally these kinematics attachments are referenced with the real world representation of the connection
points, the Connectors. As the adapter is fully mechanical part, all Connectors are
“MechanicConnectors”. Figure 156 shows how the Connectors lead to the respective kinematic

attachment of the kinematic Model.

<AutomationML/> Part 6 AutomationML Component

9.7.3 Electromechanical Drive

The electromechanical drive translate the rotary movement from the motor and further transmitted by
the adapter to a linear movement of a certain stroke. Figure 157 shows how the aspects of geometry,
kinematics and connectors of this drive are modelled.

4 [FestoComponent {Role: AutomationComponent}
4 [i] ELGC-BS-KF-45-100-10P {Class: FestoComponent}
b [1e] Geometry {Role: COLLADAGeometryModel}
4 [ig] Kinematics {Role: COLLADAKinematicModel}
0 COLLADAInterface {Class: COLLADAInterface }
4 [ig] Slide {Role: COLLADAGeometryAttachment, COLLADAKinematicModel)
0 COLLADAInterface {Class: COLLADAInterface }
~0 Attachmentinterface {Class: Attachmentinterface } 4
4 [iE] Base {Role: COLLADAKinematicAttachment}
0 COLLADAInterface {Class: COLLADAInterface }
~0 Attachmentinterface {Class: Attachmentinterface } 4
4 [ig] SensorSlotLeft
0 COLLADAInterface {Class: COLLADAInterface }
0 Attachmentinterface {Class: Attachmentinterface } 4 ____
4 [iE] SensorSlotRight
0 COLLADAInterface {Class: COLLADAInterface }
0 Attachmentinterface {Class: Attachmentinterface } 4 ____
4 [ig] Joint Slide_Base {Role: COLLADAKinematicJoint}
0 COLLADAInterface {Class: COLLADAInterface }
0 JointInterface {Class: JointInterface }
4 [ig] Joint_Shaft Base {Role: COLLADAKinematicJoint}
0 COLLADAInterface {Class: COLLADAInterface }
0 JointInterface {Class: Jointinterface }
4 [ig] Shaft {Role: COLLADAKinematicAttachment}
0 COLLADAInterface {Class: COLLADAInterface }
0 Attachmentinterface {Class: Attachmentinterface } 4
4 [iE] Connectors
4 [ig] Slide {Role: MechanicConnector}
0 MechanicInterface {Class: MechanicInterface } 4

4 [iE] SensorSlot {Role: MechanicConnector}
~0 SensorSlotLeft {Class: Mechanicinterface } 4
0 SensorSlotRight {Class: Mechanicinterface } 4
4 [i€] BaseAnchor {Role: MechanicConnector}

0 Mechaniclnterface {Class: Mechaniclnterface } 4
4 [iE] Flange {Role: MechanicConnector}

0 MechanicInterface {Class: Mechaniclnterface } 4
4 [ig] Shaft {Role: MechanicConnector}

0 MechanicInterface {Class: MechanicInterface } 4

Figure 157: SystemUnitClass describing the drive with its geometry and kinematic model

The drive ELGC-BS-KF-45-100-100P (ELGC) is modelled in the same way the other components are
modelled before. The section “Connectors” gives a good and short overview on the possible connection
points. Besides the housing, here modelled as “BaseAnchor” there is the “Slide” which represents the
moving linear slide for motion. Moreover there is the “Flange” and “Shaft” for connecting the motor via
the adapter. Finally there are two “SensorSlots” for mounting slide position sensors to the drive. The
blue lines show the InternalLinks to the respective kinematic attachments of the kinematic model that is
modelled as parent element with the role class “COLLADAKinematicModel”. Each “COLLADAInterface”
points to the respective section of the COLLADA file of this Automation Component

<AutomationML/> Part 6 AutomationML Component

9.7.4 Interconnection of the components to a drive train

For the connection of the single components to a drive train only the connectors of each components

needs to be connected, as in real world. Figure 5 shows how the connection of the single components
to a drive train is modelled.

