

Conventions for modelling
AutomationML libraries

State: November 2023

Bibliotheksentwicklung mit AutomationML

 2

Library development with AutomationML

Table of contents

1 CONVENTIONS FOR THE MODELLING OF AUTOMATIONML LIBRARIES 3

1.1 Motivation and use cases 3

1.2 Terms defining upper and lower case letters 3

1.2.1 Pascal Casing 3

1.2.2 Lower Camel Casing 3

1.2.3 UpperCase 3

1.3 Recommendations for self-identification of libraries and extensions 4

1.4 Recommendations for library naming conventions 5

1.4.1 Naming conventions for libraries 5

1.4.2 Naming conventions for AutomationML files for libraries 6

1.4.3 Naming conventions for classes 7

1.4.4 Naming conventions for attributes and attribute types 7

1.5 Recommendations for versioning classes and libraries 8

1.6 Recommendations for structuring libraries 9

1.7 Recommendations for the extension of libraries (extensions) 9

1.8 Recommendations for the online-supported search of libraries, classes and types 10

1.9 Modelling recommendations of libraries, classes and attribute types 10

1.10 Recommendations for rights managment of libraries 11

1.11 Recommendations for saving libraries and AutomationML documents 11

Bibliotheksentwicklung mit AutomationML

 3

Library development with AutomationML

1 Conventions for the modelling of AutomationML libraries

1.1 Motivation and use cases

This document is intended for data modellers and their working groups who wish to create and publish
AutomationML libraries. This includes libraries published by the AutomationML association, but also
user-defined AutomationML libraries developed in industrial or academic environments.

Application-specific harmonised AutomationML class libraries are the basis for perfoming data
exchange because they ensure that instances and data structures are based on a common
understanding.

Since AutomationML, as a flexible object-oriented data description language, offers a wide range of
possibilities for structuring class libraries, naming their elements and versioning them, the
AutomationML association has compiled recommendations on how to create libraries in this
document. The conventions described are based on the experience of AutomationML working groups
and are intended to provide guidance for modellers inside and outside the AutomationML association
when modelling AutomationML libraries.

1.2 Terms defining upper and lower case letters

The following section describes different ways of capitalising identifiers. These terms are referred to
the remainder of the document. Excluded from these rules are units and proper names such as

 kg, kWh (SI unit symbols and their derivatives)

 IOSB, ARD, ZDF, ABB etc.

1.2.1 Pascal Casing

In this convention, the first character of each word is capitalised, as shown in the example below.

Examples:

 Correct: RollConveyor

 Wrong: Rollconveyor, Roll_Conveyor

1.2.2 Lower Camel Casing

In this convention, the first letter of each word is capitalised, except for the first word, as in the
following example.

Examples:

 Correct: backColor

 Wrong: BackColor, backcolor

1.2.3 UpperCase

In this convention, all letters of a word are capitalised.

Examples:

 Correct: IP, NR, KITKARLSRUHE, ADAC

 Wrong: KITKarlsruhe

Bibliotheksentwicklung mit AutomationML

 4

Library development with AutomationML

1.3 Recommendations for self-identification of libraries and extensions

ID Requirement Motivation Priority

A_NM_01

Mandatory: An AutomationML library file must identify itself in the CAEX
document.

If there is only one library in the library file, the the following fields of the
CAEX SourceDocumentInformation must be filled in and identify this libary.

- OriginID: unique identifier for the library

- OriginName: unique name for the library

- OriginVersion: version number of the library

- LastWritingDateTime: date of the release

- OriginVendor: name of the producer or producer group

- OriginVendorURL: URL to the library (collection)

e.g.

 The URL points to an online repository where the original library can
be found, including documentation if applicable. The link is complete
and points to downloadable content.

The aim is to
assign the library
to a producer
group and to
define the version
of the release.

The URL points to
a download
source of the
original library, if
available.

