

Application Recommendations:
Automation Project Configuration

Document Identifier: AR APC, V 1.4.0

State: July 2023

Application Recommendations: Automation Project
Configuration

 2

©AutomationML consortium

Version 1.4.0, July 2023

Contact: www.automationml.org

Application Recommendations: Automation Project
Configuration

 3

Table of contents

Table of contents .. 3

List of figures ... 5

List of tables ... 6

1 Introduction... 7

1.1 Basics ... 7

1.2 Scope ... 7

1.3 References ... 8

2 General notes regarding exchange of Automation Project Configuration data 9

2.1 Data exchange workflow .. 9

2.2 Possibilities of configuration... 10

2.3 Recommended workflow .. 10

2.3.1 Providing an initial PLC project as basis for electrical engineering 10

2.3.2 ECAD engineering... 10

2.3.3 PLC engineering.. 14

3 Automation Project Configuration data structures in AutomationML ... 15

3.1 Basic concept ... 15

3.1.1 Export from ECAD to AutomationML .. 15

3.1.2 Import from AutomationML into PLC ... 16

3.2 The neutral model: Automation Project Configuration data ... 16

3.2.1 Basic ideas .. 17

3.2.2 Contents of data exchange ... 19

3.2.3 Compatibility with WP Automation Component .. 19

3.2.4 Automation Project Configuration data exchange data model 19

4 Guideline for the use of the ECAD model in practical applications ... 29

5 Modelling of Automation Project Configuration data with AutomationML 30

5.1 RoleClassLibrary .. 30

5.1.1 AutomationProject ... 35

5.1.2 DeviceUserFolder.. 36

5.1.3 Subnet ... 37

5.1.4 Device ... 38

5.1.5 DeviceItem .. 39

5.1.6 TagTable ... 43

5.1.7 TagUserFolder .. 44

5.1.8 ComplexTag .. 44

5.1.9 Node .. 44

5.1.10 CommunicationInterface ... 45

5.1.11 IoSystem ... 46

5.1.12 CommunicationPort ... 47

5.1.13 PowerPort .. 48

5.1.14 SensorPort .. 49

5.1.15 DeviceItemBusExtension .. 49

5.1.16 NodeBusExtension .. 50

5.1.17 CommunicationInterfaceBusExtension ... 50

Application Recommendations: Automation Project
Configuration

 4

5.2 InterfaceClassLibrary ... 51

5.2.1 Tag .. 53

5.2.2 Channel ... 54

5.2.3 CommunicationPortInterface ... 55

5.2.4 CommunicationPortProxyInterface ... 55

5.2.5 PowerPortInterface.. 55

5.2.6 SensorPortInterface .. 55

5.2.7 ModuleAssignment .. 56

5.2.8 Naming and Escaping ... 56

5.3 Modelling of complex values .. 56

Appendix A Roundtrip Engineering and Identification of Logical AR APC Objects 57

Appendix B CustomAttributes – Complex Data Types ... 63

B.1 Structures ... 63

B.2 Tables .. 64

B.3 Arrays ... 65

Appendix C CommunicationPortProxyInterface – Pluggable Ports ... 66

Application Recommendations: Automation Project
Configuration

 5

List of figures

Figure 1 – Automation Project Configuration between ECAD and PLC tool 9

Figure 2 – Data exchange workflow ... 10

Figure 3 – Example for PLC configuration and graphical placement ... 11

Figure 4 – Example for stations and bus data configuration .. 12

Figure 5 – Example for symbolic address configuration ... 12

Figure 6 – Example for error check .. 13

Figure 7 – Example for export from an ECAD tool ... 13

Figure 8 – Example for import into a PLC ... 14

Figure 9 – Example for result of import into a PLC ... 14

Figure 10 – Basic concept for ECAD-PLC data exchange ... 15

Figure 11 – Basic concept for ECAD-export (EPLAN example) ... 16

Figure 12 – Basic concept for PLC-import (Step 7 example) ... 16

Figure 13 – Coupling CAE and PLC ... 17

Figure 14 – Objects and parameters of the Automation Project Configuration data exchange 20

Figure 15 – Objects and parameters of the Automation Project Configuration data exchange
for extensions ... 21

Figure 16 – Procedure for use of ECAD in AutomationML ... 29

Figure 17 – AutomationProjectConfigurationRoleClassLib in AutomationML Editor view 30

Figure 18 – AutomationProjectConfigurationRoleClassLib as XML representation 35

Figure 19 – AutomationProjectConfigurationInterfaceClassLib in AutomationML Editor view 51

Figure 20 – AutomationProjectConfigurationInterfaceClassLib as XML representation 52

Application Recommendations: Automation Project
Configuration

 6

List of tables

Table 1 – Overview of AutomationML parts .. 7

Table 2 – Definition AutomationProject .. 35

Table 3 – Definition DeviceUserFolder ... 36

Table 4 – Definition Subnet ... 37

Table 5 – Definition Device ... 38

Table 6 – Definition DeviceItem .. 39

Table 7 – Definition TagTable ... 43

Table 8 – Definition TagUserFolder .. 44

Table 9 – Definition ComplexTag ... 44

Table 10 – Definition Node ... 44

Table 11 – Definition CommunicationInterface ... 45

Table 12 – Definition IoSystem ... 46

Table 13 – Definition CommunicationPort .. 47

Table 14 – Definition PowerPort ... 48

Table 15 – Definition SensorPort .. 49

Table 16 – Definition DeviceItemBusExtension .. 49

Table 17 – Definition NodeBusExtension ... 50

Table 18 – Definition CommunicationInterfaceBusExtension ... 50

Table 19 – Definition Tag .. 53

Table 20 – Definition Channel... 54

Table 21 – Definition CommunicationPortInterface .. 55

Table 22 – Definition CommunicationPortProxyInterface ... 55

Table 23 – Definition PowerPortInterface ... 55

Table 24 – Definition SensorPortInterface .. 55

Table 25 – Definition ModuleAssignment ... 56

Application Recommendations: Automation Project
Configuration

 7

1 Introduction

A very frequently occurring task within the planning process of production and automation systems is
the exchange of automation project configuration information of automation system devices between
ECAD and PLC systems. To avoid multiple engineering in the participating systems ECAD and PLC
systems need an interface for sharing this information.
In case of beginning engineering in the ECAD tool certain rules must be observed to get the hardware
information in the correct location in the PLC tool. In case of beginning engineering in the PLC tool non
placed functions must be placed and operated in the ECAD tool.
This application recommendation describes these workflows and the method of hardware configuration
modelling using AutomationML.

1.1 Basics

The data exchange format AutomationML which is standardising in the IEC 62714 standard is a neutral,
free, and XML-based data format. It has been developed in order to support the data exchange between
engineering tools in a heterogeneous engineering tool landscape.

Due to the different aspects of AutomationML the IEC 62714 consists of different parts.

Table 1 – Overview of AutomationML parts

Part /
Document Identifier

Title Description

Part 1 /
WP Arch, V 2.0.0

Architecture and
general
requirements

This part specifies the general AutomationML
architecture, the modelling of the engineering data,
classes, instances, relations, references, hierarchies,
basic AutomationML libraries and extended
AutomationML concepts.

Part 2 /
WP Lib V 2.0.0

Role class
libraries

This part specifies additional AutomationML libraries.

Whitepaper /
WP Comm V 1.0.0

Communication This Whitepaper describes the modelling of
Communication mechanisms in AutomationML

Whitepaper /
WP eClass V 2.0.0

AutomationML
and eCl@ss
integration

This Whitepaper describes the integration of eCl@ss in
AutomationML

Best Practice
Recommendation /
BPR MlingExp
V 1.0.0

Multilingual
expressions in
AutomationML

This Whitepaper describes the handling of different texts
for different languages in AutomationML

Best Practice
Recommendation /
BPR RefDes V 1.0.0

Modelling of
Reference
Designations

This Whitepaper describes the handling of reference
designations following IEC 81346-1:2009-07 within
AutomationML

Best Practice
Recommendation /
BPR MlingList Attr.

Modelling of List
Attributes

This Recommendation describes how to model data
types of lists in AutomationML

Further parts may be added in the future in order to e.g. interconnect further data standards to
AutomationML.

1.2 Scope

This application recommendation proposes a modelling method of automation project configuration data
by means of the engineering data format AutomationML. It will describe the recommended use of role
and interface classes as well as the recommended structures to be considered within the instance
hierarchy of an AutomationML project.

Application Recommendations: Automation Project
Configuration

 8

1.3 References

The following documents are referenced in this document and are indispensable for its application. For
dated references, only the edition cited applies. For undated references, the latest edition of the
referenced document (including any amendments) applies.

Extensible Markup Language (XML) 1.0:2004, W3C Recommendation (available at
<http://www.w3.org/TR/2004/REC-xml-20040204/>)

IEC 62424:2008, Representation of process control engineering - Requests in P&I diagrams and data
exchange between P&ID tools and PCE-CAE tools

Whitepaper AutomationML Part 1 – AutomationML Architecture, November 2018

Whitepaper AutomationML Part 2 – AutomationML Role Libraries, October 2014

Whitepaper AutomationML – AutomationML Communication, September 2014

Whitepaper AutomationML – AutomationML and eCl@ss Integration, November 2021

Best Practice Recommendation Multilingual expressions in AutomationML, March 2017

Best Practice Recommendation Modelling of Reference Designations, September 2017

Best Practice Recommendation Modelling of List Attributes in AutomationML, January 2016

Application Recommendations: Automation Project
Configuration

 9

2 General notes regarding exchange of Automation Project Configuration data

ECAD tools and PLC tools have different views of automation system information. Whereas ECAD tools
depict all electrical detail information of devices applied within automation systems in PLC tools only a
logical compilation of the automation devices is used. So in ECAD tools there are defined e.g. devices
which are involved in an automation systems, voltage connectors which are used for power supply of
the devices, and wire types which are used to connect devices. But these are not used in PLC tools. On
the other side in PLC tools there are device and control application specific conditions defined e.g. baud
rates which are used within the communication connections, control code variables which are associated
to control device inputs and outputs, and control application codes. But these are not needed in ECAD
tools. Nevertheless, both types of tools have some information in common. For example, the wiring of a
certain automation device to a PLC defines the address the device can be accessed within the PLC.
This must be considered by development of import and export tools. Figure 1 shows the scope of this
application recommendation.

Figure 1 – Automation Project Configuration between ECAD and PLC tool

Beyond the named engineering tools for ECAD and PLC programming also other tools can be interested
in the common data set of both tools. For example, tools for mechanical engineering (MCAD) can be
interested in the devices to be wired and documentation tools can be interested in the wiring structure
reached. Nevertheless, within this document only ECAD and PLC programming tools are considered
knowing that more engineering tools can benefit from importing the modelled information. Systems
containing drives may comprise of different aspects other than electrical configuration. Therefore, an
own Application Recommendation “Drive for MCAD” (AR Drive MCAD) will propose a modelling method
of mechanical aspects of drive configurations whereas a specific drive extension will handle the electrical
configuration of drives. It will describe the recommended use of role and interface classes for drives as
well as the recommended structures to be considered within the instance hierarchy of an AutomationML
project.

2.1 Data exchange workflow

Usually, in a production system engineering process the construction phase in the PLC project will begin
later than in the ECAD system because the completion of the ECAD documents is the base for the
production of the control cabinet. The combination with the software within the plant and the following
commissioning will not take place before all control cabinets are completed.

Application Recommendations: Automation Project
Configuration

 10

Figure 2 – Data exchange workflow

So the PLC engineer will usually attend later to the project than the ECAD engineer. Nevertheless at an
early point of time (during ECAD engineering) the automation project configuration of the plant must be
defined because the ECAD documents must be generated and the parts must be ordered.

2.2 Possibilities of configuration

ECAD systems normally can handle the components of different PLC manufacturers which have certain
analogies from a point of view of electrical hardware. But additionally, there are system specific /
manufacturer specific parameters. Therefore, only the engineering system of the PLC manufacturer can
guarantee a complete and comfortable handling of all parameters of a hardware component. So, the
configuration of the PLC system should be done as far as possible within the engineering system of the
PLC manufacturer.

2.3 Recommended workflow

Accordingly to the described criteria in most cases the following workflow is established.

• Engineering the basic device configuration within the PLC project of the PLC programming tool
and exporting it to ECAD tool

• Importing PLC project to ECAD tool, engineering of the ECAD project, and exporting the ECAD
project to PLC programming tool

• Importing ECAD project into PLC programming tool and engineering of the PLC project

2.3.1 Providing an initial PLC project as basis for electrical engineering

If no ECAD project exists so far, the ECAD engineer first of all defines a raw project within the
engineering system of the PLC manufacturer, the PLC programming tool. The ECAD engineer selects
all needed components and defines the bus topology in close cooperation with the PLC engineer who
has to implement the requested functions later on. This close cooperation ensures a high consistency
regarding the selected hardware components. The automation project configuration will be exported
from the engineering system of the PLC manufacturer and imported into the ECAD tool.

2.3.2 ECAD engineering

Based on the existing ECAD project the ECAD engineer executes the complete hardware construction,
sometimes with slight adaptions. During this process the symbolic names for variables, tags or signals
can be defined too. So the PLC configuration is done under the following conditions:

• PLC configuration can be imported from PLC programming system

• Configuration via graphical placement on overview page or navigator

• PLC-device selection carried out from ECAD database

• Drag&Drop on pages from navigator

Application Recommendations: Automation Project
Configuration

 11

Figure 3 – Example for PLC configuration and graphical placement

Application Recommendations: Automation Project
Configuration

 12

When the PLC configuration is completed the stations and bus-data are engineered. This is normally
done by manual assignment of cards to CPUs and devices to bus via device properties.

Figure 4 – Example for stations and bus data configuration

In the next step the tag list is to be engineered, i.e. a list of tags, variables or signals (symbolic address)
of hardware related tags:

Figure 5 – Example for symbolic address configuration

Finally a simple error check should be performed, e.g.:

• Double usage of I/O / bus or symbolic addresses

• Missing addresses.