4 "= DriveTrain
4 [i€] HK-KTO53W {Class: HK-KTO53W Role: AutomationComponent}

4 [iE] Shaft {Role: MechanicConnector)
0 Mechanicinterface {Class: Mechanicinterface) 4

[N

[1€] Flange {Role: MechanicConnector}

0 Flange {Class: Mechanicinterface } |

b [1€] Geometry&Kinematic {Role: Structure)

4 [1E] EAMM-A-V32-40P {Class: EAMM-A-V32-40P Role: AutomationComponent}
> [1€] Geometry {Role: COLLADAGeometryModel}
b [1€] Kinematics {Role: COLLADAKinematicModel}

-

4 [ie] Connectors

4 [ig] Flange {Role: MechanicConnector)
0 MotorSide {Class: Mechanicinterface |} 4
+0 DriveSide {Class: Mechanicinterface } |
4 [iE] BaseAnchor {Role: MechanicConnector)

+0 MechanicInterface {Class: MechanicInterface }

4 [ie] Coupling {Role: MechanicConnector}
+0 Side1 (Class: Mechanicinterface } 4
0 Side2 {Class: MechanicInterface }
4 [iE] ELGC-BS-KF-45-100-10P {Class: ELGC-BS-KF-45-100-10P Role: AutomationComponent)
> [iE] Geometry {Role: COLLADAGeometryModel}
b [1€] Kinematics {Role: COLLADAKinematicModel}
4 [ig] Connectors
4 [ig] Slide {Role: MechanicConnector)

0 Mechanicinterface {Class: MechanicInterface } !

N
&

['€] SensorSlot {Role: MechanicConnector)
+0 SensorSlotLeft {Class: Mechanicinterface }
=0 SensorSlotRight {Class: Mechanicinterface }
4 [i€] BaseAnchor {Role: MechanicConnector}

0 Mechanicinterface {Class: MechanicInterface } !

&

4 [iE] Flange {Role: MechanicConnector}

0 MechanicInterface {Class: Mechanicinterface } 4
4 [i€] Shaft {Role: MechanicConnector}
0 Mechanicinterface {Class: MechanicInterface } 4

Figure 158: InstanceHierarchy of drive train build of single components

Figure 158 shows the three already described single components instantiated in the InstanceHierarchy.
For the sake of clarity only the Connector section is expanded and the other, already described sections,
are collapsed. Starting with the motor, the “Mechanicinterface” of the Flange and Shaft are connected
with InternalLinks with the motor side of the connectors of the adapter. The drive side of the adapter,
Flange and Coupling, are connected with InternalLinks respectively with the “Flange” and “Shaft” of the
electromechanical drive ELGC. The “MechanicConnector” of the drive “Slide” is not connected here, but

can be used to be connected to an assembly that is mounted on the slide, e.g. a gripper. Also the
“SensorSlots” are not used here.

By the connection of the MechanicConnector of the single components valuable information is stored in
this model of drive train. Not only the configuration of this drive train is modelled but also the geometry
and a full kinematic description is given here but the single models, geometry and kinematics, are put
together to a full geometry and kinematics model of the drive train.

In detail, following the InternalLink path to the kinematic model of each component a tool can calculate
the kinematics for the whole assembly and easily catch possible movements and limits.
Furthermore, if these models shown here are enhanced by behaviour or simulation models such as
FMILogic, AMLLogic or PLCopenXMLLogic one can achieve virtual commissioning models exchanged
in one AutomationML Component document.

<AutomationML/> Part 6 AutomationML Component

9.8 Semantic of AutomationML Component Attributes

The example how to use different sematic systems within an AutomationML Component will be part of
the next version of this whitepaper.

9.9 Modelling of a library of electrical M12 connector types

9.9.1 General

This chapter exemplarily illustrates the modelling of electrical interfaces by means of M12 connector
types according to IEC61076 following the modelling provisions of the present Automation Component
BPR related to CAEX 2.15.

9.9.2 M12roleclass library

The M12 connector types are standardized in IEC61076 and are specified in multiple variants with
different geometry (coding), number of pins, use cases and properties. A common M12 connector is A
coded with 4 pins. The coding of M12 means a certain connector geometry, providing that only M12
connectors with the same coding fit together. Hence, multiple M12 variants with incompatible geometries
exist.