Mandatory

A_NM_02

In addition to A_NM_01: If serveral related libraries (one or more library
collections) are stored together in an AutomationML document, the
SourceDocumentInformation field is to be filled in for each collection of the
contained libraries, i.e. one entry per related libraries.

 Each collection receives its own OriginVersion, which is determined
by the working group.

Improving the
traceability and
downloadability of
the libraries.

Mandatory

A_NM_03

Mandatory: AutomationML standard libraries are signed.

Recommendation: User-defined libraries are signed.

That means that, conversely, every change to a library leads to the
signature being broken. It follows from this that once a library has been
signed and published, its version can no longer be changed without being
noticed.

The signature
protects a library
from unwanted
modification or
allows
information about
new versions to
be rolled out.

Mandatory for
AutomationML
standard libraries

Recommendation
for user-defined
libraries

Bibliotheksentwicklung mit AutomationML

 5

Library development with AutomationML

1.4 Recommendations for library naming conventions

1.4.1 Naming conventions for libraries

ID Requirement Motivation Priority

A_NKL_01

Mandatory: General rules for library names

 Names of libraries must be unique within an AutomationML
document.

 A library name is composed of the following components in the given
order:

 Name components are to be separated with a separator “_“.The

underscore separator “_” must NOT be used for any other purposes.

 The naming of each component is done with PascalCasing.

 Prefix, domain and type may only contain the letters [a-z], [A-Z], [-] as
well as [0-9], no spaces.

Examples of library names:

 AutomationML_ComponentBase_InterfaceClassLib

 AutomationML_AutomationProjectConfiguration_RoleClassLib

 HSPF_MasterClass_AttributeTypeLib

 ABB_RobotSystem_SystemUnitClassLib

Quick
identification of
relevant
information

Mandatory

A_NKL_02

Mandatory: Design of the prefix for AutomationML standard libraries
AutomationML standard libraries

 Start with the prefix “AutomationML“,
Example: AutomationML_PumpenLib…

Common Look
& Feel,
recognitionning
effect

Mandatory

A_NKL_03

Mandatory: Design of the prefix for libraries that are not AutomationML
standard libraries: user defined AutomationML-libraries

 Start with a prefix that identifies the source of the library, e.g. an
association name, company name, etc. The name is determined by
the producer group.

 The prefix "AutomationML" is reserved for standard libraries under
the responsibility of the AutomationML Association. All other
standard libraries must NOT start with the prefix "AutomationML"

 Examples: Prefix: ”IOSB“, ”Festo“, “HSPF“, etc.

Simple
assignability of
the libraries

Mandatory

A_NKL_04

Mandatory: Design of the “domain“

 The domain name should identify the application for which the
library was developed.

 The naming is done by the producer group.
e.g. Domain = “AutomationProducts“, “AutomationComponent“

Improved
readability

Mandatory

A_NKL_05

Mandatory: Design of “type“

 Role libraries receive the identifier “RoleClassLib“.

 Interface libraries receive the identifier “InterfaceClassLib“.

 Attribut type libraries receive the identifier “AttributTypeLib“.

 SystemUnitClass libraries receive the identifier “SystemUnitClassLib“.

Quick
identification of
the library type

Mandatory

A_NKL_06

Mandatory: Naming conventions for new versions of libraries

 When a new version of a library is created, it keeps the name of the
previous version.

Libraries must
have a unique
name.
Uniqueness for
references

Mandatory

Prefix Domain Type

Bibliotheksentwicklung mit AutomationML

 6

Library development with AutomationML

1.4.2 Naming conventions for AutomationML files for libraries

ID Requirement Motivation Priority

A_NKD_01

Mandatory: File names of AutomationML libraries must have an unique
name that is unchangeable during the life cycle of the library.

 A file name for an AutomationML library is built up from name
elements in a specified order.

 A separator “_“ must be used between the name components. The
underscore separator "_" must NOT be used for any other purpose.

If only one AutomationML library is included in the AutomationML
document:

 The following name elements must be used

 The LibName corresponds to library names.