• Simple rules, e.g. slot 3 reserved for IM-module

Application Recommendations: Automation Project
Configuration

 13

Figure 6 – Example for error check

Now the ECAD project can be exported to AutomationML dependent from the implementation in the
ECAD tool and imported to the PLC programming tool.

Figure 7 – Example for export from an ECAD tool

Export

Application Recommendations: Automation Project
Configuration

 14

2.3.3 PLC engineering

At a later point in time the PLC programmer will begin the engineering based on the already developed
ECAD project. So at this point of the engineering process the export function of the ECAD system and
the import function of the PLC system should be used to check possible changes and verify the equality
of both configurations.

Figure 8 – Example for import into a PLC

Figure 9 – Example for result of import into a PLC

Import

Application Recommendations: Automation Project
Configuration

 15

3 Automation Project Configuration data structures in AutomationML

In the following chapter a concept is defined how Automation Project Configuration data can be
represented in AutomationML.

3.1 Basic concept

For using AutomationML as a neutral exchange format for Automation Project Configuration data the
PLC-specific interfaces of the different PLC manufacturers must be decoupled. This guarantees an
independence of the further development of PLC-tools as well as of the further development of ECAD
tools. Furthermore the transformation and implementation should be as easy as possible for ECAD and
PLC-vendors likewise. Therefore already existing models should be used as far as possible.

Figure 10 – Basic concept for ECAD-PLC data exchange

Using a neutral model allows

• definition of PLC-Tool independent roles in AutomationML

• definition of PLC-specific SystemUnitClasses for different ECAD- and PLC-Tools / vendors in
AutomationML

• definition of PLC-specific InterfaceClasses in AutomationML

3.1.1 Export from ECAD to AutomationML

The following figure shows the detailed export of Automation Project Configuration data based on an
EPLAN example:

Application Recommendations: Automation Project
Configuration

 16

Figure 11 – Basic concept for ECAD-export (EPLAN example)

1. Export / Import of Automation Project Configuration data from / to AutomationML

2. Manufacturer independent roles in AutomationML

3. Neutral SystemUnitClasses in AutomationML

4. Topology in AutomationML (neutral model)

3.1.2 Import from AutomationML into PLC

The following figure shows the detailed import of Automation Project Configuration data based on an
Step 7 example:

Figure 12 – Basic concept for PLC-import (Step 7 example)

1. Import of ECAD data from AutomationML (neutral model)

2. Import from neutral model into manufacturer specific PLC tool (Example S7)

3.2 The neutral model: Automation Project Configuration data

The aim is to support the engineering workflow between ECAD systems and PLC engineering systems.
Providing standardized interfaces for the data exchange between PLC and ECAD systems are
mandatory. The interfacing to ECAD systems has as further target group all ECAD manufacturers:

Application Recommendations: Automation Project
Configuration

 17

Figure 13 – Coupling CAE and PLC

So, we must consider the different ECAD systems and CAE manufacturer. Therefore, the term “ECAD”
stands for the different CAE, E-CAD and E-CAE formats depending on the different existing ECAD
systems. Based on this the implementation of a neutral “proxy ECAD”-format in AutomationML is defined
in the following chapter. Furthermore, the already existing concepts of the leading ECAD-Tool
manufacturer and PLC manufacturer shall be considered to ensure an “as easy as possible”
implementation of this neutral model for all ECAD and PLC manufacturer.

3.2.1 Basic ideas

The Automation Project Configuration data can be modelled by using AutomationML. Therefore, the
modelling methodology is based on the concepts of AutomationML topology modelling using CAEX
defined in Part 1 of the AutomationML standard. Additional provisions are added to the basic definitions
to fulfil the special requirements that arise from data exchange with ECAD tools. The Automation Project
Configuration data modelling methodology enables the development of a self-containing model. No
dependencies to other models are mandatory.

For modelling of Automation Project Configuration data a vendor neutral Automation Project
Configuration data structure will be defined. It represents in its base structure a neutral object model of
PLC systems.

The data exchange is based on complete information about the objects. This means that the Automation
Project Configuration data always holds the complete data of the object itself and not only delta
information.

The export/import granularity is at the level of hardware stations as PLC engineering systems always
operate at a station level. The export/import will either support exchange of data referring to one or more
stations (e.g. a complete project) or only parts of a station (e.g. one single module). The requirement
here always is that the “environment“, the part lives in, is also part of the data exchange.

Only PLC hardware configuration information of automation devices including some relevant parameter
and symbols/tags related to the hardware objects are in scope of this data exchange. Additionally
information about the networks these hardware configurations are connected to is part of this exchange
format.

Only a subset of all data provided by PLC hardware configuration is relevant for data exchange with
ECAD systems. Due to the electrical view of the plant handled by ECAD tools, these tools can only
deliver a very general subset of information belonging to the PLC hardware objects. Specific parameter
settings are the domain of PLC specific hardware-configuration tools and the specific object managers.
They only can be handled in the manufacturer specific tool.

Besides the standard devices in the PLC hardware catalogues, there are some types of device items
that need additional descriptions. Examples for this are GSD or GSDML descriptions. Devices and

Application Recommendations: Automation Project
Configuration

 18

device items like norm slaves or GSDML based IODevices can only be instantiated in a PLC
configuration if the appropriate description / package is installed. It is the responsibility of the PLC
programmer to make sure that the correct and up to date device item information (GSD, etc.) is available.
But the AutomationML based ECAD data exchange file can provide information about the needed device
item information.

Some of the ECAD systems are capable to provide that information about a needed description file.
Others also can provide the file itself. Therefore, it is allowed to transmit this additional data from the
ECAD system to PLC engineering system. Files are expected to be delivered e.g. as a zip file and are
unpacked into the same directory as the import file. Thus, it should be possible to specify and reference
the file in the data exchange file. The user of a PLC system, who is importing the file, can expect to find
some or all needed descriptions in the same directory as the import-file. The reference to the description
file is inserted as separate properties for the module. It is an anchor to the item description.

Application Recommendations: Automation Project
Configuration

 19

3.2.2 Contents of data exchange

An analysis of the already existing proprietary XML-based data exchange files of the leading PLC and
ECAD manufacturers regarding the Automation Project Configuration data showed that all data to be
exchanged can be grouped in three major categories:

1. HW Data:

These are data concerning parts or devices like a central rack, a slave or a switch. Therefore
mostly the term “device” is used for this group of parts. Within these devices there are other
devices or device items like racks, CPUs, power supply, I/O Modules, submodules. Therefore
mostly the term DeviceItem is used for this group of parts. Additional device items like routers,
switches, hubs, repeaters will be supported by the export format. Devices are often grouped in
a hierarchical “folder” structure.

2. Symbols / Tags:

Exported and imported are “symbols” and “tags” assigned to a device item. Only hardware
oriented symbols/tags are considered here. The symbols/tags are exported with the controller
target device item (i.e. the CPU) and not with other device items they might refer to (e.g. an I/O
module). Like devices also the tags are often grouped in “tag tables” and in a hierarchical “folder”
structure.

3. Networks:

Networks are modelled right below the project as global subnet objects. The link between a
network and the device items are modelled as a reference to the subnet object. The network
parameters are stored at the network object. The parameters concerning a network interface of
a given device item, attached to a network, are stored in a node object at that device item. The
communication is often regulated using “channels”, “ports” and “interfaces”.

Additionally the “Whitepaper AutomationML Part 5 – AutomationML Communication” already defines an
XML based methodology for communication system information exchange among engineering tools
developed by AutomationML e.V. These methods shall also be considered when modelling Automation
Project Configuration data.

3.2.3 Compatibility with WP Automation Component

The following recommendation is for optional use.
To achieve integration of AR APC into Automation Component models, it is recommended to add the
RoleClass AutomationComponent and the corresponding Nameplate information to every identifiable
physical automation component in an AR APC project, and if applicable to nodes of the type Device and
DeviceItem.

3.2.4 Automation Project Configuration data exchange data model

The consideration of all these mentioned and already existing models leads to the following basic
Automation Project Configuration data exchange diagram:

Application Recommendations: Automation Project
Configuration

 20

Figure 14 – Objects and parameters of the Automation Project Configuration data exchange

Application Recommendations: Automation Project
Configuration

 21

As this document also serves as a basis for bus specifical definitions and extension which are defined
in separate documents the abstract RoleClasses “DeviceItemBusExtension”, “NodeBusExtension” and
“CommunicationInterfaceBusExtension” are defined to prepare an easy implementation for future
extensions.
The following figure shows these abstract ExtensionRoleClasses for reasons of clarity only in the area
of the parent objects.

Figure 15 – Objects and parameters of the Automation Project Configuration data exchange for
extensions

Application Recommendations: Automation Project
Configuration

 22

The AutomationML export of Automation Project Configuration data is based on the use of an
InstanceHierarchy covering the exported Automation Project Configuration data. The InternalElements
of this instance hierarchy will reference appropriate elements in RoleClass Libraries, SystemUnitClass
Libraries, and InterfaceClass Libraries.
The objects and parameters shown in the figure above are described as follows. All objects will be
modelled as role classes or interface classes derived from classes defined in Whitepaper AutomationML
Communication and completed with additional attributes already used in the tool landscape of PLC
manufacturers. Additional parameters can be defined using eCl@ss integration mechanisms as
described in “Whitepaper AutomationML – AutomationML and eCl@ss Integration”. RoleClasses &
InterfaceClasses and objects and attributes which are not defined by AR APC might be ignored
according “AutomationML Whitepaper – Architecture and general requirements” and will not be kept in
a roundtrip scenario. Depending on the different communication systems and bus systems some objects
may contain additional, unused or restricted attributes. These attributes and the bus specific parameters
are described in separate bus specifications. Please refer to these bus specifications for more
information.

Some attributes are defined based on strings. All strings are defined in the corresponding definitions
exactly to the related spelling (usage of small letters, capital letters…). But due to error tolerance all
importing tools should also support a tolerant interpretation (mixed spelling) of these strings as far as
possible.

3.2.4.1 AutomationProject

An AutomationProject object represents the project from which the export arises. It aggregates all other
objects below. The standard parameter for a Project are its “name” (string), the project manufacturer
(string), the project sign (string) of the manufacturer, the project revision number (string), and a project
information (string) hosting a comment to the project.

3.2.4.2 DeviceUserFolder

A DeviceUserFolder supports the structure of a device within a project. The only and one standard
parameter for a DeviceUserFolder is its “name” (string)

3.2.4.3 Subnet

A Subnet object is responsible for storing and managing properties and functionality of networks like
Ethernet, PROFIBUS, MPI, etc. A subnet is defined by the logical availability of all subnet participants.
All subnet participants have different, unambiguous addresses. The standard parameters of a Subnet
object are listed below:

• Name (string):
Name of the Subnet

• Type (string):
The type of the subnet (e.g. PROFIBUS, MPI…). The type shall be defined in the bus specific
description.

• CustomAttributes (ListType):
Additional manufacturer specific information for the Subnet. Specifies manufacturer specific
property names and values.

• A Subnet has exactly one LogicalEndpoint to connect the subnet to Nodes.

3.2.4.4 Device

A Device object represents a collection in which the individual HW objects of a slave or rack, including
the slave or rack HW item, are brought together. Therefore, a Device is a Device Item container that
serves as a collection of Device Items (in particular hardware items). A Device has to have a unique
name within an automation project. A device can be:

Application Recommendations: Automation Project
Configuration

 23

• a central configuration with some racks within (Automation system station with central and
extension racks)

• a fix combination of CPU and some I/O modules (e.g. C7),

• a PC station where the PC represents a device,

• a field device,

• a switch

The standard parameters of a Device object are listed below:

• Name (string):
Name of the Device

• TypeIdentifier (string):
Identifier of the device type. An optional additional sub attribute “TemplateIdentifier”
references the path of a library element.

• Manufacturer (string):
Additional information to describe the manufacturer of the device.

• Comment (string):
An optional comment for the device.

3.2.4.5 DeviceItem

A DeviceItem is aggregated by a Device and represents a generic class for HW modules and
submodules (CPU, I/O module, rack, etc.). Whereas a Device represents the logical bracket, the
DeviceItems represent more the physical hardware objects.

A DeviceItem can be plugged in another Device Item (e.g. CPU within a rack, submodule within a
module). The relative position to the father object is defined by the PositionNumber.

A DeviceItem can also be built in another DeviceItem. These DeviceItems can model a fix combination
that cannot be broken up (e.g. C7). The standard parameters of a DeviceItem object are listed below:

• Name (string):
Name of the DeviceItem

• TypeName (string):
Additional type information. Not mandatory but useful for user in case of error.

• DeviceItemType (string):
Classification of the DeviceItem (e.g. CPU)
The DeviceItemType is an additional information that may be useful for user in case of error.

o Customized (boolean):
The subattribute “Customized” indicates if the DeviceItemType contains vendor
specific information (Customized = “true”) or not (Customized = ”false”). If the attribute
is omitted or set to “false” the DeviceItemType contains already standardized
information (e.g. CPU).

• Manufacturer (string):
Additional information to describe the manufacturer of the DeviceItem.

• CustomAttributes (ListType):
Additional manufacturer specific information for the DeviceItem. Specifies manufacturer
specific property names and values.

• PositionNumber (int):
Slot number where this DeviceItem is plugged in.

• BuiltIn (Boolean):
Flag indicating that this module is a build-in part of another module. This module is

Application Recommendations: Automation Project
Configuration

 24

automatically created because it is a fixed part of the other module. If omitted this parameter
defaults to false.

• TypeIdentifier (string):
Identifier of the device item type. An optional additional sub attribute “TemplateIdentifier”
references the path of a library element.

• FirmwareVersion (string):
Specifies the firmware version of e.g. a CPU and might be needed to identify the module
correctly (sometimes the order number is not sufficient).

• Comment (string):
An optional comment for the module.