An M12 connector contains sub-pins and hence has a nested characteristics: the connector contains
interfaces. All M12 interfaces are modelled as role classes derived from the base class “Electric-
Connector”. Figure 159 shows a role class library IEC61076ConnectorRCL. The library demonstrates
the modelling principles.

Remark: this model does not pursue a comprehensive modelling of all M12 connector types. Each of
the M12 classes may model related attributes which are not part of this example.

4 fi IEC61076ConnectorRCL
4 IEC61076-2-101{Class: Structure}
4 M12 {Class: ElectricConnector }
b M12A{Class: M12}
D M12B{Class: M12}
D M12D {Class: M12}
D M12P {Class: M12}

Figure 159: AML role class library modelling M12 connector types according to IEC61076-2.
Table 86: Description of connector types according to | IEC61076-2

Class (of type) Description

IEC61076ConnectorRCL AML Interface ClassLibrary modelling M12 connectors according to
(library) IEC61076

IEC61076-2-101 (Structure) | Abstract role class for M12 interfaces according to IEC61076-2-101

base class for the M12 connector, derived by ElectricConnector

M12 (ElectricConnector) according to the Automation Component model

M12A (M12) Generic A coded M12 connector
M12B (M12) Generic B coded M12 connector
M12D (M12) Generic D coded M12 connector
M12P (M12) Generic P coded M12 connector

Since M12 connectors contain pins with common properties, an interface class for a generic pin is
designed. Figure 160 shows an CAEX InterfaceClassLibrary modelling a generic pin type derived from

<AutomationML/> Part 6 AutomationML Component

the ElectricInterface. This class is the place to model required attributes related to pins, however they
are not part of this example.

4 [IEC61076InterfaceLibrary
ic] PinType {Class: ElectricInterface }

Figure 160: AML interface class library modelling a generic pin

Utilizing the InterfaceClass PinType, we can model the interfaces of all electric connector types. Figure
161 illustrates this by means of the type “M12A4Pin” which has 4 pins and a male/female variant.

4 IEC61076ConnectorRCL
4 IEC61076-2-101 {Class: Structure }
4 M12 {Class: ElectricConnector }
4 [M12A{Class: M12 } =|_Mi2 lectric Connector |
4 M12A4Pin {Class: M12A}
=0 1{Class: PinType }
=0 2{Class: PinType }
~0 3({Class: PinType } ﬁ M12 electric interfaces]
=0 4{Class: PinType }
M12A4PinFemale {Class: M12A4Pin }
M12A4PinMale {Class: M12A4Pin }
b M12A5Pin
P M12B{Class: M12}
b M12D {Class: M12}
> [Rd M12P{Class: M12}

Figure 161: AML role class model of the M12 A coded with 4 pins and its male and female derivate

9.9.3 Example application role class library
The first step is the modelling of communication protocols as role library. This is shown in Figure 162.
4 CommunicationProtocollRCL
Ethernet

Profinet
10Link

Figure 162: AML role class library modelling communication protocols

9.9.4 Application Example: Automation component with multiple electric connectors

Figure 163 shows an example product catalogue modelled as SystemUnitClasslibrary. Utilizing the M12
role class library shown in Figure 161, Figure 163 models an automation component “lOLink-
MasterTypel23” with two M12 Ethernet connectors (A coded 5 Pins).

<AutomationML/> Part 6 AutomationML Component

4 ExampIeProductLibrary—
4 [FieldbusDevices {Role: Structure} —

4 IOLinkMasterType123 {Role: AutomationComponent
4 [iE] ElectricConnectors {Role: Structur:
4 [ie] M12Ethernet1 {Role: Ethern
4 [iE] M12A5PinFemale {Role: M12A5PinFemale
0 1{Class: PinType }
0 2{Class: PinType}
0 3{Class: PinType}
0 4{Class: PinType}
~0 5{Class: PinType}
4 [ie] M12Ethernet2 {Role: Ethernet}_
4 [iE] M12A5PinMale {Role: M12A5PinMale}
=0 1{Class: PinType }
0 2{Class: PinType}
~0 3{Class: PinType}
0 4{Class: PinType}
0 5{Class: PinType}

Figure 163: AML SystemUnitClass of an AutomationComponent with two M12 Ethernet connectors

9.9.5 Application Example: M12 to M12 cable

In this example, a cable with one M12 female and another M12 male connector is modelled and a
modulare modelling approach has been pursued. The modular modelling results in a CAEX System-
UnitClass for a single wire, another SystemUnitClass for a cable with 4 wires, and a third System-
UnitClass for the M12 to M12 cable which assembles all above classes.