 The AMLEdition identifies the underlying AutomationML standard.

o AutomationML Edition 1: “AMLEd1”

o AutomationML Edition 2: “AMLEd2“

 The LibVersion corresponds to the version of the library, format a.b.c.

 The file extension is “.aml“.

 Example:
AutomationML_ComponentBase_InterfaceClassLib_AMLEd2_1.1.0.aml

If several libraries are contained in one AutomationML file:

 The following name componets must be used

 For the Prefix and the Domain, the same rules apply as described in
1.4.1.

 This is followed by the string ”Libraries“,

 The AMLEdition identifies the underlying AutomationML standard

o AutomationML Edition 1: “AMLEd1“

o AutomationML Edition 2: “AMLEd2“

 The Release-Identifier identifies the version of the library collection, it
is identical to the CAEX OriginVersion in the associated
SourceDocumentInformation. This release indentifier is defined by the
working group developing the library.

 Examples:

o AutomationML_ARAPC_Libraries_AMLEd1_1.3.0.aml

o AutomationML_Part6WPCompo_Libraries_AMLEd1_1.1.0.aml

This makes it
possible to
distinguish
between
different
versions of
libraries just by
looking at the
file name.

Otherwise, the
libraries could
simply be
exchanged
unnoticed.

Mandatory

A_NKD_02

Mandatory: File names of AutomationML standard library files

 The naming of each component is done with PascalCasing.

 The individual parts of the name may only contain the letters [a-z], [A-
Z], [-] and [0-9], no spaces.

Optional: For user-definded libraries, this is a recommendation.

Improved
readability

Mandatory for
AutomationML
standard libraries

Recommendation
for user-defined
libraries

Bibliotheksentwicklung mit AutomationML

 7

Library development with AutomationML

1.4.3 Naming conventions for classes

ID Requirement Motivation Priority

A_NKK_01
Mandatory: Names of classes (not Attribute Types)

 Class names are named via PascalCasing.

Ensure
verifiability

Mandatory

A_NKK_02

Recommendation: Classes should not have their type in their name. The
type is known by the software and the libraries also indicate the type.

 Correct: Roboter

 Wrong: Roboter_SUC

 Wrong: Roboter_SystemUnitClass

Advantage: the
type is clearly
recognisable.

Recommendation

A_NKK_03

Recommendation: If a new version of a class is created, it must be
modelled in a new library (otherwise the signatory of the original library
would become invalid). The name of the new version of the class should
remain the same

 Example:

AutomationML_Pump_RoleClassLib (in version 1.0)

 Pump_Superfast

AutomationML_Pump_RoleClassLib (in version 1.1)

 Pump_Superfast

Note: The renaming of a new version of a class is nvertheless permitted, e.g.
AutoFaceLift2010, AutoFaceLift2024

Causes better
clarity in the
referencing of
classes.

Attention: not
automatically
testable

Recommendation

1.4.4 Naming conventions for attributes and attribute types

ID Requirement Motivation Priority

A_NKA_1

Attribute names

Recommendation: Names of attributes or attribute types should be
written using CamelCase.

 referenceTpe, speedValue

Common coding
guidelines

Recommendation

A_NKA_2

Attribute data type names

 Mandatory: all attribute data types must be named as defined in:
http://www.w3.org/TR/xmlschema-2/#built-in-datatypes

 E.g. xs:double

Compatibility and
dissemination

Mandatory

A_NKA_3

Naming of units

Recommendation: Since a XML document cannot contain superscripts as
in m2, the substitution m^2 should be used instead. Since we are writing to
an international audience, the values and units of attributes should be
expressed in the metric system (SI). As a reference for the definition of SI
units and symbols, the https://www.nist.gov/pml/owm/metric-si/si-units
should be used.

Mandatory: the characters */+-^ are reserved for arithmetic operations.