• Address (OrderedListType):
Address information of device item within device. Most modules have address ranges
assigned. There may be e.g. address ranges for input, output channels which are described
by their start value and length. The Address defines the start, length and IO-type. It is
modelled as an ordered list of address parameters. The order is required for identifying the
correct sub device item in case of multiple start addresses for one module. The
subparameters are listed below:

o StartAddress (int):
Start of the Address

o Length (int):
Total width of the module (vendor specific). In the most cases it corresponds to the
width of all channels.

o IoType (string):
Input or Output.

o BitOffset (int):
Start of BitAddress within a Byte

• InstallationDate (dateTime):
Installation Date of the device item.

Note: In addition to the named standard documents attributes can be added enabling the
representation of reference designations following IEC 81346. The following attributes will give three
possible examples.

• PlantDesignation IEC (string):
Plant designation for this device item. The PlantDesignation is a product oriented reference
designation following “IEC 81346-1:2009-07#5.3 - Function-oriented structure”

• LocationIdentifier IEC (string):
Location designation for this device item. The LocationIdentifier is a location oriented
reference designation following “IEC 81346-1:2009-07#5.5 - Location-oriented structure”.

• ProductDesignation IEC (string):
Product designation for this device item. The ProductDesignation is a product oriented
reference designation following “IEC 81346-1:2009-07#5.4 - Product-oriented structure”.

3.2.4.6 TagTable

A TagTable supports the structuring of tags. The standard parameters of a TagTable object are listed
below:

• Name (string):
Name of the TagTable

Application Recommendations: Automation Project
Configuration

 25

• AssignToDefault (Boolean):
While importing if the TagTable has an attribute 'AssignToDefault' with 'True' value, then all
the Tags inside will be imported to an existing default TagTable. In this case the name of the
TagTable is ignored by the importing tool. By default, False value is assumed for
'AssignToDefault' attribute if it does not exist while importing.

3.2.4.7 TagUserFolder

The TagUserFolder supports the structuring of TagTables within a DeviceItem. The only and one
standard parameter for a TagUserFolder is its “name” (string).

3.2.4.8 Tag

A Tag represents the symbolic name of an I/O data. It provides the logical view on the Channel of a
module and is referenced by the associated channel directly.

Tags can only be aggregated by a Tag Table of a CPU. The CPU is represented by a concrete Device
Item. The standard parameters of a Tag object are listed below:

• Name (string):
Name of the Tag

• DataType (string):
Type of the data

o Customized (Boolean):
The subattribute “Customized” indicates if the DataType contains vendor specific data
types (Customized = “true”) or not (Customized = ”false”). If the attribute is omitted or
set to “false” the DataType contains already standardized information according IEC
61131 (e.g. BOOL, BYTE, WORD).

• IoType (string):
Input or Output

• LogicalAddress (string):
Logical Address specifies the address of the tag.

• Comment (string):
An optional comment specified for the tag

Tags without assigned channels and channels without assigned tags are possible (incomplete
engineering)

3.2.4.9 ComplexTag

A ComplexTag represents the symbolic name of structured I/O data. It provides the logical structure and
aggregates the tags for referencing the associated channel directly.

ComplexTags can be aggregated by a Tag Table of a CPU or by ComplexTags. The CPU is represented
by a concrete Device Item. The standard parameters of a ComplexTag object are listed below:

• DataType (string):
Name of the type of the structure

• Comment (string):
An optional comment specified for the ComplexTag

3.2.4.10 Channel

A Channel is part of an IO module and represents the process interface (e.g. digital or analogue
input/output). A channel is part of the DeviceItem which represents the IO module and can only be used
in a DeviceItem. The channel refers to tags using a link. The standard parameters of a channel object
are listed below:

Application Recommendations: Automation Project
Configuration

 26

• Type (string):
Analog or Digital

• IoType (string):
Input or Output

• Number (int):
Number of the channel, starting with 0

• Length (int):
Width of the channel (e.g. 1 for bit, 8 for byte, 16 for word)

• CustomAttributes (ListType):
Additional manufacturer specific information for the Channel. Specifies manufacturer specific
property names and values.

A channel references with a LinkToTag to the associated Tags which are stored at a CPU DeviceItem.

3.2.4.11 CommunicationInterface

A CommunicationInterface is a special type of a DeviceItem acting as a connection point of a device to
a network (e.g. network card). Therefore, a CommunicationInterface has a LogicalEndpoint. Depending
on the CommunicationInterface type a CommunicationInterface can contain different
CommunicationInterface type specific parameters. Therefore, the bus specific parameters are described
in a separate bus specification. The standard parameters of a CommunicationInterface object are listed
below:

• Label (string):
Name printed on the item e.g. unique identifier.

• Type (string)
Type of the CommunicationInterface (e.g. ExtensionRack).

• CustomAttributes (ListType):
Additional manufacturer specific information for the CommunicationInterface. Specifies
manufacturer specific property names and values.

3.2.4.12 Node

A Node specifies all the interface related networking information of a network node. (e.g. logical address,
subnet mask). A Node belongs to the CommunicationInterface (DeviceItem). The parameters of a node
are bus specific characteristics. It is a topology object of a physical connection (cable, glass fibre)
between two network stations. Depending on the node type a node can contain different node type
specific parameters. Therefore, the bus specific parameters are described in a separate bus
specification. The standard parameters of a node object are listed below:

• Type (string):
The Type of the Network (e.g. Ethernet, Mpi) as defined in the bus specification.

• NetworkAddress (string):
Network address of this device item. The format depends on the Node type (e.g. a TCP/IP
address for an IP network).

• CustomAttributes (ListType):
Additional manufacturer specific information for the Node. Specifies manufacturer specific
property names and values.

3.2.4.13 CommunicationPort

A CommunicationPort is the physical connection to the network. It is a topology object of a physical
connection (cable, glass fibre) between two network stations. The standard parameters of a
CommunicationPort object are listed below:

Application Recommendations: Automation Project
Configuration

 27

• Label (string):
Name printed on the device item e.g. unique identifier.

• CustomAttributes (ListType):
Additional manufacturer specific information for the CommunictionPort. Specifies
manufacturer specific property names and values.

Ports are aggregated on an Interface which implicitly defines the relationship between the logical (=
Interface) and physical (= Port) network connectivity. This aggregation need not be explicitly modelled
in AutomationML because it is available via the derivation of Interface and Port from DeviceItem that
already defines a generic DeviceItem to DeviceItem aggregation.

3.2.4.14 IoSystem

An IoSystem object is responsible for representing a master – slave relationship typically found in
fieldbus systems. Although this relationship depends on a subnet connection between the interfaces,
the object model does not enforce this (incomplete engineering). The parent object of the IoSystem
object is the interface that acts as the master. All interfaces that act as slaves for this master are linked
to the IoSystem object. Please note that the master interface and the slave interfaces are different object
instances although they share the same class in the object model. The standard parameters of an
IoSystem object are listed below:

• Number (int):
Number of the IoSystem.

• CustomAttributes (ListType):
Additional manufacturer specific information for the IoSystem. Specifies manufacturer specific
property names and values.

3.2.4.15 PowerPort

A PowerPort is the physical connection between modules for power transfer. It is a topology object of a
physical connection (cable) between two power modules. The standard parameters of a PowerPort
object are listed below:

• Label (string):
Name printed on the module e.g. unique identifier.

A PowerPort has exactly one PowerPortInterface to link PowerPorts between modules for power
transfer. The PowerPortInterface is acting as a connection point of a power module.

3.2.4.16 SensorPort

A SensorPort is the physical connection between modules for transfer of sensor signals. It is a topology
object of a physical connection (cable) between two sensor modules. The standard parameters of a
SensorPort object are listed below:

• Label (string):
Name printed on the module e.g. unique identifier.

A SensorPort has exactly one SensorPortInterface to link SensorPorts between modules for sensor
signal transfer. The SensorPortInterface is acting as a connection point of a sensor module.

3.2.4.17 ModuleAssignment

The interface class "Module Assignment" is used to define the assignment of a module to a CPU in a
multi CPU system. By using an internal link between "Module Assignment" interfaces a module is
assigned to a CPU. A module can be assigned to several CPU’s and a CPU can control several modules.
Each DeviceItem shall have maximum one "Module Assignment" interface, which can be used by

Application Recommendations: Automation Project
Configuration

 28

several internal links. If only one CPU exists, the "Module Assignment" interface can be omitted and is
assumed that all modules are controlled by this CPU.

3.2.4.18 Bus specifical Sections

Bus specifical definitions and extension are defined in separate documents. AR APC defines the
following abstract RoleClasses: DeviceItemBusExtension, NodeBusExtension and
CommunicationInterfaceBusExtension:

3.2.4.18.1 DeviceItemBusExtension

The abstract RoleClass "DeviceItemBusExtension” is used to define additionally bus specific attributes
for a DeviceItem.

Note: DeviceItemBusExtension shall only be used for DeviceItem objects not for derived DeviceItem
objects (e.g. like port).

3.2.4.18.2 NodeBusExtension

The abstract RoleClass "NodeBusExtension” is used to define additionally bus specific attributes for a
Node.

Note: NodeBusExtension shall only be used for Node objects.

3.2.4.18.3 CommunicationInterfaceBusExtension

The abstract RoleClass "CommunicationInterfaceBusExtension” is used to define additionally bus
specific attributes for a CommunicationInterface.

Note: CommunicationInterfaceBusExtension shall only be used for CommunicationInterface objects.

Note:

Derivations from these abstract RoleClasses are defined in separate RoleClassLibraries. The following
naming recommendation is recommended:

AutomationProjectConfiguration[BusTypeName]RoleClassLib.

The naming conventions for derivations of the abstract base classes is DeviceItem[BusTypeName],
Node[BusTypeName] and CommunicationInterface[BusTypeName].

The BusTypeName shall exactly match the string for the attribute “type”.

If a class needs additional attributes, additional RoleClasses are introduced for deployment as an
additional SupportedRoleClass.

As an implementation recommendation additional RoleClasses should be handled tolerant by the tools.
This means that an importing tool should respect additional attributes even if the corresponding
RoleClass is not specified at the object in the instance hierarchy.

Application Recommendations: Automation Project
Configuration

 29

4 Guideline for the use of the ECAD model in practical applications

To use the previously described method for modelling ECAD in AutomationML four steps are required.

In a first step the ECAD RoleClassLib must be generated or imported i.e. the appropriate RoleClassLib
has to be defined. This RoleClass Lib contains the derivation of the ECAD Roles from the generic
communication model of AutomationML.

Next the Interfaces must be generated or imported, i.e. the appropriate InterfaceClassLib has to be
defined. This InterfaceClassLib contains the derivation of the ECAD Roles from the generic
communication model of AutomationML.

In step 3 the SystemUnitClasses for the engineering domain must be identified and modelled as
templates for further use. Here the structure of the Devices, DeviceItems… can be modelled especially
with respect to the relevant properties to be considered. Therefore, appropriate <InternalElement>’s and
attributes are added.

Finally, the defined structure can be used to model a practical system in the InstanceHierarchy.

This procedure is depicted in the following figure:

Figure 16 – Procedure for use of ECAD in AutomationML

Derivation of ECAD Interfaces

Derivation of SystemUnitClasses

Derivation of ECAD Roles

Building a practical system in Instance Hierarchy

Application Recommendations: Automation Project
Configuration

 30

5 Modelling of Automation Project Configuration data with AutomationML

5.1 RoleClassLibrary

Basement of the modelling are the required role classes. Facing the required model elements there are
role classes especially required for Automation Project Configuration data modelling derived from role
classes used for communication system modelling defined in AutomationML Whitepaper –
Communication or derived from AutomationML basic roles defined in AutomationML Whitepaper –
Architecture and general requirements.

The following figures represent the defined role class library.

Figure 17 – AutomationProjectConfigurationRoleClassLib in AutomationML Editor view

 <RoleClassLib

Name="AutomationProjectConfigurationRoleClassLib">
 <Description>Automation Markup Language Automation Project Configuration Data Class Library</Description>
 <Version>1.4.0</Version>
 <RoleClass

Name="AutomationProject"
RefBaseClassPath="AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Structure">

 <Attribute
Name="ProjectManufacturer"

Application Recommendations: Automation Project
Configuration

 31

AttributeDataType="xs:string"></Attribute>
 <Attribute

Name="ProjectSign"
AttributeDataType="xs:string"></Attribute>

 <Attribute
Name="ProjectRevision"
AttributeDataType="xs:string"></Attribute>

 <Attribute Name="ProjectInformation" AttributeDataType="xs:string"></Attribute>
 </RoleClass>
 <RoleClass

Name="DeviceUserFolder"
RefBaseClassPath="AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Structure" />

 <RoleClass
Name="Subnet"
RefBaseClassPath="CommunicationRoleClassLib/LogicalNetwork">

 <Attribute
Name="Type"
AttributeDataType="xs:string"></Attribute>

 <Attribute
Name="CustomAttributes">

 <RefSemantic CorrespondingAttributePath="ListType" />
 <Attribute

Name="AttributeName1"
AttributeDataType="xs:string"></Attribute>

 <Attribute
Name="AttributeName2"
AttributeDataType="xs:string"></Attribute>

 </Attribute>
 <ExternalInterface

Name="LogicalEndPoint"
RefBaseClassPath="CommunicationInterfaceClassLib/LogicalEndPoint"
ID="3e661cba-acfc-43b8-a02b-14ad7061f137" />