Figure 164 shows the AutomationML model of a single wire with 2 interfaces. Related cable properties
can be modelled here, they are not part of this example.

4 ExampleCabIeLibrary-

4 SingleWire {Role: Wire}
0 P1{Class: ElectricInterface}
0 P2 {Class: Electricinterface}

Figure 164: AML SystemUnitClass model of a single wire with two ends

Figure 165 assembles four of these single wires together in order to model a 4-wire-cable. Each single
wire has own properties and inherits the interfaces.

4 o7 ExampleCableLibraryF
4 [ud SingleWire {Role: Wire}

~0 P1{Class: Electricinterface }
0 P2 {Class: Electricinterface}
4 4Wires {Role: Wire}

P [1IE] C1 {Class: SingleWire Role: Cable}
P 1] C2 {Class: SingleWire Role: Cable}
I [1IE] C3 {Class: SingleWire Role: Cable}
b 1] C4 {Class: SingleWire Role: Cable}

Figure 165: AML SystemUnitClass model of a cable with 4 wires

Figure 166 assembles the above classes in order to model M12-to-M12 cable (A-coded, 4 Pins). It
consists of one 4-wire-cable, one M12 female interface and one M12 male interface. Furthermore, it
models the wiring via CAEX InternalLinks.

Part 6 AutomationML Component

The modelling of the internal connections is optional. However, it is useful for modelling different wiring
types: straigt wiring, cross wiring and even wiring errors or cable factures.

4 [0 CableM12toM12_4Wires {Role: Cable}
4 [iE] 4Wires {Class: 4Wires Role: Wire}
4 [iE] C1 (Class: SingleWire Role: Cable}
0 P1{Class: Electricinterface } 4
0 P2 {Class: Electricinterface } 4
4 [ie] C2 (Class: SingleWire Role: Cable}
0 P1{Class: Electricinterface }4
0 P2 (Class: Electricinterface) 4
4 [iE] C3 (Class: SingleWire Role: Cable}
+0 P1{Class: Electricinterface } 4
0 P2 {Class: Electricinterface |} 4
4 [1E] C4 (Class: SingleWire Role: Cable}
0 P1{Class: Electricinterface } 4 ____
0 P2 [Class: Electricinterface } 4
4 [iE] M12In {Role: M12A4PinFemale}
0 1{Class: PinType } 4
0 2{Class: PinType }4
+0 3{Class: PinType)4
+0 4{Class: PinType } 4
4 [iE] M120ut {Role: M12A4PinMale}
0 1{Class: PinType } 4
0 2{Class: PinType)4
+0 3{Class: PinType) 4
0 4{Class: PinType | 4

Figure 166: AML SystemUnitClass of an M12 to M12 cable with 3 wires

9.9.6 Discussion

The principles for modelling electric interfaces described in this chapter are powerful and allow the
modelling of any kind of electric connectors as RJ45, RS232, Mini 7-8. The role classes are standar-
dizable and vendor independent.

The limitations of the modelling principles based on role classes are:

= Interfaces cannot be nested due to limitations of CAEX 2.15, hence complex nested interfaces need
a hierarchy of electric connectors (InternalElements).

= Electric connectors cannot be connected on high level, but the electric interfaces itself need to be
interlinked.

= A standard role class library cannot be used as template for electric interfaces. Associating an
InternalElement to one of these M12 role classes does not create the inner design of the Internal
Element. This needs to be modelled separately and is additional modelling effort.

To overcome these limitations, the future modelling of electric interfaces will base on AutomationML
Edition 2.1 with CAEX 3.0 and will model Electric Connectors as InterfaceClasses. This way, connectors
can be connected directly (bypassing the pin connections), can be nested arbitrarily and provide a direct
template for electric connector.

Part 6 AutomationML Component

10 Variants of Automation Components in AutomationML

It is intended to specify a concept to describe variants for Automation Components in AutomationML.
This will be included into Version 2 of this document.