Tool and language
independent
readability

Recommendation

A_NKA_4

Notation of composite units

Mandatory: the separation between numerator and denominator can be
introduced by “/“. For ambiguos expressions use parentheses, e.g.
kg*m/s^2, kg*m/s^(-2), J/(A*s)

Tool independent
readability

Mandatory

http://www.w3.org/TR/xmlschema-2/#built-in-datatypes
https://www.nist.gov/pml/owm/metric-si/si-units

Bibliotheksentwicklung mit AutomationML

 8

Library development with AutomationML

1.5 Recommendations for versioning classes and libraries

ID Requirement Motivation Priority

A_V_01
Mandatory: Libraries must be versioned. For this purpose, the CAEX
attribute Version must be set.

Preparation of
sustainable
development.

Mandatory

A_V_02
Recommendation: Classes must be versioned. For this purpose, the
CAEX attribute Version must be set.

Preparation of
sustainable
development.

Recommendation

A_V_03

Mandatory: The version number must follow the concept of semantic
versioning (see https://semver.org).

a=Major Release, breaks compatibility

b=Minor = Supplement, backwards compatible

c=Patch = Working version backwards compatible

 Libraries that are not downward compatible increment the
major release a.

 Downward compatible libraries increment b.

 Working versions increment c.

For pre-release versions, any pre-release tags can be added to the
version number ”-alpha0.1“.

Faciliates the guided
software-supported
tracing of the version
history.

Mandatory

A_V_04

Mandatory: If a library, type or class is modelled in a new version, the
old and new version should reference each other. For this purpose the
old version refers to the new version in the filed Revision/newVersion,
wheras the new version refers to the old version in the field
Revision/oldVersion.

If a new version breaks with the previous one, i.e. goes beyond a
change in the content of the major version, it is modelled as a new
independent class and does not have to point to the previous version.

If a library is converted from an old AutomationML edition to an
AutomationML edition, the old and new libraries should alsi refer to
each other.

Faciliates the guided
software-supported
tracing of the version
history as well as the
distribution,
recognition, updating
or informing about
new versions.

Mandatory

A_V_05

Mandatory: If an AutomationML standard library is modified within an
AutomationML edition, it must be published in a new version. An
extension of existing libraries may never be made without affecting
their version.

Easy recognition of
changes in the library.

Mandatory

A_V_06

Mandatory: If an AutomationML library is converted from an old to a
new AutomationML standard (e.g. from AutomationML Ed.1 to Ed.2),
the version number of the new library is independent of the version
number of the original library and can, for example, start from the
beginning. For reasons of better comparability, the version number of
libraries of different editions can be chosen to be identical if the
contents are the same. The versions of both libraries can subsequently
develop independently, so it cannot be concluded from the equality of
the library version number across AutomationML edition boundaries
that they are identical in terms of content.

Note: The AutomationML edition is not recognised via the version
number, but via other AutomationML mechanisms.

Distinctivness of the
libraries, even if they
do not differ in
content.

Mandatory

A_V_07
Mandatory: The new library version must be saved in a new
document and must not be in the same document as the older
version.

Uniform separation of
versions.

Mandatory

https://semver.org/

Bibliotheksentwicklung mit AutomationML

 9

Library development with AutomationML

1.6 Recommendations for structuring libraries

ID Requirement Motivation Priority

A_S_01

Recommendation: In official AutomationML libraries, tree structures
should only be used if they correspond to the derivation hierarchy of
the classes.

Recommendation: It is recommended to model classes preferably in
libraries as a flat list structure and not artificially reproduce the
inheritance hierarchy.

Instead, the inheritance hierarchy is to be created by the
AutomationML Editor as a “view“ can be generated.

The class tree is only
one view of the
library.

To reduce confusion
between the use of
library hierarchy and
class hierarchy.

Problem: users often
think that the tree
structure corresponds
to the class hierachy.
This will improve
understanding.

Recommendation

A_S_02
Recommendation: When a child class is created in a class, the child
class should by default receive an inheritance relationship to the
parent class by referencing the parent class.

Simplifies
understanding by the
user.