 </RoleClass>
 <RoleClass

Name="Device"
RefBaseClassPath="CommunicationRoleClassLib/PhysicalDevice">

 <Attribute
Name="TypeIdentifier"
AttributeDataType="xs:string">

 <Attribute
Name="TemplateIdentifier"
AttributeDataType="xs:string" />

 </Attribute>
 <Attribute

Name="Comment"
AttributeDataType="xs:string" />

 <Attribute
Name="Manufacturer"
AttributeDataType="xs:string" />

 </RoleClass>
 <RoleClass

Name="DeviceItem"
RefBaseClassPath="CommunicationRoleClassLib/PhysicalDevice">

 <Attribute
Name="TypeName"
AttributeDataType="xs:string"></Attribute>

 <Attribute
Name="DeviceItemType"
AttributeDataType="xs:string">

 <Attribute
Name="Customized"
AttributeDataType="xs:boolean">

 <DefaultValue>false</DefaultValue>
 </Attribute>
 </Attribute>
 <Attribute

Name="PositionNumber"
AttributeDataType="xs:int"></Attribute>

 <Attribute
Name="BuiltIn"
AttributeDataType="xs:boolean">

 <DefaultValue>false</DefaultValue>

Application Recommendations: Automation Project
Configuration

 32

 </Attribute>
 <Attribute

Name="TypeIdentifier"
AttributeDataType="xs:string">

 <Attribute
Name="TemplateIdentifier"
AttributeDataType="xs:string" />

 </Attribute>
 <Attribute

Name="Manufacturer"
AttributeDataType="xs:string" />

 <Attribute
Name="CustomAttributes">

 <RefSemantic
CorrespondingAttributePath="ListType" />

 <Attribute
Name="AttributeName1"
AttributeDataType="xs:string"></Attribute>

 <Attribute
Name="AttributeName2"
AttributeDataType="xs:string"></Attribute>

 </Attribute>
 <Attribute

Name="FirmwareVersion"
AttributeDataType="xs:string" />

 <Attribute
Name="PlantDesignation IEC"
AttributeDataType="xs:string">

 <Description>Function oriented reference designation following IEC 81346</Description>
 <RefSemantic

CorrespondingAttributePath="IEC 81346-1:2009-07#5.3 - Function-oriented structure" />
 </Attribute>
 <Attribute Name="LocationIdentifier IEC" AttributeDataType="xs:string">
 <Description>Location oriented reference designation following IEC 81346</Description>
 <RefSemantic

CorrespondingAttributePath="IEC 81346-1:2009-07#5.5 - Location-oriented structure" />
 </Attribute>
 <Attribute Name="ProductDesignation IEC" AttributeDataType="xs:string">
 <Description>Product oriented reference designation following IEC 81346</Description>
 <RefSemantic

CorrespondingAttributePath="IEC 81346-1:2009-07#5.4 - Product-oriented structure" />
 </Attribute>
 <Attribute

Name="InstallationDate"
AttributeDataType="xs:dateTime" />

 <Attribute
Name="Comment"
AttributeDataType="xs:string" />

 <Attribute
Name="Address">

 <RefSemantic
CorrespondingAttributePath="OrderedListType" />

 <Attribute
Name="1">

 <Attribute
Name="StartAddress"
AttributeDataType="xs:int" />

 <Attribute
Name="Length"
AttributeDataType="xs:int" />

 <Attribute
Name="IoType"
AttributeDataType="xs:string" />

 <Attribute
Name="BitOffset"
AttributeDataType="xs:int" />

 </Attribute>
 <Attribute

Name="2">
 <Attribute

Name="StartAddress"
AttributeDataType="xs:int" />

Application Recommendations: Automation Project
Configuration

 33

 <Attribute
Name="Length"
AttributeDataType="xs:int" />

 <Attribute
Name="IoType"
AttributeDataType="xs:string" />

 <Attribute
Name="BitOffset"
AttributeDataType="xs:int" />

 </Attribute>
 <Attribute

Name="3">
 <Attribute

Name="StartAddress"
AttributeDataType="xs:int" />

 <Attribute
Name="Length"
AttributeDataType="xs:int" />

 <Attribute
Name="IoType"
AttributeDataType="xs:string" />

 <Attribute
Name="BitOffset"
AttributeDataType="xs:int" />

 </Attribute>
 </Attribute>
 <ExternalInterface

Name="ModuleAssignment"
RefBaseClassPath="AutomationProjectConfigurationInterfaceClassLib/ModuleAssignment"
ID="110c6f0b-75b7-4c3c-9d05-1b28eeeec5df" />

 <ExternalInterface
Name="CommunicationPortProxyInterface"
ID="0bfb4d8a-63d2-4d32-ad0a-3bb3f6673165"
RefBaseClassPath="AutomationProjectConfigurationInterfaceClassLib/CommunicationPortProxyInterface" />

 </RoleClass>
 <RoleClass

Name="TagTable"
RefBaseClassPath="CommunicationRoleClassLib/PhysicalDevice/VariableList">

 <Attribute
Name="AssignToDefault"
AttributeDataType="xs:boolean" />

 </RoleClass>
 <RoleClass

Name="TagUserFolder"
RefBaseClassPath="CommunicationRoleClassLib/PhysicalDevice/VariableList" />

 <RoleClass
Name="ComplexTag"
RefBaseClassPath="CommunicationRoleClassLib/PhysicalDevice/VariableList">

 <Attribute
Name="DataType"
AttributeDataType="xs:string">

 <DefaultValue>Mandatory</DefaultValue>
 </Attribute>
 <Attribute Name="Comment" AttributeDataType="xs:string">
 <DefaultValue>Optional</DefaultValue>
 </Attribute>
 </RoleClass>
 <RoleClass

Name="Node"
RefBaseClassPath="CommunicationRoleClassLib/LogicalDevice">

 <Attribute
Name="Type"
AttributeDataType="xs:string" />

 <Attribute
Name="NetworkAddress"
AttributeDataType="xs:string" />

 <Attribute
Name="CustomAttributes">

 <RefSemantic CorrespondingAttributePath="ListType" />
 <Attribute

Name="AttributeName1"
AttributeDataType="xs:string"></Attribute>

Application Recommendations: Automation Project
Configuration

 34

 <Attribute
Name="AttributeName2"
AttributeDataType="xs:string"></Attribute>

 </Attribute>
 <ExternalInterface

Name="LogicalEndPoint"
RefBaseClassPath="CommunicationInterfaceClassLib/LogicalEndPoint"
ID="9562e3ae-8c2b-4055-a327-3ab66f949d5e" />

 </RoleClass>
 <RoleClass

Name="CommunicationInterface"
RefBaseClassPath="AutomationProjectConfigurationRoleClassLib/DeviceItem">

 <Attribute
Name="Label"
AttributeDataType="xs:string" />

 <Attribute
Name="Type"
AttributeDataType="xs:string" />

 <ExternalInterface
Name="LogicalEndPoint"
RefBaseClassPath="CommunicationInterfaceClassLib/LogicalEndPoint"
ID="dedad3eb-1a51-4d7e-accb-fdc8213c6c23" />

 </RoleClass>
 <RoleClass

Name="IoSystem"
RefBaseClassPath="CommunicationRoleClassLib/LogicalDevice">

 <Attribute
Name="Number"
AttributeDataType="xs:int" />

 <Attribute
Name="CustomAttributes">

 <RefSemantic CorrespondingAttributePath="ListType" />
 <Attribute

Name="AttributeName1"
AttributeDataType="xs:string"></Attribute>

 <Attribute
Name="AttributeName2"
AttributeDataType="xs:string"></Attribute>

 </Attribute>
 <ExternalInterface

Name="LogicalEndPoint"
RefBaseClassPath="CommunicationInterfaceClassLib/LogicalEndPoint"
ID="003f6b58-c95a-4346-8a0c-aaad895a6492" />

 </RoleClass>
 <RoleClass

Name="CommunicationPort"
RefBaseClassPath="AutomationProjectConfigurationRoleClassLib/DeviceItem">

 <Attribute
Name="Label"
AttributeDataType="xs:string" />

 <ExternalInterface
Name="CommunicationPortInterface"
RefBaseClassPath="AutomationProjectConfigurationInterfaceClassLib/CommunicationPortInterface"
ID="b0f1bb7c-1df9-494e-8352-0cae067e357d"></ExternalInterface>

 </RoleClass>
 <RoleClass

Name="PowerPort"
RefBaseClassPath="CommunicationRoleClassLib/PhysicalDevice">

 <Attribute
Name="Label"
AttributeDataType="xs:string" />

 <ExternalInterface
Name="PowerPortInterface"
ID="6c3e2230-64d8-42e6-9ddd-3dbdf3310064"
RefBaseClassPath="AutomationProjectConfigurationInterfaceClassLib/PowerPortInterface" />

 </RoleClass>
 <RoleClass

Name="SensorPort"
RefBaseClassPath="CommunicationRoleClassLib/PhysicalDevice">

 <Attribute
Name="Label"
AttributeDataType="xs:string" />

Application Recommendations: Automation Project
Configuration

 35

 <ExternalInterface
Name="SensorPortInterface"
ID="32d38c98-80cb-4850-b3a2-ad789e4ab96a"
RefBaseClassPath="AutomationProjectConfigurationInterfaceClassLib/SensorPortInterface" />

 </RoleClass>
 <RoleClass

Name="DeviceItemBusExtension"
RefBaseClassPath="AutomationMLBaseRoleClassLib/AutomationMLBaseRole" />

 <RoleClass
Name="NodeBusExtension"
RefBaseClassPath="AutomationMLBaseRoleClassLib/AutomationMLBaseRole" />

 <RoleClass
Name="CommunicationInterfaceBusExtension"
RefBaseClassPath="AutomationMLBaseRoleClassLib/AutomationMLBaseRole" />

 </RoleClassLib>

Figure 18 – AutomationProjectConfigurationRoleClassLib as XML representation

Note: The attributes of the roles can be “mandatory” or “optional”:

• mandatory: The exporting tool exports the attribute and the importing tool imports the attribute.

The importing tool might correct the value.

• optional: The exporting tool may export this attribute. The importing tool imports this attribute if
the exporting tool has exported this attribute and it exists on the importer side. The importing
tool might correct the value.

5.1.1 AutomationProject

An “AutomationProject” is derived from a “Structure” according to AutomationML Whitepaper -
Architecture and general requirements. It is defined as follows.

Table 2 – Definition AutomationProject

Application Recommendations: Automation Project
Configuration

 36

Role class name AutomationProject

Description
The role class “AutomationProject” shall be used in order to represent the project from
which the export arises.

Parent Class AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Structure

Path for Element
reference

AutomationProjectConfigurationRoleClassLib/AutomationProject

Attributes

“ProjectName”
(AttributeDataType=”xs:string”)

The attribute “ProjectName” defines the name
of the project.

This attribute is mandatory.

Note: This attribute is modelled by the
standard attribute Name of the relevant CAEX
object.

“ProjectManufacturer”
(AttributeDataType=”xs:string”)

The attribute “ProjectManufacturer” defines
the manufacturer of the project.

This attribute is optional.

“ProjectSign”
(AttributeDataType=”xs:string”)

The attribute “ProjectSign” defines the unique
identification of the project.

This attribute is optional.

“ProjectRevision”
(AttributeDataType=”xs:string”)

The attribute “ProjectRevision” defines the
revision number of the project.

This attribute is optional.

“ProjectInformation”
(AttributeDataType=”xs:string”)

The attribute “ProjectInformation” defines
commenting information of the project.

This attribute is optional.

5.1.2 DeviceUserFolder

A “DeviceUserFolder” is derived from a “Structure”. It is defined as follows.

Table 3 – Definition DeviceUserFolder

Role class name DeviceUserFolder

Description
The role class “DeviceUserFolder” shall be used in order to support the structure of a
device within a project.

Parent Class AutomationMLBaseRoleClassLib/AutomationMLBaseRole/Structure

Path for Element
reference

AutomationProjectConfigurationRoleClassLib/DeviceUserFolder

Attributes
“Name”
(AttributeDataType=”xs:string”)

The attribute “Name” defines the name of the
DeviceUserFolder.

This attribute is mandatory.

Note: This attribute is modelled by the
standard attribute Name of the relevant CAEX
object.

Application Recommendations: Automation Project
Configuration

 37

5.1.3 Subnet

A “Subnet” is derived from a “LogicalNetwork” according to AutomationML Whitepaper -
Communication. It is defined as follows.

Table 4 – Definition Subnet

Role class name Subnet

Description
The role class “Subnet” shall be used in order to represent storing and managing of
properties and functionality of networks.

Parent Class CommunicationRoleClassLib/LogicalNetwork

Path for Element
reference

AutomationProjectConfigurationRoleClassLib/Subnet

Attributes

“Name”
(AttributeDataType=”xs:string”)

The attribute “Name” defines the name of the
subnet.

Note: This attribute is modelled by the
standard attribute Name of the relevant CAEX
object.

This attribute is mandatory.

“Type”
(AttributeDataType=”xs:string”)

The attribute “Type” defines the identifier of
the type of the subnet. The value of the type
is defined in the bus specific specification.

This attribute is mandatory.

“CustomAttributes”

(ListType)[0..n]

“AttributeName”
(AttributeDataType
=”xs:string”)

The name of the CustomAttribute defines the
property name in the target system. The
value defines the value of this
CustomAttribute. The AttributeName is
mandatory if the attribute “CustomAttributes”
exists. The AttributeName shall be unique.
Mapping of several custom attributes with the
same name can only be made by making the
key unique by appending a counter like #1,
#2, #3. Custom Attributes can have simple or
complex data types. The description of
complex values can be found in 5.3.

Interfaces

“LogicalEndPoint”
(RefBaseClassePath=”
CommunicationInterfaceClassLib/LogicalE
ndPoint”

This interface is used to link node elements
to a subnet. The direction of the link is
irrelevant. A Subnet has exactly one
LogicalEndpoint to connect the subnet to
Nodes.

Depending on the different communication systems and bus systems a Subnet may contain additional
attributes. These attributes and the bus specific parameters are described in separate bus
specifications. Please refer to these bus specifications for more information.

Application Recommendations: Automation Project
Configuration

 38

5.1.4 Device

A “Device” is derived from a “PhysicalDevice” according to AutomationML Whitepaper -
Communication. It is defined as follows.

Table 5 – Definition Device

Role class name Device

Description
The role class “Device” shall be used in order to represent a collection in which the
individual HW objects of a slave or rack, including the slave or rack HW item, are brought
together.

Parent Class CommunicationRoleClassLib/PhysicalDevice

Path for Element
reference

AutomationProjectConfigurationRoleClassLib/Device

Attributes

“Name”
(AttributeDataType=”xs:string”)

The attribute “Name” defines the name of the
device.