Recommendation

A_S_03

Mandatory: All libraries published by AutomationML working groups
must contain only their own libraries. Referenced third-party libraries
must be included via CAEX ExternalReferences and stored in separate
files.

Recommendation: It is also recommended for user-defined
AutomationML libraries to be saved in separate files and to integrate
those libraries in AutomationML projects by referencing.

This prevents
modifications being
made in copies of
these standard
libraries.

It also reduces the
size of the files.

Mandatory for
AutomationML
standard libraries

Recommendation
for user-defined
libraries

1.7 Recommendations for the extension of libraries (extensions)

ID Requirement Motivation Priority

A_E_01

When a working group extends a standard library, one of two ways
described below must be chosen.

Variant 1: If a standard library is modified, the working group
publishes a new version of the library, e.g.:

 AutomationML_Subsea_RoleClassLib (in version 1.0.0)

 AutomationML_Subsea_RoleClassLib (in version 1.1.0)

Variant 2: If a few classes are to be added to a standard library and the
original library can still be used on its own, theses additional classes
can be modelled in a separate library with its own versioning.

 HSPF_ConferenceMonitor_InterfaceClassLib

 HSPF_ConferenceMonitor_InterfaceClass_BluetoothExtension

In variant 2 the extension is to be added to the original library name.
The naming should reflect the application and the source library, for
example with the text „BluetoothExtension“, see A_E_02.

Software pattern: “Plugin-Pattern“

The advantage of an
extension is that the
basic library does not
have to be published /
documented / signed
etc. when it is added.

Mandatory

A_E_02

For variant 2, the following rules apply to the naming of the extended
library:

 LibName corresponds to the name of the original library

 ExtPrefix is to identify the owner or owner group and the type of
extension: This can be omitted if an owner and domain are
identical to the original library.

 “Extension“ identifies that it is an extension of an existing library.

Uniform naming of the
extended libraries and
intuitive assignability
and understanding of
where these were
derived.

Mandatory for
variant 2

Bibliotheksentwicklung mit AutomationML

 10

Library development with AutomationML

e.g.

 AutomationML_GoldFisch_InterfaceClassLib

 AutomationML_GoldFisch_InterfaceClassLib_SilverExtension

 AutomationML_GoldFisch_InterfaceClassLib_IOSBBronceExtension

A_E_03
Extensions of extensions are not allowed. If an extension is not
sufficient, a new independent extension must be created.

Better coordination of
extensions, avoidance
of wild growth.

Mandatory

A_E_04
The extension library should name both its own source and the original
extended library in the SourceDocumentInformation field. Thus, it is
known which library version is being extended.

Machine-readable
traceability of which
library is being
extended.

Mandatory

1.8 Recommendations for the online-supported search of libraries, classes and types

ID Requirement Motivation Priority

A_OM_1

Mandatory: AutomationML libraries, if they have gone through a
publication process, are available online, findable online and
accessible online by the AutomationML Editor. This requires online
access. Offline operation is possible after downloading the libraries.

Online access is a
prerequisite for all
subsequent features.

Mandatory

A_OM_2

Recommendation: AutomationML attribute types, attributes, role
libraries and role classes should become globally referenceable
(analogous to IRDI).

AutomationML libraries should themselves be able to become a
referencable semantic standard.

 SemanticRef = amlwebsite

Allows AutomationML
semantics to be
referenceable.

Recommendation

A_OM_3

Recommendation: If a new attribute type is defined and it is found
that the attribute type already exists, the new attribute type should
not be used. The existing attribute type should be used instead, to
prevent duplication of attribute types.

A user-defined library
can be built from
several sources
without duplication of
types.

Recommendation

A_OM_4
Recommendation: If a new class is defined and it already exists and is
available online, it should not be defined again but reused.

Avoidance of
duplication of classes.
Reuse of classes.

Recommendation

A_OM_5

Recommendation: An AutomationML document with standard
libraries should internally store a path to its original digital source.

E.g. AMLStandardLib store a URI to www.automationml.org/... (the
place where this library can be found)

The path is set by the
AutomationML Office.

Recommendation

1.9 Modelling recommendations of libraries, classes and attribute types

ID Requirement Motivation Priority

A_AE_ME_01

Recommendation: All attribute types should have a direct or indirect
sematic reference to existing dictionaries (CC dictionary, semantic
standards, e.g. other AutomationML classes), if available.

Automated
interpretability of
features.

Recommendation

A_AE_ME_02
Mandatory: CAEX 3.0: All attributes used in role classes and interface
classes must be typed. All attributes must be derived from an
AutomationML attribute type.

Prevents the use of
untyped attributes.

Mandatory

A_AE_ME_03

Recommendation: Attribute types should always include:

 Description (Language: English for AutomationML working groups)

 Data type

 Unit as defaults (see also A_AE_ME_04)

Desciption: important
for human readability.

Type safety: Whoever
wants to change
these values must
overwrite the
attribute.

Recommendation

http://www.automationml.org/

Bibliotheksentwicklung mit AutomationML

 11

Library development with AutomationML

A_AE_ME_04

Mandatory:

 If the data type of an attribute is "xs:string" or the attribute is a
structure attribute such as a list attribute, the unit must remain
empty and is not evaluated.

 If the data type is a numerical value, e.g. xs:int, xs:float, etc., the
unit must always be specified, in case of non-existence with "ilb"
(intentionally left blank).

Makes
troubleshooting
automatable.

Mandatory

A_AE_ME_05

Mandatory for AutomationML standard libraries, recommended for
user-defined libraries: AutomationML libraries must have the
following fields:

 Description (language: English for AutomationML working
groups)

 Version (see A_V_01)

Transparency

Mandatory for
AutomationML
standard libraries

Recommendation
for user-defined
libraries

A_AE_ME_06

Recommendation: Only AutomationML standard libraries that are
signed should be referenced.

Attention: during the development of a library this should be
tolerated, but in final libarries it should not be tolerated.

Unsigned libraries are
potentially
manipulated.

Note: Beta versions
can also be signed.

Recommendation

1.10 Recommendations for rights managment of libraries

ID Requirement Motivation Priority

A_R_1
Master libraries may only be changed by authorised persons. The
rights system for this is to be defined.

Tamper protection

IP Protetion

Signing

Mandatory

A_R_2 Libraries must be proteced from unwanted modification. Tamper protection Mandatory

1.11 Recommendations for saving libraries and AutomationML documents

ID Requirement Motivation Priority

A_S_1

Mandatory: If AutomationML documents are stored on a hard disk,
third-party libraries must be stored in a subfolder whose name is
“_AMLExternalLibraries“. This subfolder contains offline copies of the
libraries used dierectly in the document folder.

These libraries are to be referenced in the main document via a
suitable alias. The referencing is done via a relative path.

Note: Sending of all related documents can be done by means of
container format AMLX. Missing libraries can be downloaded
independently by the AutomationML Editor.

All foreign libraries are
located in the
subfolder,
"_AMLExternalLibrarie
s". This provides
tamper protection,
the avoidance of
multiple loading of
conflicting libraries,
and creates smaller
files.

Mandatory

A_S_2

Mandatory: All aliases must be named for referencing external
libraries. The following rules apply:

 An alias must be unique within the document.

 Implementation recommendation: This can be achieved by
having the alias correspond to the name of the target library (not
the file).

 Implementation recommendation: If a more compact form is
desired, this is permitted as long as the uniqueness of the alias is
maintained.

Human readability Mandatory

A_S_3
Mandatory: The path must point to the libraries relative to the
document folder.

Traceability Mandatory

Bibliotheksentwicklung mit AutomationML

 12

Library development with AutomationML

The implementaion is illustrated in Figure 1.

Figure 1: Distributed document architecture of an AutomationML document, e.g. an AutomationML
library