This attribute is mandatory.

Note: This attribute is modelled by the
standard attribute Name of the relevant CAEX
object.

“TypeIdentifier”
(AttributeDataType=
”xs:string”)

“Template
Identifier”
(AttributeDataType
=”xs:string”)

The attribute “TypeIdentifier” defines the
family identifier of the device type.

This attribute is optional.

The attribute “TemplateIdentifier” references
the path of a template element, for instance a
library. The syntax is defined by the
corresponding target system element.

This attribute is optional.

“Manufacturer”
(AttributeDataType=”xs:string”)

The attribute “Manufacturer” defines the
manufacturer of the device. The name of the
manufacturer must be unambiguous and
unique assigned to the manufacturer.

This attribute is optional.

“Comment”
(AttributeDataType=”xs:string”)

The attribute “Comment” defines a comment
for the device. The attribute “Comment”
follows the Best Practice Recommendation
Multilingual expressions in AutomationML.

This attribute is optional.

Note: The attribute “TypeIdentifier” has a prefix which describes the semantic of the following identifier
separated by “:” The following prefixes are allowed: “OrderNumber”, “GSD”, "System”, „CSP+“.In case
of a missing TypeIdentifier the importing tool shall apply a substitution strategy. It is not ensured that the
substitution strategy succeeds in all cases.

Examples:

TypeIdentifier = “GSD:SIEM8139.GSD/DAP”

TypeIdentifier = "System:Device.Generic”

TypeIdentifier = "System:Device.S7-1500”

TypeIdentifier = "System:Device.IQ-R”

TemplateIdentifier =
" GlobalLib://TemplateLibrary/Master copies/S7-1500/preconfigured/PLCs/s7-1518F”

Application Recommendations: Automation Project
Configuration

 39

5.1.5 DeviceItem

A “DeviceItem” is derived from a “PhysicalDevice” according to AutomationML Whitepaper -
Communication. It is defined as follows.

Table 6 – Definition DeviceItem

Role class name DeviceItem

Description
The role class “DeviceItem” shall be used in order to represent a general object class for
HW modules and submodules.

Parent Class CommunicationRoleClassLib/PhysicalDevice

Path for Element
reference

AutomationProjectConfigurationRoleClassLib/DeviceItem

Attributes

“Name”
(AttributeDataType=”xs:string”)

The attribute “Name” defines the name of the
DeviceItem.

This attribute is mandatory.

Note: This attribute is modelled by the
standard attribute Name of the relevant CAEX
object.

“TypeName”
(AttributeDataType=”xs:string”)

The Attribute “TypeName” defines additional
type information.

This attribute is optional.

“DeviceItemType”
(AttributeDataType=”xs:
string”)

“Customized”
(AttributeDat
aType=”xs:bo
olean”)

The attribute “DeviceItemType” defines the
classification of the DeviceItem.

This attribute is optional.

The subattribute “Customized” indicates if the
DeviceItemType contains vendor specific
information (Customized = “true”) or not
(Customized =”false”). If customized is omitted or
set to “false” the DeviceItem contains already
standardized information (Standard values are:
CPU, HeadModule, Accessory).

This attribute is optional.

“PositionNumber”
(AttributeDataType=”xs:int”)

The attribute “PositionNumber” defines the slot
number where this DeviceItem is plugged in.

This attribute is optional. It is mandatory in
case of plugable DeviceItems and for
DeviceItems which can contain plugable
DeviceItems

“BuiltIn”
(AttributeDataType=”xs:boolean”)

The attribute “BuiltIn” defines that this module
is a build-in part of another module.

This attribute is optional.

The default value is “false”.

“TypeIdentifier”
(AttributeDataType
=”xs:string”)

“Template
Identifier”
(AttributeDataType
=”xs:string”)

The attribute “TypeIdentifier” defines the
identifier of the DeviceItem type.

This attribute is mandatory if “BuiltIn” is “false”.
The attribute is optional, if “BuiltIn” is true.

A wildcard shall be “*”.

The attribute “TemplateIdentifier” references
the path of a template element, for instance a
library. The syntax is defined by the
corresponding target system element. This
attribute is optional.

“Manufacturer”
(AttributeDataType=”xs:string”)

The attribute “Manufacturer” defines the
manufacturer of the DeviceItem. The name of
the manufacturer must be unambiguous and
unique assigned to the manufacturer.

This attribute is optional.

Application Recommendations: Automation Project
Configuration

 40

“CustomAttributes”

(ListType)[0..n]

“AttributeName”
(AttributeDataTyp
e=”xs:string”)

The name of the
CustomAttribute defines
the property name in the
target system. The value
defines the value of this
CustomAttribute. The
AttributeName is
mandatory if the attribute
“CustomAttributes” exists.
The AttributeName shall
be unique. Mapping of
several custom attributes
with the same name can
only be made by making
the key unique by
appending a counter like
#1, #2, #3. Custom
Attributes can have
simple or complex data
types. The description of
complex values can be
found in 5.3.

“FirmwareVersion”
(AttributeDataType=”xs:string”)

The attribute “FirmwareVersion” defines the
firmware version of e.g. a CPU to identify the
module correctly.

This attribute is optional.

“Comment”
(AttributeDataType=”xs:string”)

The attribute “Comment” defines a comment
for the DeviceItem. The attribute “Comment”
follows the Best Practice Recommendation
Multilingual expressions in AutomationML.

This attribute is optional.

“Address”

(OrderedListType)[0..n]
“1”

“StartAddress”
(AttributeDataTyp
e=”xs:int”)

The attribute “Address” is
optional. The subattribute
“StartAddress” defines
the start of the address.

The subattribute
“StartAddress” is
mandatory if the attribute
“Address” exists.

“Length”
(AttributeDataTyp
e=”xs:int”)

The attribute “Length”
defines the total width of
all of the channels on the
device item.

This attribute is optional.

“IoType”
(AttributeDataTyp
e=”xs:string”)

The attribute “IoType”
specifies the direction
INPUT or OUTPUT.

The subattribute “IoType”
is mandatory if the
attribute “Address” exists.

“BitOffset”
(AttributeDataTyp
e=”xsint)”

The subattribute
“BitOffset” defines the
offset within a
StartAddress.

The subattribute
“BitOffset” is optional.
The default value is “0”.

“PlantDesignation IEC”
(AttributeDataType=” xs:string” and

RefSemantic=” IEC 81346-1:2009-
07#5.3 - Function-oriented structure
IEC81346”)

The attribute “PlantDesignation IEC” defines
the function designation for this device item
according IEC81346. The attribute shall
contain in the subattribute refSemantic the
value “IEC 81346-1:2009-07#5.3 - Function-
oriented structure” to enable its identification if

Application Recommendations: Automation Project
Configuration

 41

the name is changed. The length of this
attribute is bus specific.

This attribute is optional.

“LocationIdentifier IEC”
(AttributeDataType=” xs:string” and

RefSemantic=” IEC 81346-1:2009-
07#5.5 - Location-oriented structure
IEC81346”)

The attribute “LocationIdentifier IEC” defines
the location designation for this device item
according IEC81346. The attribute shall
contain in the subattribute refSemantic the
value “IEC 81346-1:2009-07#5.5 - Location-
oriented structure” to enable its identification if
the name is changed. The length of this
attribute is bus specific.

This attribute is optional.

“ProductDesignation IEC”

(AttributeDataType=” xs:string” and

RefSemantic=” IEC 81346-1:2009-
07#5.4 - Product-oriented structure”)

The attribute “ProductDesignation IEC” defines
the product designation for this device item
according IEC81346. The attribute shall
contain in the subattribute refSemantic the
value “IEC 81346-1:2009-07#5.4 - Product-
oriented structure” to enable its identification if
the name is changed. The length of this
attribute is bus specific.

This attribute is optional.

“InstallationDate”

(AttributeDataType=” xs:dateTime

The attribute “InstallationDate” defines the
date of the installation of the DeviceItem.

This attribute is optional.

Interfaces

“ModuleAssignment”
(RefBaseClassePath=”
AutomationProjectConfigurationInterface
ClassLib/ModuleAssignment”)

This interface is used to link a module to a
CPU in case of multiple CPU
configurations.The direction of the link is
irrelevant.

“CommunicationPortProxyInterface”
(RefBaseClassePath=”
AutomationProjectConfigurationInterface
ClassLib/CommunicationPortProxyInterf
ace”)

This interface is used to manage
CommunicationPorts of pluggable DeviceItems
at the DeviceItem where they are plugged. The
actual CommunicationPort is modelled at the
'parent' DeviceItem and the relation to the
pluggable DeviceItem is introduced by linking
the respective DeviceItems with the
CommunicationPortProxyInterface. The
direction of the link is irrelevant.

A CommunicationPort can be connected at
maximum to one DeviceItem.

Note: The Address attribute is a finite list of variable length. The number of list elements is application
case dependent.

Note: The attribute “TypeIdentifier” has a prefix which describes the semantic of the following identifier
separated by “:” The following prefixes are allowed: “OrderNumber”, “GSD”, "System", “CSP+”.

Examples:

TypeIdentifier = “OrderNumber:3RK1 200-0CE00-0AA2”

TypeIdentifier = “GSD:SIEM8139.GSD/DAP/DAP 1”

TypeIdentifier = "System:Rack.Generic”

TypeIdentifier = “CSP+:AJ65VBTCE2-8T”

TemplateIdentifier =
" GlobalLib://TemplateLibrary/Master copies/S7-1500/preconfigured/DIs/16x24VDC BA_Advanced”

Note:

If BuildIn=true then the identification shall result from the UUID of the first DeviceItem in the parent
hierarchy with BuiltIn=False and the Position-Number of the DeviceItem.

Application Recommendations: Automation Project
Configuration

 42

Note:

ECAD and Automation Engineering Systems have different perspectives on the structure of devices and
modules. An exchanged AML file must ensure that both perspectives can be derived from an its content.
Two scenarios have to be distinguished:

• A device or module is composed of two device items. The two device items appear in an
automation engineering system at the same level but the second is modelled as part of the first
one (main device item). In the ECAD system the composition of the two device items is treated
as one module. (hierarchical scenario)

• A device or module is modelled by independent artifacts in the automation system while it is
handled as a single physical entity in the ECAD system. This is often used to model various
configurations of the same module / device. (flat scenario)

Both scenarios can be handled by using the product administration of the ECAD system. For this aim
the ECAD system uses one of the two defined properties on device items, which are handled as built-in
by the ECAD system:

• GSD-index

• sub-module order number

At least one property has to be defined. If both are given, sub-module order number takes preference
over GSD-index. The actual names of these properties are ECAD system specific. They are reflected in
the value of type identifier attribute of the corresponding built-in device item.

For the flat scenario for all device items the value of its type identifier is used. For the hierarchical
scenario the main device item uses the value of its type identifier while the built-in device item uses the
type identifier of the main device item appended with “#BUILTIN” as value for sub-module order number.

An ECAD export algorithm shall work as follows:

• If no property is defined for the built-in device item, it will be exported from the ECAD system as
child of the main device item (hierarchical model)

• If at least one property is defined, the built-in device item will be exported at the level of the main
device. Built-in device items shall always be positioned following the main device item. If the
order number possesses “#BUILTIN” as part of its order number for the device item, the built-in
flag will be set in the AML file.

In case of the flat scenario, PLC engineering systems must export the corresponding type identifier
value for each device item. For the hierarchical scenario for the main device item its type identifier value
is exported, while for the built-in device item the value of the main device item’s type identifier value
appended with with “#BUILTIN” is exported.

Remarks:

• Version information of built-in devices will be ignored during import. The importing system may
issue a warning.

Depending on the different communication systems and bus systems some DeviceItems may contain
additional, unused or restricted attributes. These attributes and the bus specific parameters are
described in separate bus specifications. Please refer to these bus specifications for more information.

Application Recommendations: Automation Project
Configuration

 43

5.1.6 TagTable

A “TagTable” is derived from a “VariableList” according to AutomationML Whitepaper - Communication.
Therefore, the VariableList must be mandatory according AutomationML Whitepaper Communication.
It is defined as follows.

Table 7 – Definition TagTable

Role class name TagTable

Description The role class “TagTable” shall be used in order to support the structure of tags

Parent Class CommunicationRoleClassLib/PhysicalDevice/VariableList

Path for Element
reference

AutomationProjectConfigurationRoleClassLib/TagTable

Attributes

“Name”
(AttributeDataType=”xs:string”)

The attribute “Name” defines the name of the
TagTable.

This attribute is mandatory. This attribute is
ignored if AssignToDefault is “true”.

Note: This attribute is modelled by the
standard attribute Name of the relevant CAEX
object.

“AssignToDefault”
(AttributeDataType=”xs:boolean”)

The Attribute “AssignToDefault” defines if the
Tags inside will be imported to an existing
default TagTable.

This attribute is optional.

Interfaces “Tag” [0..n]

The Interface class “Tag” shall be used in
order to represent the elements as symbolic
names of an I/O date and for linking the tags
to the Channel.

Note: While importing if the TagTable has an attribute with 'True' value, then all the Tags inside will be
imported to an existing default TagTable. In this case the Name of the TagTable is ignored by the
importing tool. By default, False value is assumed for 'AssignToDefault' attribute if it does not exist while
importing.

Application Recommendations: Automation Project
Configuration

 44

5.1.7 TagUserFolder

A “TagUserFolder” is derived from a “VariableList” according to AutomationML Whitepaper -
Communication. It is defined as follows.

Table 8 – Definition TagUserFolder

Role class name TagUserFolder

Description
The role class “TagUserFolder” shall be used in order to support the structure TagTables
within a DeviceItem.

Parent Class CommunicationRoleClassLib/PhysicalDevice/VariableList

Path for Element
reference

AutomationProjectConfigurationRoleClassLib/TagUserFolder

Attributes
“Name”
(AttributeDataType=”xs:string”)

The attribute “Name” defines the name of the
TagUserFolder.

This attribute is mandatory.

Note: This attribute is modelled by the
standard attribute Name of the relevant CAEX
object.

5.1.8 ComplexTag

A “ComplexTag” is derived from a “VariableList” according to AutomationML Whitepaper -
Communication. It is defined as follows.

Table 9 – Definition ComplexTag

Role class name ComplexTag

Description
The role class “ComplexTag” shall be used in order to represent the symbolic name of
structured I/O data. ComplexTags shall only be used within a TagTable.

Parent Class CommunicationRoleClassLib/PhysicalDevice/VariableList

Path for Element
reference

AutomationProjectConfigurationRoleClassLib/ComplexTag

Attributes

“DataType”
(AttributeDataType=
”xs:string”)

The attribute “DataType” defines the name of the structure.

This attribute is mandatory.

“Comment”
(AttributeDataType=
”xs:string”)

The attribute “Comment” defines a comment for the ComplexTag.

The attribute “Comment” follows the Best Practice
Recommendation Multilingual expressions in AutomationML.

This attribute is optional.

Interfaces “Tag” [0..n]

The Interface class “Tag” shall be used in order to represent the
structured elements as symbolic names of an I/O date and for
linking the tags to the Channel. A ComplexTag represents the
symbolic name of structured I/O data. It provides the logical
structure and aggregates the tags for referencing the associated
channel directly. ComplexTags can be aggregated by a Tag Table
of a CPU or by ComplexTags.

5.1.9 Node

A “Node” is derived from a “logicalDevice” according to AutomationML Whitepaper - Communication. It
is defined as follows.

Table 10 – Definition Node

Application Recommendations: Automation Project
Configuration

 45

Role class name Node

Description

The role class “Node” shall be used in order to specify all the interface related networking
information of a network node.

Note: The name of the Node is modelled by the standard attribute Name of the relevant
CAEX object.

Parent Class CommunicationRoleClassLib/logicalDevice

Path for Element
reference

AutomationProjectConfigurationRoleClassLib/Node

Attributes

“Type”
(AttributeDataType=”xs:string”)

The attribute “Type” defines the type of the
network. The value of the type is defined in
the bus specific specification.

This attribute is mandatory.

“NetworkAddress”
(AttributeDataType=”xs:string”)

The attribute “NetworkAddress” defines the
network address of this device item.

This attribute is mandatory.

“CustomAttributes”

(ListType)[0..n]

“AttributeName”
(AttributeDataType
=”xs:string”)

The name of the CustomAttribute defines the
property name in the target system. The
value defines the value of this
CustomAttribute. The AttributeName is
mandatory if the attribute “CustomAttributes”
exists. The AttributeName shall be unique.
Mapping of several custom attributes with the
same name can only be made by making the
key unique by appending a counter like #1,
#2, #3. Custom Attributes can have simple or
complex data types. The description of
complex values can be found in 5.3.

Interfaces

“LogicalEndPoint”
(RefBaseClassePath=”
CommunicationInterfaceClassLib/LogicalE
ndPoint”)

This interface is used to link the node to a
subnet. The direction of the link is irrelevant.
In case of connection to more than one
subnet the one and only logical endpoint shall
contain all connections.

Note: The identification shall result from the identification of the Communication Interface.

Depending on the different communication systems and bus systems a Node may contain additional,
unused or restricted attributes. These attributes and the bus specific parameters are described in
separate bus specifications. Please refer to these bus specifications for more information.

5.1.10 CommunicationInterface

A “CommunicationInterface” is derived from a “DeviceItem” according to AutomationML Whitepaper -
Communication. It is defined as follows.

Table 11 – Definition CommunicationInterface

Application Recommendations: Automation Project
Configuration

 46

Role class name CommunicationInterface

Description

The role class “CommunicationInterface” shall be used in order to define the connection
point of a device to a network.

Note: The name of the CommunicationInterface is modelled by the standard attribute
Name of the relevant CAEX object.

Parent Class AutomationProjectConfigurationRoleClassLib/DeviceItem

Path for Element
reference

AutomationProjectConfigurationRoleClassLib/CommunicationInterface

Attributes

“Label”
(AttributeDataType=”xs:string”)

The attribute “Label” defines the name
printed on the item.

This attribute is mandatory if “BuiltIn” is
“true”.

“Type”
(AttributeDataType=”xs:string”)

The attribute “Type” defines the type of the
CommunicationInterface. The value of the
type is defined in the bus specific
specification.

The attribute is optional.

“CustomAttributes”

(ListType)[0..n]

“AttributeName”
(AttributeDataType
=”xs:string”)

The name of the CustomAttribute defines the
property name in the target system. The
value defines the value of this
CustomAttribute. The AttributeName is
mandatory if the attribute “CustomAttributes”
exists. The AttributeName shall be unique.
Mapping of several custom attributes with the
same name can only be made by making the
key unique by appending a counter like #1,
#2, #3. Custom Attributes can have simple or
complex data types. The description of
complex values can be found in 5.3.

Interfaces

“LogicalEndPoint”
(RefBaseClassePath=”
CommunicationInterfaceClassLib/LogicalE
ndPoint”

This interface is used to link the
CommunicationInterface to an IOSystem. The
direction of the link is irrelevant.In case of
connection to more than one IOSystem the
one and only logical endpoint shall contain all
connections.

Note: The attribute “Type” is new from AR APC 1.1.0. If the attribute "Type" is missing, the interface is
handled as an external bus due to compatibility to AR APC V1.0.0.

Note: The identification shall result from the UUID of the first DeviceItem in the parent hierarchy with
BuiltIn=False starting with the interface or port itself, the Bus-System, if present the Label of the
Communication-Interface and if present the Label of the Communication-Port. Because if one of these
identifying attributes changes the bus-connector itself has changed.

Depending on the different communication systems and bus systems a CommunicationInterface may
contain additional, unused or restricted attributes. These attributes and the bus specific parameters are
described in separate bus specifications. Please refer to these bus specifications for more information.

5.1.11 IoSystem

An “IoSystem” is derived from LogicalDevice. It is defined as follows.

Table 12 – Definition IoSystem

Application Recommendations: Automation Project
Configuration

 47

Role class name IoSystem

Description

The role class “IoSystem” shall be used in order to model the master – slave relationship
typically found in fieldbus systems.

Note: The name of the IoSystem is modelled by the standard attribute Name of the
relevant CAEX object.

Parent Class CommunicationRoleClassLib/LogicalDevice

Path for Element
reference

AutomationProjectConfigurationRoleClassLib/IOSystem

Attributes

“Number” (AttributeDataType=”xs:int”)

The attribute “Number” defines the unique
number of the IoSystem.

This attribute is optional.

“CustomAttributes”

(ListType)[0..n]

“AttributeName”
(AttributeDataType
=”xs:string”)

The name of the CustomAttribute defines the
property name in the target system. The
value defines the value of this
CustomAttribute. The AttributeName is
mandatory if the attribute “CustomAttributes”
exists. The AttributeName shall be unique.
Mapping of several custom attributes with the
same name can only be made by making the
key unique by appending a counter like #1,
#2, #3. Custom Attributes can have simple or
complex data types. The description of
complex values can be found in 5.3.

Interfaces

“LogicalEndPoint”
(RefBaseClassePath=”
CommunicationInterfaceClassLib/LogicalE
ndPoint”)

This interface is used to link the IoSystem to
a CommunicationInterface.The direction of
the link is irrelevant.In case of connection to
more than one CommunicationInterface the
one and only logical endpoint shall contain all
connections.

Note: The identification shall result from the identification of the Communication Interface.

5.1.12 CommunicationPort

A “CommunicationPort” is derived from a DeviceItem. It is defined as follows.

Table 13 – Definition CommunicationPort

Application Recommendations: Automation Project
Configuration

 48

Role class name CommunicationPort

Description

The role class “CommunicationPort” shall be used in order to model the device item
applied to physically and/or logically establish the connection to the network.

Note: The name of the CommunicationPort is modelled by the standard attribute Name of
the relevant CAEX object.

Parent Class AutomationProjectConfigurationRoleClassLib/DeviceItem

Path for Element
reference

AutomationProjectConfigurationRoleClassLib/CommunicationPort

Attributes

“Label”
(AttributeDataType=”xs:string”)

The attribute “Label” defines the name
printed on the Port.

This attribute is mandatory if “BuiltIn” is
“true”. The attribute PositionNumber is
mandatory if “BuiltIn” is “False”

“CustomAttributes”

(ListType)[0..n]

“AttributeName”
(AttributeDataType=
”xs:string”)

The name of the CustomAttribute defines
the property name in the target system. The
value defines the value of this
CustomAttribute. The AttributeName is
mandatory if the attribute
“CustomAttributes” exists. The
AttributeName shall be unique. Mapping of
several custom attributes with the same
name can only be made by making the key
unique by appending a counter like #1, #2,
#3. Custom Attributes can have simple or
complex data types. The description of
complex values can be found in 5.3.

Interfaces

“CommunicationPortInterface”
(RefBaseClassePath=”
AutomationProjectConfigurationInterfaceCla
ssLib/CommunicationPortInterface”)

This interface is used to link the Port to
another port. The direction of the link is
irrelevant. In case of connection to more
than one Port the one and only interface
shall contain several logical endpoints for
the different connections.

Note: The identification shall result from the identification of the Communication Interface and the label
of the port.

Depending on the different communication systems and bus systems a CommunicationPort may contain
additional, unused or restricted attributes. These attributes and the bus specific parameters are
described in separate bus specifications. Please refer to these bus specifications for more information.

5.1.13 PowerPort

A “PowerPort” is derived from a PhysicalDevice. It is defined as follows.

Table 14 – Definition PowerPort

Application Recommendations: Automation Project
Configuration

 49

Role class name PowerPort

Description

The role class “PowerPort” shall be used in order to model the physical connection
between modules for power transfer.

Note: The name of the PowerPort is modelled by the standard attribute Name of the
relevant CAEX object.

Parent Class AutomationProjectConfigurationRoleClassLib/PhysicalDevice

Path for Element
reference

AutomationProjectConfigurationRoleClassLib/PowerPort

Attributes
“Label”
(AttributeDataType=”xs:string”)

The attribute “Label” defines the name
printed on the Port.

This attribute is mandatory.

Interfaces

“PowerPortInterface”
(RefBaseClassePath=”
AutomationProjectConfigurationInterfaceCla
ssLib/PowerPortInterface”)

This interface is used to link the Port to
another port. Only one PowerPortInterface
shall be allowed. The direction of the link is
not relevant.

5.1.14 SensorPort

A “SensorPort” is derived from a PhysicalDevice. It is defined as follows.

Table 15 – Definition SensorPort

Role class name SensorPort

Description

The role class “SensoPort” shall be used in order to model the physical connection
between sensor modules for transfer of sensor signals.

Note: The name of the SensorPort is modelled by the standard attribute Name of the
relevant CAEX object.

Parent Class AutomationProjectConfigurationRoleClassLib/PhysicalDevice

Path for Element
reference

AutomationProjectConfigurationRoleClassLib/SensorPort

Attributes
“Label”
(AttributeDataType=”xs:string”)

The attribute “Label” defines the name
printed on the Port.

This attribute is mandatory.

Interfaces

“SensorPortInterface”
(RefBaseClassePath=”
AutomationProjectConfigurationInterfaceCla
ssLib/SensorPortInterface”)

This interface is used to link the Port to
another port. Only one SensorPortInterface
shall be allowed. The direction of the link is
not relevant.

.

5.1.15 DeviceItemBusExtension

A “DeviceItemBusExtension” is derived from a “AutomationMLBaseRole”. It is defined as follows.

Table 16 – Definition DeviceItemBusExtension

Application Recommendations: Automation Project
Configuration

 50

Role class name DeviceItemBusExtension

Description

The RoleClass "DeviceItemBusExtension” is used to define additionally bus specific
attributes for a DeviceItem.

Note: DeviceItemBusExtension shall only be used for DeviceItem objects not for derived
DeviceItem objects.

Parent Class AutomationMLBaseRole

Path for Element
reference

AutomationProjectConfigurationRoleClassLib/DeviceItemBusExtension

The abstract RoleClass "DeviceItemBusExtension” is used to define additionally bus specific attributes
for a DeviceItem. These bus specific attributes shall be defined in a derived class in a separate
RoleClassLibrary for deployment as an additional Supported Role Class.

Note: DeviceItemBusExtension shall only be used for DeviceItem objects.

5.1.16 NodeBusExtension

A “NodeBusExtension” is derived from a “AutomationMLBaseRole”. It is defined as follows.

Table 17 – Definition NodeBusExtension

Role class name NodeBusExtension

Description

The RoleClass "NodeBusExtension” is used to define additionally bus specific attributes
for a Node.

Note: NodeBusExtension shall only be used for Node objects .

Parent Class AutomationMLBaseRole

Path for Element
reference

AutomationProjectConfigurationRoleClassLib/NodeBusExtension

The abstract RoleClass "NodeBusExtension” is used to define additionally bus specific attributes for a
Node. These bus specific attributes shall be defined in a derived class in a separate RoleClassLibrary
for deployment as an additional Supported Role Class.

Note: NodeBusExtension shall only be used for Node objects.

5.1.17 CommunicationInterfaceBusExtension

A “CommunicationInterfaceBusExtension” is derived from a “AutomationMLBaseRole”. It is defined
as follows.

Table 18 – Definition CommunicationInterfaceBusExtension

Role class name CommunicationInterfaceBusExtension

Description

The RoleClass "CommunicationInterfaceBusExtension” is used to define additionally bus
specific attributes for a CommunicationInterface.

Note: CommunicationInterfaceBusExtension shall only be used for
CommunicationInterface objects.

Parent Class AutomationMLBaseRole

Path for Element
reference

AutomationProjectConfigurationRoleClassLib/CommunicationInterfaceBusExtension

The abstract RoleClass "CommunicationInterfaceBusExtension” is used to define additionally bus
specific attributes for a CommunicationInterface. These bus specific attributes shall be defined in a
derived class in a separate RoleClassLibrary for deployment as an additional Supported Role Class.

Note: CommunicationInterfaceBusExtension shall only be used for CommunicationInterface objects.

Application Recommendations: Automation Project
Configuration

 51

5.2 InterfaceClassLibrary

Second main basement of the modelling are the required interface classes. Facing the required model
elements there are interface classes especially required for Automation Project Configuration data
modelling derived from interface classes used from communication system modelling defined in
AutomationML Whitepaper – Communication or derived from AutomationML basic interface classes
defined in AutomationML Whitepaper – Architecture and general requirements

The following figures represent the interface class library.

Figure 19 – AutomationProjectConfigurationInterfaceClassLib in AutomationML Editor view

 <InterfaceClassLib

Name="AutomationProjectConfigurationInterfaceClassLib">
 <Description>Automation Markup Language Automation Project Configuration InterfaceClass Library</Description>
 <Version>1.4.0</Version>
 <InterfaceClass

Name="Tag"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaseInterface/ExternalDataConnector/PLCopenXMLI
nterface/VariableInterface">

 <Attribute
Name="DataType"
AttributeDataType="xs:string">

 <Attribute
Name="Customized"
AttributeDataType="xs:boolean">

 <DefaultValue>false</DefaultValue>
 </Attribute>
 </Attribute>
 <Attribute

Name="IoType"
AttributeDataType="xs:string"></Attribute>

 <Attribute
Name="LogicalAddress"
AttributeDataType="xs:string" />

 <Attribute
Name="Comment"
AttributeDataType="xs:string" />

 </InterfaceClass>
 <InterfaceClass

Name="CommunicationPortInterface"
RefBaseClassPath="CommunicationInterfaceClassLib/PhysicalEndPoint" />

 <InterfaceClass
Name="CommunicationPortProxyInterface"
RefBaseClassPath="CommunicationInterfaceClassLib/LogicalEndPoint" />

 <InterfaceClass
Name="PowerPortInterface"
RefBaseClassPath="CommunicationInterfaceClassLib/PhysicalEndPoint" />

 <InterfaceClass
Name="SensorPortInterface"
RefBaseClassPath="CommunicationInterfaceClassLib/PhysicalEndPoint" />
<InterfaceClass

Application Recommendations: Automation Project
Configuration

 52

Name="Channel"
RefBaseClassPath="AutomationMLInterfaceClassLib/AutomationMLBaseInterface/Communication/SignalInterface">

 <Attribute
Name="Type"
AttributeDataType="xs:string" />

 <Attribute
Name="IoType"
AttributeDataType="xs:string" />

 <Attribute
Name="Number"
AttributeDataType="xs:int" />

 <Attribute
Name="Length"
AttributeDataType="xs:int" />

 <Attribute
Name="CustomAttributes">

 <RefSemantic
CorrespondingAttributePath="ListType" />

 <Attribute
Name="AttributeName1"
AttributeDataType="xs:string"></Attribute>

 <Attribute
Name="AttributeName2"
AttributeDataType="xs:string"></Attribute>

 </Attribute>
 </InterfaceClass>
 <InterfaceClass

Name="ModuleAssignment"
RefBaseClassPath="CommunicationInterfaceClassLib/LogicalEndPoint" />

 </InterfaceClassLib>

Figure 20 – AutomationProjectConfigurationInterfaceClassLib as XML representation

Application Recommendations: Automation Project
Configuration

 53

5.2.1 Tag

A “Tag” is derived from a “VariableInterface” according to AutomationML Whitepaper - Logic. It is
defined as follows.

Table 19 – Definition Tag

Role class name Tag

Description
The Interface class “Tag” shall be used in order to represent the symbolic name of an I/O
date. Tags shall only be used within a TagTable.

Parent Class VariableInterface

Path for Element
reference

AutomationProjectConfigurationInterfaceClassLib/Tag

Attributes

“Name”
(AttributeDataType=
”xs:string”)

The attribute “Name” defines the name of the tag.

This attribute is mandatory.

Note: This attribute is modelled by the standard attribute Name of
the relevant CAEX object.

“DataType”
(AttributeDataType=
”xs:string”)

“Customized”
(AttributeDataType=
”xs:boolean”)

The attribute “DataType” defines the type of
the data.
This attribute is mandatory.

The subattribute “Customized” indicates if
the DataType contains vendor specific data
types (Customized = “true”) or not
(Customized = “false”). If customized is
omitted or set to “false” the DataType
contains already defined information
according IEC 61131 (e.g. BOOL, BYTE,
WORD).

“IoType”

(AttributeDataType=
”xs:string”)

The attribute “IoType” specifies the direction of the tag. This
attribute has the value “Input” or “Output”.

This attribute is optional.

“LogicalAddress”
(AttributeDataType=
”xs:string”)

The attribute “Logical Address” specifies the address of the tag.
This attribute shall not contain the direction (see Note below)

This attribute is optional.

“Comment”
(AttributeDataType=
”xs:string”)

The attribute “Comment” defines a comment for the tag.

The attribute “Comment” follows the Best Practice
Recommendation Multilingual expressions in AutomationML.

This attribute is optional.

Tags without assigned channels and channels without assigned tags are possible (incomplete
engineering). In case of Tags without assigned channels it is recommended to use Tag-name for
identification if UUID does not match.

Note: The attribute “IoType” is new from AR APC 1.1.0. Due to upward compatibility with AR APC V
1.0.0 the attribute “LogicalAddress” may contain the direction (e.g. "I" or "O") and the attribute “IoType”
may be missed. In this case the following rule from AR APC 1.0.0 shall be applied furthermore:

The exporting ECAD tool defines the language mnemonic of the attribute. The importing PLC tool may
change this mnemonic.

The exporting PLC tool may follow the international mnemonic. The importing ECAD tool doesn’t change
this mnemonic.

Therefore, in case of round trip engineering the use of the international or independent mnemonic in all
participating tools is recommended.

Use cases see appendix A

Application Recommendations: Automation Project
Configuration

 54

5.2.2 Channel

A “Channel” is derived from a “SignalInterface” according to AutomationML Whitepaper - Architecture
and general requirements. It is defined as follows.

Table 20 – Definition Channel

Role class name Channel

Description

The role class “Channel” shall be used in order to define the process interface. A channel
shall only be used within a DeviceItem.

Note: The name of the Channel is modelled by the standard attribute Name of the relevant
CAEX object.

Parent Class SignalInterface

Path for Element
reference

AutomationProjectConfigurationInterfaceClassLib/Channel

Attributes

“Type”
(AttributeDataType=”xs:string”)

The attribute “Type” defines the analog or
digital type of the channel (e.g. “Digital”,
“Analog”).

This attribute is mandatory.

“IoType”
(AttributeDataType=”xs:string”)

The attribute “IoType” specifies the direction
(e.g.”Input”, “Output”).

This attribute is mandatory.

“Number”
(AttributeDataType=”xs:int”)

The attribute “Number” specifies the number
of the channel starting with 0.

This attribute is mandatory.

“Length”
 (AttributeDataType=”xs:int”)

The attribute “Length” defines the total width
of the channel.

This attribute is optional.

“CustomAttributes”

(ListType)[0..n]

“AttributeName”
(AttributeDataTy
pe=”xs:string”)

The name of the
CustomAttribute defines
the property name in the
target system. The value
defines the value of this
CustomAttribute. The
AttributeName is
mandatory if the attribute
“CustomAttributes”
exists. The
AttributeName shall be
unique. Mapping of
several custom attributes
with the same name can
only be made by making
the key unique by
appending a counter like
#1, #2, #3. Custom
Attributes can have
simple or complex data
types. The description of
complex values can be
found in 5.3.

A channel references with an Internal Link the associated Tags which are stored at a CPU
DeviceItem. The direction of the link is not relevant.

Note: The identification shall result from the UUID of the first DeviceItem in the parent hierarchy with
BuiltIn=False, the Number of the Channel, the Type of the Channel and the IoType of the Channel.
Because if one of these identifying attributes changes the channel itself has changed.

Application Recommendations: Automation Project
Configuration

 55

5.2.3 CommunicationPortInterface

A “CommunicationPortInterface” is derived from a “PhysicalEndPoint” according to AutomationML
Whitepaper - Communication. It is defined as follows.

Table 21 – Definition CommunicationPortInterface

Role class name CommunicationPortInterface

Description
The interface class “CommunicationPortInterface” shall be used in order to define the
physical connection to the network.

Parent Class PhysicalEndPoint

Path for Element
reference

AutomationProjectConfigurationInterfaceClassLib/CommunicationPortInterface

5.2.4 CommunicationPortProxyInterface

A “CommunicationPortProxyInterface” is derived from a “LogicalEndpoint” according to
AutomationML Whitepaper - Architecture and general requirements. It is defined as follows.

Table 22 – Definition CommunicationPortProxyInterface

Role class name CommunicationPortProxyInterface

Description
The interface class “CommunicationPortProxyInterface” shall be used to describe the
difference between logical and physical assignment of a CommunicationPort to a
DeviceItem.

Parent Class LogicalEndpoint

Path for Element
reference

AutomationProjectConfigurationInterfaceClassLib/CommunicationPortProxyInterface

5.2.5 PowerPortInterface

A “PowerPortInterface” is derived from a “PhysicalEndPoint” according to AutomationML Whitepaper
- Communication. It is defined as follows.

Table 23 – Definition PowerPortInterface

Role class name PowerPortInterface

Description
The interface class “PowerPortInterface” shall be used in order to define the physical
connection between power modules.

Parent Class PhysicalEndPoint

Path for Element
reference

AutomationProjectConfigurationInterfaceClassLib/PowerPortInterface

5.2.6 SensorPortInterface

A “SenorPortInterface” is derived from a “PhysicalEndPoint” according to AutomationML Whitepaper
- Communication. It is defined as follows.

Table 24 – Definition SensorPortInterface

Role class name SensorPortInterface

Description
The interface class “SensorPortInterface” shall be used in order to define the physical
connection between sensor modules.

Parent Class PhysicalEndPoint

Path for Element
reference

AutomationProjectConfigurationInterfaceClassLib/SensorrPortInterface

Application Recommendations: Automation Project
Configuration

 56

5.2.7 ModuleAssignment

A “ModuleAssignment” is derived from a “LogicalEndpoint” according to AutomationML Whitepaper -
Architecture and general requirements. It is defined as follows.

Table 25 – Definition ModuleAssignment

Role class name ModuleAssignment

Description
The interface class “ModuleAssignment” shall be used in order to define the assignment of
modules to CPU’s.

Parent Class LogicalEndpoint

Path for Element
reference

AutomationProjectConfigurationInterfaceClassLib/ModuleAssignment

The interface class "Module Assignment" is used to define the assignment of a module to a CPU in a
multi CPU system. By using an internal link between "Module Assignment" interfaces a module is
assigned to a CPU. A module can be assigned to several CPU’s and a CPU can control several modules.
Each DeviceItem shall have maximum one "Module Assignment" interface, which can be used by
several internal links. If only one CPU exists, the "Module Assignment" interface can be omitted and is
assumed that all modules are controlled by this CPU. The direction of the internal links is not relevant.

5.2.8 Naming and Escaping

For all CAEX-Path Expressions the CAEX naming and escaping rules are defined as follows:

• In a name within a path contains the characters “[“ and “]” these characters have to be
escaped by replacing them with “\[“ and “\]”

(e.g.: „R1/R1.[1]/R1.1.1“ => [R1]/[R1.\[1\]]/[R1.1.1]).

• If one of the characters “@”, “.”, “:” or “/” appears in the value of a path each part of the path
must be enclosed by square brackets (“[“ and “]”). Example: RefPartnerSideA="[4EA36EB0-
8159-4829-8F4B-A829F3320E27]:[My.Tag]"

• Values of name attributes are not affected.

• Semantics of the operators “@” and “.” is not applied and must not be supported.

5.3 Modelling of complex values

To express complex data types, e.g. for CustomAttributes, subordinated attributes can be broken down
further by using nested lists. Those lists must be from type “ListType” or "OrderedListType” by
considering the BPR “Modelling of List Attributes in AutomationML”. With this extension Complex Data
Types, like structures, tables, or arrays in subordinated values from CustomAttributes can now be
modelled.

Refer to appendix B for examples.

Application Recommendations: Automation Project
Configuration

 57

Appendix A Roundtrip Engineering and Identification of Logical
AR APC Objects

This appendix describes various use cases regarding the roundtrip engineering between ECAD and
PLC-Tools. Those use cases show the differences regarding the handling of the UUID of tags. In each
use case the first “Flow of Events” highlights the case that the PLC tool doesn’t keep the UUID persistent
which results in a finished life time of the Tag in each importing/exporting step.

The second “Flow of Events” highlights the case that the UUID of the Tag is kept persistent over the
whole bidirectional data exchange process which results that the Tag stays alive in each
importing/exporting step.

Use Case New tag without channel assignment and without further changes

UseCaseID 1

Extends -

Includes -

Actor ECAD Engineer, PLC Engineer

Brief
Description

The ECAD engineer creates a new tag with a new name (“rpm”) and a new UUID
(“4711”) without channel assignment.

Flow of Events
in case of
finished life
time of UUID

1. The PLC tool imports the tag. The PLC engineer does not change the
name.

2. The PLC tool exports the tag with the same name (“rpm”) without
channel assignment.

3. The ECAD tool imports and identifies the tag by its name.

Flow of Events
in case of
persistent life
time of UUID

1. The PLC tool imports the tag. The PLC engineer does not change the
name.

2. The PLC tool exports the tag with the same name (“rpm”) without
channel assignment.

3. The ECAD tool imports and identifies the tag by the UUID of the tag. If
the UUID cannot be found in the ECAD project, the ECAD tool can
identify the tag by its name and imprints the UUID (“4711”) for this tag or
can create a new tag with the given UUID.

Use Case New tag without channel assignment and change of tag

UseCaseID 2

Extends -

Includes -

Actor ECAD Engineer, PLC Engineer

Brief
Description

The ECAD engineer creates a new tag with a new name (“rpm”) and a new UUID
(“4711”) without channel assignment.

Flow of Events
in case of

1. The PLC tool imports the tag. The PLC engineer changes the name of
the tag (“rpm” -> “voltage”).

Application Recommendations: Automation Project
Configuration

 58

finished life
time of UUID

2. The PLC tool exports the tag with the new name (“voltage”) without
channel assignment.

3. The ECAD tool imports the tag with the new name. This results in two
tags. The ECAD importer has to decide how to handle the duplication.

Flow of Events
in case of
persistent life
time of UUID

1. The PLC tool imports the tag. The PLC engineer changes the name of
the tag (“rpm” -> “voltage”).

2. The PLC tool must decide (e.g. by user interaction, automatically, etc.),
if it’s a new tag or an edited tag. If it is a new tag, the old tag would be
deleted and a new one with a new UUID (“4712”) is created. If the tag is
edited, the UUID (“4711”) is kept.

3. The PLC tool exports the tag without channel assignment with the new
name (“voltage”) and the original UUID (“4711”) or the new UUID
(“4712”) depending on PLC tool decision (e.g. the previous decision, by
user interaction, etc…).

4. The ECAD tool imports and identifies the tag by the UUID of the tag. If
the UUID cannot be found in the ECAD project, the ECAD tool can
identify the tag by its name and imprints the UUID (“4711” or “4712”) for
this tag or can create a new tag with the given UUID.

Use Case New tag with channel assignment and without further changes

UseCaseID 3

Extends -

Includes -

Actor ECAD Engineer, PLC Engineer

Brief
Description

The ECAD engineer creates a new tag with a new name (“rpm”) and a new UUID
(“4711”) with channel assignment (“Channel 5”)

Flow of Events
in case of
finished life
time of UUID

1. The PLC tool imports the tag. The PLC engineer does not change
anything.

2. The PLC tool exports the tag with the same name (“rpm”) and with the
same channel assignment (“Channel 5”).

3. The ECAD tool imports and identifies the tag by its channel assignment.

Flow of Events
in case of
persistent life
time of UUID

1. The PLC tool imports the tag. The PLC engineer does not change
anything.

2. The PLC tool exports the tag with the same name (“rpm”) and with the
same channel assignment (“Channel 5”).

3. The ECAD tool imports and identifies the tag by the UUID and the
channel assignment of the tag.

Use Case New tag with channel assignment and change of channel assignment

UseCaseID 4

Extends Roundtrip following after UseCaseID 3

Includes -

Application Recommendations: Automation Project
Configuration

 59

Actor ECAD Engineer, PLC Engineer

Brief
Description

The ECAD engineer changes the channel assignment (“Channel 5”->“Channel
7”).

Flow of Events
in case of
finished life
time of UUID

1. The ECAD engineer imports the result of “3”.
2. The ECAD engineer changes the channel assignment (from “Channel 5”

to “Channel 7”) of a tag (“rpm”).
3. The PLC tool imports the tag (“rpm”) and changes the channel

assignment to the new channel (“Channel 7”)
4. The PLC engineer doesn’t change anything.
5. The PLC tool exports the tag (“rpm”) with the channel assignment

(“Channel 7”).
6. The ECAD tool imports and identifies the tag by the channel

assignment.

Flow of Events
in case of
persistent life
time of UUID

1. The ECAD engineer imports the result of “3”
2. The ECAD engineer changes the channel assignment (from “Channel 5”

to “Channel 7”) of a tag (“rpm”).
3. The PLC tool imports the tag (“rpm”) and changes the channel

assignment to the new channel (“Channel 7”)
4. The PLC engineer doesn’t change anything.
5. The PLC tool exports the tag (“rpm”) with the channel assignment

(“Channel 7”) and maintains the UUID.
6. The ECAD tool imports and identifies the tag by the UUID and the

channel assignment.

Use Case New tag with channel assignment and change of tag

UseCaseID 5

Extends -

Includes -

Actor ECAD Engineer, PLC Engineer

Brief
Description

The ECAD engineer creates a new tag with a new name (“rpm”) and a new UUID
(“4711”) with channel assignment (“Channel 5”).

Flow of Events
in case of
finished life
time of UUID

1. The PLC tool imports the tag. The PLC engineer changes the name of
the tag (“rpm” -> “voltage”) and maintains the channel assignment
(“Channel 5”).

2. The PLC tool exports the tag with the new name (“voltage”) with channel
assignment (“Channel 5”).

3. The ECAD tool imports and identifies the tag by the channel
assignment.

Flow of Events
in case of
persistent life
time of UUID

1. The PLC tool imports the tag. The PLC engineer changes the name of
the tag (“rpm” -> “voltage).

2. The PLC tool must decide (e.g. by user interaction, automatically, etc.),
if it’s a new tag or an edited tag. If it is a new tag, the old tag would be
deleted and a new one with a new UUID (“4712”) is created. If the tag is
edited, the UUID (“4711”) is kept.

3. The PLC tool exports the tag without channel assignment with the new
name (“voltage”) and the original UUID (“4711”) or the new UUID

Application Recommendations: Automation Project
Configuration

 60

(“4712”), depending on PLC tool decision (e.g. the previous decision, by
user interaction, etc…).

4. The ECAD tool imports and identifies the tag by the UUID of the tag. If
the UUID cannot be found in the ECAD project, the ECAD tool can
identify the tag by its name and channel assignment and imprints the
UUID (“4711” or “4712”) for this tag or can create a new tag with the
given UUID.

Use Case New tag with channel assignment and change of channel assignment

UseCaseID 6

Extends -

Includes -

Actor ECAD Engineer, PLC Engineer

Brief
Description

The ECAD engineer creates a new tag with a new name (“rpm”) and a new UUID
(“4711”) with channel assignment (“Channel 5”).

Flow of Events
in case of
finished life
time of UUID

1. The PLC tool imports the tag. The PLC engineer changes the channel
assignment of the tag (“Channel 5”->”Channel 7”) by changing the
logical address (e.g. “I1.1”->”I1.2”, “X4”->X6”).

2. The PLC tool exports the tag with the same name (“rpm”) and with the
new channel assignment (“Channel 7”).

3. The ECAD tool imports and identifies the tag by the name and changes
the channel assignment.

Flow of Events
in case of
persistent life
time of UUID

1. The PLC tool imports the tag. The PLC engineer changes the channel
assignment of the tag (“Channel 5”->”Channel 7”) by changing the
logical address (e.g. “I1.1”->”I1.2”, “X4”->X6”).

2. The PLC tool must decide (e.g. by user interaction, automatically, etc.),
if it’s a new tag or an edited tag. If it is a new tag, the old tag would be
deleted and a new one with a new UUID (“4712”) is created. If the tag is
edited, the UUID (“4711”) is kept.

3. The PLC tool exports the tag with the same name (“rpm”), the new
channel assignment (“Channel 7”) and the original UUID (“4711”) or the
new UUID (“4712”), depending on PLC tool decision (e.g. the previous
decision, by user interaction, etc…).

4. The ECAD tool imports and identifies the tag by the UUID of the tag. If
the UUID cannot be found in the ECAD project, the ECAD tool can
identify the tag by its name and channel assignment and imprints the
UUID (“4711” or “4712”) for this tag or can create a new tag with the
given UUID.

Use Case New tag with channel assignment and change of tag and channel assignment

UseCaseID 7

Extends -

Application Recommendations: Automation Project
Configuration

 61

Includes -

Actor ECAD Engineer, PLC Engineer

Brief
Description

The ECAD engineer creates a new tag with a new name (“rpm”) and a new UUID
(“4711”) with channel assignment (“Channel 5”).

Flow of Events
in case of
finished life
time of UUID

1. The PLC tool imports the tag. The PLC engineer changes the name of
the tag (“rpm”->”voltage”) and the channel assignment of the tag
(“Channel 5”->”Channel 7”).

2. The PLC tool exports the tag with the new name (“voltage”) and with the
new channel assignment (“Channel 7”).

3. The ECAD tool imports and identifies the tag by the name and changes
the channel assignment. The ECAD importer has to decide how to
handle the duplication.

Flow of Events
in case of
persistent life
time of UUID

1. The PLC tool imports the tag. The PLC engineer changes the name of
the tag (“rpm”->”voltage”) and the channel assignment of the tag
(“Channel 5”->”Channel 7”).

2. The PLC tool must decide (e.g. by user interaction, automatically, etc.),
if it’s a new tag or an edited tag. If it is a new tag, the old tag would be
deleted and a new one with a new UUID (“4712”) is created. If the tag is
edited, the UUID (“4711”) is kept.

3. The PLC tool exports the tag with the new name (“voltage”), the new
channel assignment (“Channel 7”) and the original UUID (“4711”) or the
new UUID (“4712”) depending on PLC tool decision (e.g. the previous
decision, by user interaction, etc…).

4. The ECAD tool imports and identifies the tag by the UUID of the tag. If
the UUID cannot be found in the ECAD project, the ECAD tool can
identify the tag by its name and channel assignment and imprints the
UUID (“4711” or “4712”) for this tag or can create a new tag with the
given UUID.

Use Case New tag with channel assignment and change of start address

UseCaseID 8

Extends -

Includes -

Actor ECAD Engineer, PLC Engineer

Brief
Description

The ECAD engineer creates a new tag with a new name (“rpm”) and a new UUID
(“4711”) with channel assignment (“Channel 5”).

Flow of Events
in case of
finished life
time of UUID

1. The PLC tool imports the tag. The PLC engineer changes the start
address of the tag.

2. The PLC tool exports the tag with the new start address.
3. The ECAD tool imports and identifies the tag by its name and changes

the start address.

Flow of Events
in case of

1. The PLC tool imports the tag. The PLC engineer changes the start
address of the tag.

2. The PLC tool must decide (e.g. by user interaction, automatically, etc.),
if it’s a new tag or an edited tag. If it is a new tag, the old tag would be

Application Recommendations: Automation Project
Configuration

 62

persistent life
time of UUID

deleted and a new one with a new UUID (“4712”) is created. If the tag is
edited, the UUID (“4711”) is kept.

3. The PLC tool exports the tag with the new start address and the original
UUID (“4711”) or the new UUID (“4712”) depending on PLC tool
decision (e.g. the previous decision, by user interaction, etc…).

4. The ECAD tool imports and identifies the tag by the UUID of the tag. If
the UUID cannot be found in the ECAD project, the ECAD tool can
identify the tag by its name and channel assignment and imprints the
UUID (“4711” or “4712”) for this tag or can create a new tag with the
given UUID.

Application Recommendations: Automation Project
Configuration

 63

Appendix B CustomAttributes – Complex Data Types

This appendix describes various use cases regarding the extension of CustomAttributes by complex
data types like structures, tables or arrays.

B.1 Structures

• Module supports several operating modes such as valve control and cam control

• In the case of cam control, each channel can control multiple cams

• Controlling a cam via the Parameter data set consisting of [Effective direction, Start position,
End position, Channel assignment]

<Attribute Name="CustomAttributes">
 <Attribute Name="Cam 0”>
 <RefSemanticCorrespondingAttributePath=”ListType"/>
 <Attribute Name="EffectiveDirection" AttributeDataType="xs:string">
 <Value>Negative</Value>
 </Attribute>
 <Attribute Name="StartPosition" AttributeDataType="xs:string">
 <Value>100</Value>
 </Attribute>
 <Attribute Name="EndPosition" AttributeDataType="xs:string">
 <Value>200</Value>
 </Attribute>
 <Attribute Name="Channel Assignment" AttributeDataType="xs:string">
 <Value>0</Value>
 </Attribute>
</Attribute>
</Attribute>

Application Recommendations: Automation Project
Configuration

 64

B.2 Tables

• Module supports various energy measurements.

• For different Measurements records with the same parameter can be defined.

• The assignments of the measured variables to IO areas can be defined variably.

<Attribute Name="CustomAttributes">
<Attribute Name="Dataset mapping">
 <RefSemanticCorrespondingAttributePath="OrderedListType"/>
 <Attribute Name="1">
 <RefSemanticCorrespondingAttributePath="ListType"/>
 <Attribute Name="MappingID"
 AttributeDataType="xs:string">
 <Value>00001</Value>
 </Attribute>
 <Attribute Name="MappingMeasuredVariable"
 AttributeDataType="xs:string">
 <Value>Voltage L1-N (ID00001)</Value>
 </Attribute>
 <Attribute Name="MappingUnit"
 AttributeDataType="xs:string">
 <Value>V</Value>
 </Attribute>
 </Attribute>
 <Attribute Name="2">
 <RefSemanticCorrespondingAttributePath="ListType"/>
 <Attribute Name="MappingID"
 AttributeDataType=" xs:string">
 <Value>00007</Value>
 </Attribute>
 <Attribute Name="MappingMeasuredVariable"
 AttributeDataType=" xs:string">
 <Value>Current L1 (ID00007)</Value>
 </Attribute>
 <Attribute Name="MappingUnit"
 AttributeDataType=" xs:string">
 <Value>A</Value>
 </Attribute>
 </Attribute>
</Attribute>
</Attribute>

Application Recommendations: Automation Project
Configuration

 65

B.3 Arrays

In this use case the Profinet DNS configuration can be selected from an array out of IP
addresses.

<Attribute Name="CustomAttributes">
 <Attribute Name=„PnDnsConfiguration">
 <RefSemantic CorrespondingAttributePath="OrderedListType"/>
 <Attribute Name=„1" AttributeDataType="xs:string">
 <Value>192.168.3.3</Value>
 </Attribute>
 <Attribute Name=„2" AttributeDataType="xs:string">
 <Value>192.168.3.4</Value>
 </Attribute>
 <Attribute Name=„3" AttributeDataType="xs:string">
 <Value>192.168.3.5</Value>
 </Attribute>
 </Attribute>
</Attribute>

Application Recommendations: Automation Project
Configuration

 66

Appendix C CommunicationPortProxyInterface – Pluggable
Ports

This appendix describes the use case regarding the extension for modelling of pluggable ports.

The CommunicationPortProxyInterface represents the connection between parent pluggable module
and its builtin port(s) incase builtin ports are going to be exchanged as part of head module.

